To clarify the recent trends in prostate-specific antigen (PSA) distribution in men in Japan, we analyzed the PSA distributions of men undergoing PSA-based population screening. We summarized the annual individual d...To clarify the recent trends in prostate-specific antigen (PSA) distribution in men in Japan, we analyzed the PSA distributions of men undergoing PSA-based population screening. We summarized the annual individual data of PSA-based population screening in Kanazawa, Japan, from 2000 to 2011, and analyzed baseline serum PSA values of the participants at the first population screening. Serum PSA distributions were estimated in all participants and those excluding prostate cancer patients according to age. From 2000 to 2011, 19 620 men participated aged 54-69 years old in this screening program. Mean baseline serum PSA level of all participants at the first screening was 2.64 ng m1-1 in 2000, and gradually decreased to approximately 1.30 ng ml-I in 2006. That of participants excluding prostate cancer patients was 1.46 ng m1-1 in 2000, and there was no remarkable change during the study period. The 95t" percentiles in the participants excluding prostate cancer patients detected at the first population screening of men aged 54-59, 60-64, and 65-69 years old were 2.90, 3.60, and 4.50 ng m1-1, respectively. After the commencement of population screening, the proportion of prostate cancer patients with high serum PSA levels decreased. However, there were no changes in serum PSA levels in men without prostate cancer. Age-specific PSA reference level of men without prostate cancer in Japan was similar to that in China and Korea.展开更多
Currently approved vaccines have been successful in preventing the severity of COVID-19 and hospitalization. These vaccines primarily induce humoral immune responses;however, highly transmissible and mutated variants,...Currently approved vaccines have been successful in preventing the severity of COVID-19 and hospitalization. These vaccines primarily induce humoral immune responses;however, highly transmissible and mutated variants, such as the Omicron variant, weaken the neutralization potential of the vaccines, thus,raising serious concerns about their efficacy. Additionally, while neutralizing antibodies(nAbs) tend to wane more rapidly than cell-mediated immunity, long-lasting T cells typically prevent severe viral illness by directly killing infected cells or aiding other immune cells. Importantly, T cells are more cross-reactive than antibodies, thus, highly mutated variants are less likely to escape lasting broadly cross-reactive T cell immunity. Therefore, T cell antigen-based human coronavirus(HCoV) vaccines with the potential to serve as a supplementary weapon to combat emerging SARS-CoV-2 variants with resistance to n Abs are urgently needed. Alternatively, T cell antigens could also be included in B cell antigen-based vaccines to strengthen vaccine efficacy. This review summarizes recent advancements in research and development of vaccines containing T cell antigens or both T and B cell antigens derived from proteins of SARS-CoV-2 variants and/or other HCo Vs based on different vaccine platforms.展开更多
文摘To clarify the recent trends in prostate-specific antigen (PSA) distribution in men in Japan, we analyzed the PSA distributions of men undergoing PSA-based population screening. We summarized the annual individual data of PSA-based population screening in Kanazawa, Japan, from 2000 to 2011, and analyzed baseline serum PSA values of the participants at the first population screening. Serum PSA distributions were estimated in all participants and those excluding prostate cancer patients according to age. From 2000 to 2011, 19 620 men participated aged 54-69 years old in this screening program. Mean baseline serum PSA level of all participants at the first screening was 2.64 ng m1-1 in 2000, and gradually decreased to approximately 1.30 ng ml-I in 2006. That of participants excluding prostate cancer patients was 1.46 ng m1-1 in 2000, and there was no remarkable change during the study period. The 95t" percentiles in the participants excluding prostate cancer patients detected at the first population screening of men aged 54-59, 60-64, and 65-69 years old were 2.90, 3.60, and 4.50 ng m1-1, respectively. After the commencement of population screening, the proportion of prostate cancer patients with high serum PSA levels decreased. However, there were no changes in serum PSA levels in men without prostate cancer. Age-specific PSA reference level of men without prostate cancer in Japan was similar to that in China and Korea.
基金supported by the National Key Research and Development Program of China (2023YFC2307800)Chengdu University of Traditional Chinese Medicine (030040018)+2 种基金Shanghai Municipal Science and Technology Major Project (ZD2021CY001)National Natural Science Foundation of China (32270142)Shanghai Rising-Star Program (22QA1408800)。
文摘Currently approved vaccines have been successful in preventing the severity of COVID-19 and hospitalization. These vaccines primarily induce humoral immune responses;however, highly transmissible and mutated variants, such as the Omicron variant, weaken the neutralization potential of the vaccines, thus,raising serious concerns about their efficacy. Additionally, while neutralizing antibodies(nAbs) tend to wane more rapidly than cell-mediated immunity, long-lasting T cells typically prevent severe viral illness by directly killing infected cells or aiding other immune cells. Importantly, T cells are more cross-reactive than antibodies, thus, highly mutated variants are less likely to escape lasting broadly cross-reactive T cell immunity. Therefore, T cell antigen-based human coronavirus(HCoV) vaccines with the potential to serve as a supplementary weapon to combat emerging SARS-CoV-2 variants with resistance to n Abs are urgently needed. Alternatively, T cell antigens could also be included in B cell antigen-based vaccines to strengthen vaccine efficacy. This review summarizes recent advancements in research and development of vaccines containing T cell antigens or both T and B cell antigens derived from proteins of SARS-CoV-2 variants and/or other HCo Vs based on different vaccine platforms.