With the development of China's economy,the implementation scale and scope of hydraulic engineering projects are increasing,and the application of anti-seepage technology has an important influence on the construc...With the development of China's economy,the implementation scale and scope of hydraulic engineering projects are increasing,and the application of anti-seepage technology has an important influence on the construction quality of hydraulic engineering.In this paper,the significance and problems of the application of anti-seepage technology in the construction of hydraulic engineering projects were mainly analyzed,and specific application strategies were proposed.展开更多
Much progress has been made in the research of breeding new rice line through gene engineering by Life Science College of Fudan Univ, Shanghai, and the Plant Science Res Inst of Shanghai Acad of Agri. It was the first...Much progress has been made in the research of breeding new rice line through gene engineering by Life Science College of Fudan Univ, Shanghai, and the Plant Science Res Inst of Shanghai Acad of Agri. It was the first time internationally that the research adopted a man-combined gene, taking agrobacterium as car-展开更多
Maintenance Engineering Department of China Eastern Jiangxi Branch has 130 employees and manages four Airbuses A319 and two A320s. seen from the ratio of man to plane, it is the lowest among China Eastern branches (su...Maintenance Engineering Department of China Eastern Jiangxi Branch has 130 employees and manages four Airbuses A319 and two A320s. seen from the ratio of man to plane, it is the lowest among China Eastern branches (subsidiaries). Due to the requirement of the air market, the six planes are arranged separately in Nanchang, Shanghai, Fuzhou and Ningbo, thus the six planes are maintained in four places, which is unique among China展开更多
Acoustically absorptive treatment in aircraft engine nacelle is an essential part of the overall aircraft noise reduction effort. The investigation on the optimization of multi-liners plays an important role in noise ...Acoustically absorptive treatment in aircraft engine nacelle is an essential part of the overall aircraft noise reduction effort. The investigation on the optimization of multi-liners plays an important role in noise reduction. Based upon the mode analysis method of sound propagation in a circular duct with multiple liners, a flexible tolerance method is used to optimize the acoustic parameters(impedance), geometric structure parameters(such as open area ratio, cavity depth and hole diameter) and operating condition parameters(such as blade passing frequency). The mathematical models for these kinds of optimization are presented here. The optimum values of the design variables are determined when the in-duct sound suppression approaches a maximum. It can be derived from the optimum results that the emphasis of the engineering optimization design of the perforated plate honey-comb structure should be placed on the optimum choice of the open area ratio and cavity depth. Some reference criteria for the engineering design of the multi-linings are also provided.展开更多
For reconstructing a freeform feature from point cloud, a deformation-based method is proposed in this paper. The freeform feature consists of a secondary surface and a blending surface. The secondary surface plays a ...For reconstructing a freeform feature from point cloud, a deformation-based method is proposed in this paper. The freeform feature consists of a secondary surface and a blending surface. The secondary surface plays a role in substituting a local region of a given primary surface. The blending surface acts as a bridge to smoothly connect the unchanged region of the primary surface with the secondary surface. The secondary surface is generated by surface deformation subjected to line constraints, i.e., character lines and limiting lines, not designed by conventional methods. The lines are used to represent the underlying informa-tion of the freeform feature in point cloud, where the character lines depict the feature’s shape, and the limiting lines determine its location and orientation. The configuration of the character lines and the extraction of the limiting lines are discussed in detail. The blending surface is designed by the traditional modeling method, whose intrinsic parameters are recovered from point cloud through a series of steps, namely, point cloud slicing, circle fitting and regression analysis. The proposed method is used not only to effectively and efficiently reconstruct the freeform feature, but also to modify it by manipulating the line constraints. Typical examples are given to verify our method.展开更多
This paper presents a domain engineering approach to build a software product line that supports the change notification service in a Configuration Management Database (CMDB) according to the Information Technology In...This paper presents a domain engineering approach to build a software product line that supports the change notification service in a Configuration Management Database (CMDB) according to the Information Technology Infrastructure Library (ITIL) best practices. For the development of this product line, the proposed approach makes use of a construction of products methodology by analogy: this is a new notation which reports the variability of the products, obtaining metrics as important as the number of products and uses a language that enables, by means of the flexibilization of a product and the development of some generators, to build the rest of the product line. In addition the paper offers a standard for the analysis and design of the CMDB as well. Finally, the paper presents an economic model for the product line, where the profitability and productivity of the proposed solution are analyzed.展开更多
A flat neural network is designed for the on line state prediction of engine. To reduce the computational cost of weight matrix, a fast recursive algorithm is derived according to the pseudoinverse formula of a parti...A flat neural network is designed for the on line state prediction of engine. To reduce the computational cost of weight matrix, a fast recursive algorithm is derived according to the pseudoinverse formula of a partition matrix. Furthermore, the forgetting factor approach is introduced to improve predictive accuracy and robustness of the model. The experiment results indicate that the improved neural network is of good accuracy and strong robustness in prediction, and can apply for the on line prediction of nonlinear multi input multi output systems like vehicle engines.展开更多
The Palongzangbu River Basin contains the highest number of maritime province glaciers in China. There are 130 glacial lakes, 64 snow avalanche sites and 28 glacial debris flow gullies distributed within the basin. Sn...The Palongzangbu River Basin contains the highest number of maritime province glaciers in China. There are 130 glacial lakes, 64 snow avalanche sites and 28 glacial debris flow gullies distributed within the basin. Snow disasters play a controlling role in the Sichuan-Tibet Highway construction, due to the terrain’s special characteristics of high altitude and large height differential. Segmentation mitigation countermeasures for the Sichuan-Tibet Highway are presented based on snow disaster severity level and damage mode of the road. In the Ranwu to Midui section, snow avalanches are regional disasters, so the line should be placed in sunny slopes. In the Midui Gully to Yupu section, the line should be placed in shady slopes and at higher elevations to reduce the risk of glacial lake outburst. In the Yupu to Guxiang section, all three snow disasters are minimal. In the Guxiang to Tongmai section, glacier debris flows are the major threat, thus the road should be placed in shady slopes.展开更多
In the design of building structures,joint efforts must be decided to resolve the depth of competent layers across the intended site to safeguard the durability of civil engineering structures and to avert the disastr...In the design of building structures,joint efforts must be decided to resolve the depth of competent layers across the intended site to safeguard the durability of civil engineering structures and to avert the disastrous consequences of structural failure and collapse.In this study,an integrated methodology that employed DC resistivity tomography involving 2-D and 3-D techniques and geotechnical-soil analysis was used to evaluate subsoil conditions for engineering site investigation at Okerenkoko primary school,in the Warri-southwest area of Delta State,to adduce the phenomena responsible for the visible cracks/structural failure observed in the buildings.The results obtained brought to light the geological structure beneath the subsurface,which consists of four geoelectric layers identified as topsoil,dry/lithified upper sandy layer,wet sand(water-saturated)and peat/clay/sandy clayey soil(highly water-saturated).The deeply-seated peat/clay materials(ρ≤20Ωm)were delineated in the study area to the depths of 17.1 m and 19.8 m from 2-D and 3-D tomography respectively.3-D images presented as horizontal depth slices revealed the dominance of very low resistivity materials i.e.peat/clay/sandy clay within the fourth,fifth and sixth layers at depths ranging from 8.68-12.5 m,12.5-16.9 m and 16.9-21.9 m respectively.The dominance of mechanically unstable peat/clay/sandy clay layers beneath the subsurface,which are highly mobile in response to volumetric changes,is responsible for the noticeable cracks/failure detected on structures within the study site.These observations were validated by a geotechnical test of soil samples in the study area.Atterberg’s limits of the samples revealed plasticity indices of zero.Thus,the soil samples within the depth analyzed were representatives of sandy soil that does not possess any plasticity.The methods justifiably provided relevant information on the subsurface geology beneath the study site and should be appropriated as major tools for engineering site assessment/geotechnical projects.展开更多
The purpose of this paper is to investigate the feasibility of high-frequency induction heat for the line heating process through a series of experimental studies and numerical calculations. The results show that the ...The purpose of this paper is to investigate the feasibility of high-frequency induction heat for the line heating process through a series of experimental studies and numerical calculations. The results show that the heating temperature of induction heating meets the demands of steel plate bending, and the deformation of a steel plate heated by induction heating can achieve the same effect as flame heating. Meanwhile, the finite element model of moving induction heating of the plate is developed, and the comparison of the residual strain fields and transverse shrinkage between these two kinds of heating shows that great similarity has been achieved.展开更多
To reduce heat loss and save cost, a combination decision model of reverb aluminum holding furnace linings in aluminum casting industry was established based on economic thickness method, and was resolved using simula...To reduce heat loss and save cost, a combination decision model of reverb aluminum holding furnace linings in aluminum casting industry was established based on economic thickness method, and was resolved using simulated annealing. Meanwhile, a three-dimensional mathematical model of aluminum holding furnace linings was developed and integrated with user-defined heat load distribution regime model. The optimal combination was as follows: side wall with 80 mm alumino-silicate fiber felts, 232 mm diatomite brick and 116 mm chamotte brick; top wall with 50 mm clay castables, 110 mm alumino-silicate fiber felts and 200 mm refractory concrete;and bottom wall with 232 mm high-alumina brick, 60 mm clay castables and 68 mm diatomite brick. Lining temperature from high to low was successively bottom wall, side wall, and top wall. Lining temperature gradient in increasing order of magnitude was refractory layer and insulation layer. It was indicated that the results of combination optimization of aluminum holding furnace linings were valid and feasible, and its thermo-physical mechanism and cost characteristics were reasonably revealed.展开更多
Measuring and reconstructing the shape of workpieces have been considered as a fundamental step in both reverse engineering and product quality control.Owing to increasing structural complexity of recent products,meas...Measuring and reconstructing the shape of workpieces have been considered as a fundamental step in both reverse engineering and product quality control.Owing to increasing structural complexity of recent products,measurements from multiple directions are typically required in current scanning techniques.Specifically,the plane structured light can be applied to measure one area of a part at a time,with an additional algorithm required to merge the collected data of each area.Alternatively,the line structured light sensor integrated on CNC machines or CMMs could also realize multi-view measurement.However,the system needs to be repeatedly calibrated at each new direction.This paper presents a flexible scanning method by integrating laser line sensors with articulated arm coordinate measuring machines(AACMM).Since the output of the laser line sensor is 2D raw data in the laser plane,our system model introduces an explicit transformation from the 2D sensor coordinate frame to the 3D base coordinate frame of the AACMM(i.e.,the translation and rotation the of the 2D sensor coordinate in the sixth coordinate system of AACMM).To solve the model,the“conjugate pairs”are proposed and identified by measuring a fixed point(e.g.,a sphere center).Moreover,a search algorithm is adopted to find the optimal solution,which noticeably boosts the model accuracy.The experimental results show that the error of the system is about 0.2 mm,which is caused by the error of the AACMM,the sensor error and the calibration error.By measuring a complicated part,the proposed system is proved to be flexible and facilitate,with the ability to measure a part expediently from any necessary direction.Furthermore,the proposed calibration method can also be used for robot hand-eye relationship calibration.展开更多
文摘With the development of China's economy,the implementation scale and scope of hydraulic engineering projects are increasing,and the application of anti-seepage technology has an important influence on the construction quality of hydraulic engineering.In this paper,the significance and problems of the application of anti-seepage technology in the construction of hydraulic engineering projects were mainly analyzed,and specific application strategies were proposed.
文摘Much progress has been made in the research of breeding new rice line through gene engineering by Life Science College of Fudan Univ, Shanghai, and the Plant Science Res Inst of Shanghai Acad of Agri. It was the first time internationally that the research adopted a man-combined gene, taking agrobacterium as car-
文摘Maintenance Engineering Department of China Eastern Jiangxi Branch has 130 employees and manages four Airbuses A319 and two A320s. seen from the ratio of man to plane, it is the lowest among China Eastern branches (subsidiaries). Due to the requirement of the air market, the six planes are arranged separately in Nanchang, Shanghai, Fuzhou and Ningbo, thus the six planes are maintained in four places, which is unique among China
文摘Acoustically absorptive treatment in aircraft engine nacelle is an essential part of the overall aircraft noise reduction effort. The investigation on the optimization of multi-liners plays an important role in noise reduction. Based upon the mode analysis method of sound propagation in a circular duct with multiple liners, a flexible tolerance method is used to optimize the acoustic parameters(impedance), geometric structure parameters(such as open area ratio, cavity depth and hole diameter) and operating condition parameters(such as blade passing frequency). The mathematical models for these kinds of optimization are presented here. The optimum values of the design variables are determined when the in-duct sound suppression approaches a maximum. It can be derived from the optimum results that the emphasis of the engineering optimization design of the perforated plate honey-comb structure should be placed on the optimum choice of the open area ratio and cavity depth. Some reference criteria for the engineering design of the multi-linings are also provided.
基金the National Natural Science Foundation of China (No. 50575098)China Postdoctoral Science Foundation
文摘For reconstructing a freeform feature from point cloud, a deformation-based method is proposed in this paper. The freeform feature consists of a secondary surface and a blending surface. The secondary surface plays a role in substituting a local region of a given primary surface. The blending surface acts as a bridge to smoothly connect the unchanged region of the primary surface with the secondary surface. The secondary surface is generated by surface deformation subjected to line constraints, i.e., character lines and limiting lines, not designed by conventional methods. The lines are used to represent the underlying informa-tion of the freeform feature in point cloud, where the character lines depict the feature’s shape, and the limiting lines determine its location and orientation. The configuration of the character lines and the extraction of the limiting lines are discussed in detail. The blending surface is designed by the traditional modeling method, whose intrinsic parameters are recovered from point cloud through a series of steps, namely, point cloud slicing, circle fitting and regression analysis. The proposed method is used not only to effectively and efficiently reconstruct the freeform feature, but also to modify it by manipulating the line constraints. Typical examples are given to verify our method.
文摘This paper presents a domain engineering approach to build a software product line that supports the change notification service in a Configuration Management Database (CMDB) according to the Information Technology Infrastructure Library (ITIL) best practices. For the development of this product line, the proposed approach makes use of a construction of products methodology by analogy: this is a new notation which reports the variability of the products, obtaining metrics as important as the number of products and uses a language that enables, by means of the flexibilization of a product and the development of some generators, to build the rest of the product line. In addition the paper offers a standard for the analysis and design of the CMDB as well. Finally, the paper presents an economic model for the product line, where the profitability and productivity of the proposed solution are analyzed.
文摘A flat neural network is designed for the on line state prediction of engine. To reduce the computational cost of weight matrix, a fast recursive algorithm is derived according to the pseudoinverse formula of a partition matrix. Furthermore, the forgetting factor approach is introduced to improve predictive accuracy and robustness of the model. The experiment results indicate that the improved neural network is of good accuracy and strong robustness in prediction, and can apply for the on line prediction of nonlinear multi input multi output systems like vehicle engines.
基金financially supported by the general project of Natural Science Foundation of China (No. 41571004)Scientific and technological research and development plan of China Railway Corporation (No. 2015G002-N)General project of Natural Science Foundation of China (No. 41172321)
文摘The Palongzangbu River Basin contains the highest number of maritime province glaciers in China. There are 130 glacial lakes, 64 snow avalanche sites and 28 glacial debris flow gullies distributed within the basin. Snow disasters play a controlling role in the Sichuan-Tibet Highway construction, due to the terrain’s special characteristics of high altitude and large height differential. Segmentation mitigation countermeasures for the Sichuan-Tibet Highway are presented based on snow disaster severity level and damage mode of the road. In the Ranwu to Midui section, snow avalanches are regional disasters, so the line should be placed in sunny slopes. In the Midui Gully to Yupu section, the line should be placed in shady slopes and at higher elevations to reduce the risk of glacial lake outburst. In the Yupu to Guxiang section, all three snow disasters are minimal. In the Guxiang to Tongmai section, glacier debris flows are the major threat, thus the road should be placed in shady slopes.
文摘In the design of building structures,joint efforts must be decided to resolve the depth of competent layers across the intended site to safeguard the durability of civil engineering structures and to avert the disastrous consequences of structural failure and collapse.In this study,an integrated methodology that employed DC resistivity tomography involving 2-D and 3-D techniques and geotechnical-soil analysis was used to evaluate subsoil conditions for engineering site investigation at Okerenkoko primary school,in the Warri-southwest area of Delta State,to adduce the phenomena responsible for the visible cracks/structural failure observed in the buildings.The results obtained brought to light the geological structure beneath the subsurface,which consists of four geoelectric layers identified as topsoil,dry/lithified upper sandy layer,wet sand(water-saturated)and peat/clay/sandy clayey soil(highly water-saturated).The deeply-seated peat/clay materials(ρ≤20Ωm)were delineated in the study area to the depths of 17.1 m and 19.8 m from 2-D and 3-D tomography respectively.3-D images presented as horizontal depth slices revealed the dominance of very low resistivity materials i.e.peat/clay/sandy clay within the fourth,fifth and sixth layers at depths ranging from 8.68-12.5 m,12.5-16.9 m and 16.9-21.9 m respectively.The dominance of mechanically unstable peat/clay/sandy clay layers beneath the subsurface,which are highly mobile in response to volumetric changes,is responsible for the noticeable cracks/failure detected on structures within the study site.These observations were validated by a geotechnical test of soil samples in the study area.Atterberg’s limits of the samples revealed plasticity indices of zero.Thus,the soil samples within the depth analyzed were representatives of sandy soil that does not possess any plasticity.The methods justifiably provided relevant information on the subsurface geology beneath the study site and should be appropriated as major tools for engineering site assessment/geotechnical projects.
基金Supported by the National Natural Science Foundation of China (50805016)
文摘The purpose of this paper is to investigate the feasibility of high-frequency induction heat for the line heating process through a series of experimental studies and numerical calculations. The results show that the heating temperature of induction heating meets the demands of steel plate bending, and the deformation of a steel plate heated by induction heating can achieve the same effect as flame heating. Meanwhile, the finite element model of moving induction heating of the plate is developed, and the comparison of the residual strain fields and transverse shrinkage between these two kinds of heating shows that great similarity has been achieved.
基金Supported by the National Natural Science Foundation of China(51306001)the Natural Science Foundation of Anhui Province(1408085QG138)+1 种基金the Natural Science Foundation of Anhui Technology University(QZ201303,QS201304)the Student Research Training Program of Anhui University of Technology(AH201310360120)
文摘To reduce heat loss and save cost, a combination decision model of reverb aluminum holding furnace linings in aluminum casting industry was established based on economic thickness method, and was resolved using simulated annealing. Meanwhile, a three-dimensional mathematical model of aluminum holding furnace linings was developed and integrated with user-defined heat load distribution regime model. The optimal combination was as follows: side wall with 80 mm alumino-silicate fiber felts, 232 mm diatomite brick and 116 mm chamotte brick; top wall with 50 mm clay castables, 110 mm alumino-silicate fiber felts and 200 mm refractory concrete;and bottom wall with 232 mm high-alumina brick, 60 mm clay castables and 68 mm diatomite brick. Lining temperature from high to low was successively bottom wall, side wall, and top wall. Lining temperature gradient in increasing order of magnitude was refractory layer and insulation layer. It was indicated that the results of combination optimization of aluminum holding furnace linings were valid and feasible, and its thermo-physical mechanism and cost characteristics were reasonably revealed.
基金National Natural Science Foundation of China(Grant No.42076192).
文摘Measuring and reconstructing the shape of workpieces have been considered as a fundamental step in both reverse engineering and product quality control.Owing to increasing structural complexity of recent products,measurements from multiple directions are typically required in current scanning techniques.Specifically,the plane structured light can be applied to measure one area of a part at a time,with an additional algorithm required to merge the collected data of each area.Alternatively,the line structured light sensor integrated on CNC machines or CMMs could also realize multi-view measurement.However,the system needs to be repeatedly calibrated at each new direction.This paper presents a flexible scanning method by integrating laser line sensors with articulated arm coordinate measuring machines(AACMM).Since the output of the laser line sensor is 2D raw data in the laser plane,our system model introduces an explicit transformation from the 2D sensor coordinate frame to the 3D base coordinate frame of the AACMM(i.e.,the translation and rotation the of the 2D sensor coordinate in the sixth coordinate system of AACMM).To solve the model,the“conjugate pairs”are proposed and identified by measuring a fixed point(e.g.,a sphere center).Moreover,a search algorithm is adopted to find the optimal solution,which noticeably boosts the model accuracy.The experimental results show that the error of the system is about 0.2 mm,which is caused by the error of the AACMM,the sensor error and the calibration error.By measuring a complicated part,the proposed system is proved to be flexible and facilitate,with the ability to measure a part expediently from any necessary direction.Furthermore,the proposed calibration method can also be used for robot hand-eye relationship calibration.