The Bohai Sea is one of the most polluted sea areas in China.In this study,we used 2184 integrated concentrations of dissolved inorganic nitrogen(DIN)and dissolved inorganic phosphorus(DIP)in the Bohai Sea of China du...The Bohai Sea is one of the most polluted sea areas in China.In this study,we used 2184 integrated concentrations of dissolved inorganic nitrogen(DIN)and dissolved inorganic phosphorus(DIP)in the Bohai Sea of China during spring(March,April,and May),summer(June,July,and August),and autumn(October and November)from 2015 to 2022 to explore the trends and sources of nutrients variations.From 2015 to 2022,DIN showed a downward trend until 2020 and then an upward trend,whereas DIP exhibited a stable trend with a slight decrease.The concentrations of DIN and DIP had similar seasonal pattern which was the highest in autumn(0.292±0.247 mg/L for DIN and 0.013±0.016 mg/L for DIP)but lower in spring(0.267±0.238 mg/L for DIN and 0.006±0.010 mg/L for DIP)and summer(0.263±0.324 mg/L for DIN and 0.008±0.010 mg/L for DIP).Sources of DIN and DIP apportioned by the positive matrix factorization(PMF)model were riverine input,sediment resuspension,sewage discharge,atmospheric deposition,and underground input.During 2015-2022,the largest contributor to DIN was sewage discharge(28.7%)and the largest contributor to DIP was sediment resuspension(44.6%).Seasonally,DIN in spring and autumn was dominated by sewage discharge(45.4%and 27.8%,re-spectively).Whereas in summer,it was dominated by riverine input(32.4%)and atmospheric deposition(29.7%).DIP was dominated by sediment resuspension during all three seasons(35.8%-52.5%).In addition,the increase in DIN concentrations in 2021 and 2022 were mainly due to the incremental input of river discharge and atmospheric deposition caused by increased precipitation during sum-mer and autumn.展开更多
To understand the levels of potentially toxic elements(PTEs)contamination in soils and their effects on human health from different agricultural land use in Sanya,China.128 soil samples(64 topsoil samples and correspo...To understand the levels of potentially toxic elements(PTEs)contamination in soils and their effects on human health from different agricultural land use in Sanya,China.128 soil samples(64 topsoil samples and corresponding subsoil samples)were collected from the five representative land-use patterns.Inductively coupled plasma mass spectrometry(ICP-MS),Atomic fluorescence spectrometry(AFS),and Inductively coupled plasma optical emission spectrometry(ICP-OES)were used to determine the content of PTEs(As,Cd,Hg,Cu,Cr,Ni,Pb,Zn,Co,Mo,Sb,and V).Correlation analysis and factor analysis were used to determine the source of PTEs.Geo-accumulation index(I_(geo)),hazard quotient(HQ),and total carcinogenic risk index(TR)were used to measure the PTEs contamination and its relative health impacts.Results showed that the average values of 12 PTEs in topsoil were higher than the Hainan soil geochemical baseline,showing different degrees of PTEs accumulation effect.The concentration of PTEs in the topsoil was lower than those in the subsoil except for Cd and Hg.The I_(geo)revealed that the major accumulated element in soils was As followed by Mo.Source apportionment suggested that parent materials and agricultural practices were the dominant factors for PTEs accumulation in the topsoil.Noncarcinogenic risks of soil samples from five land-use patterns presented a trend of paddy field>dry field>woodland>orchard>garden plot.However,the HQ values of 12 PTEs were less than the recommended limit of HQ=1,representing that there are no non-carcinogenic risks of PTEs for children and adults in the study area.The TR values are within 6.95×10^(-6)-1.38×10^(-5),which corresponds to the low level.Therefore the PTEs in the agricultural soil of the study area show little influence on the health status of the local population.展开更多
During 2001-2006,PM2.5 (particle matter with aerodynamic diameter less than 2.5 microns) and PM10 (particle matter with aerodynamic diameter less than 10 microns) were collected at the Beijng Normal University (BNU) s...During 2001-2006,PM2.5 (particle matter with aerodynamic diameter less than 2.5 microns) and PM10 (particle matter with aerodynamic diameter less than 10 microns) were collected at the Beijng Normal University (BNU) site,China,and in 2006,at a background site in Duolun (DL).The long-term monitoring data of elements,ions,and black carbon showed that the major constituents of PM2.5 were black carbon (BC) crustal elements,nitrates,ammonium salts,and sulfates.These five major components accounted for 20%-80% of...展开更多
Tianjin is the third largest megacity and the fastest growth area in China,and consequently faces the problems of surface ozone and haze episodes.This study measures and characterizes volatile organic compounds (VOCs...Tianjin is the third largest megacity and the fastest growth area in China,and consequently faces the problems of surface ozone and haze episodes.This study measures and characterizes volatile organic compounds (VOCs),which are ozone precursors,to identify their possible sources and evaluate their contribution to ozone formation in urban and suburban Tianjin,China during the HaChi (Haze in China) summer campaign in 2009.A total of 107 species of ambient VOCs were detected,and the average concentrations of VOCs at urban and suburban sites were 92 and 174 ppbv,respectively.Of those,51 species of VOCs were extracted to analyze the possible VOC sources using positive matrix factorization.The identified sources of VOCs were significantly related to vehicular activities,which specifically contributed 60% to urban and 42% to suburban VOCs loadings in Tianjin.Industrial emission was the second most prominent source of ambient VOCs in both urban and suburban areas,although the contribution of industry in the suburban area (36%) was much higher than that at the urban area (16%).We conclude that controlling vehicle emissions should be a top priority for VOC reduction,and that fast industrialization and urbanization causes air pollution to be more complex due to the combined emission of VOCs from industry and daily life,especially in suburban areas.展开更多
During 2005, the filter samples of ambient PM10 from five sites and the source samples of particulate matter were collected in Kaifeng, Henan Province of China. Nineteen elements, water-soluble ions, total carbon (TC...During 2005, the filter samples of ambient PM10 from five sites and the source samples of particulate matter were collected in Kaifeng, Henan Province of China. Nineteen elements, water-soluble ions, total carbon (TC) and organic carbon (OC) contained in samples were analyzed. Seven contributive source types were identified and their contributions to ambient PM10 were estimated by chemical mass balance (CMB) receptor model. Weak associations between the concentrations of organic carbon and element carbon (EC) were observed during the sampling periods, indicating that there was secondary organic aerosol pollution in the urban atmosphere. An indirect method of "OC/EC minimum ratio" was applied to estimate the concentration of secondary organic carbon (SOC). The results showed that SOC contributed 26.2%, 32.4% and 18.0% of TC in spring, summer-fall and winter, respectively, and the annual average SOC concentration was 7.07 μg/m^3, accounting for 5.73% of the total mass in ambient PM10. The carbon species concentrations in ambient PM10 were recalculated by subtracting SOC concentrations from measured concentrations of TC and OC to increase the compatibility of source and receptor measurements for CMB model.展开更多
A total of 11 PM2.5 samples were collected from October 2003 to October 2004 at 8 sampling sites in Beijing city. The PM2.5 concentrations are all above the PM2.5 pollution standard (65 μg m^-3) established by Envi...A total of 11 PM2.5 samples were collected from October 2003 to October 2004 at 8 sampling sites in Beijing city. The PM2.5 concentrations are all above the PM2.5 pollution standard (65 μg m^-3) established by Environmental Protection Agency, USA (USEPA) in 1997 except for the Ming Tombs site. PM2.5 concentrations in winter are much higher than in summer. The 16 Polycyclic aromatic hydrocarbons (PAHs) listed as priority pollutants by USEPA in PM2.5 were completely identified and quantified by high performance liquid chromatography (HPLC) with variable wavelength detector (VWD) and fluorescence detector (FLD) employed. The PM2.5 concentrations indicate that the pollution situation is still serious in Beijing. The sum of 16 PAHs concentrations ranged from 22.17 to 5366 ng m^-3. The concentrations of the heavier molecular weight PAHs have a different pollution trend from the lower PAHs. Seasonal variations were mainly attributed to the difference in coal combustion emission and meteorological conditions. The source apportionment analysis suggests that PAHs from PM2.5 in Beijing city mainly come from coal combustion and vehicle exhaust emission. New measures about restricting coal combustion and vehicle exhaust must be established as soon as possible to improve the air pollution situation in Beijing city.展开更多
Air pollution caused by particulate matter has significantly improved in China in recent years since the implementation of a series of stringent clean-air regulations.However,surface ozone concentrations have increase...Air pollution caused by particulate matter has significantly improved in China in recent years since the implementation of a series of stringent clean-air regulations.However,surface ozone concentrations have increased,especially in developed city clusters,such as the Beijing–Tianjin–Hebei,Yangtze River Delta,Pearl River Delta,and Sichuan Basin regions.Due to the complexity and nonlinearity of the ozone formation,accurately locating major sources of ozone and its precursors is an important basis for the formulation of cost-effective pollution control strategies.In this paper,the authors systematically summarize the reported results and outcomes of the methods and main conclusions of ozone source apportionment(regions and categories)in China from the published literature,based on observation-based methods and emission-based methods,respectively.The authors aim to provide a comprehensive understanding of ozone pollution and reliable references for the formulation of air pollution prevention policies in China.展开更多
This study studied the characteristics and source apportionment of heavy metal pollution in the agricultural soil surrounding a gangue coal heap in Chongqing,China by using absolute principal component scores-multiple...This study studied the characteristics and source apportionment of heavy metal pollution in the agricultural soil surrounding a gangue coal heap in Chongqing,China by using absolute principal component scores-multiple linear regression(APCSMLR)model and positive matrix factorization(PMF)model.The applicability of the models was compared in the assessment of source apportionment.The results showed that the average contents of Cd,Hg,As,Pb,Cr,Cu,Ni,and Zn in the surface soil were 0.46,0.14,9.66,31.2,127,95.6,76.0,and 158 mg/kg,respectively.Combined with the spatial distribution and correlation analyses,the results of source apportionment were consistent for both the APCSMLR and PMF models.Cd,Hg,As,and Pb were mainly affected by the gangue heap accumulation,with respective contributions of 74.6%,79.4%,69.1%,and 67.2%based on the APCS-MLR model and respective contributions of 69.7%,60.7%,57.4%,and 41.9%based on the PMF model.Ni and Zn were mainly affected by industrial and agricultural activities,while Cr and Cu were mainly affected by natural factors.The results of the source apportionment were approximately consistent between the APCS-MLR and PMF models.The combined application of the two receptor models can make the results of source apportionment more comprehensive,accurate,and reliable.展开更多
The sources and ecological risk from sixteen polycyclic aromatic hydrocarbons in surface sediment in the Liaodong Bay were investigated from 2014 to 2015.The total concentrations of PAHs ranged from 88.5 to 347.1 ng/g...The sources and ecological risk from sixteen polycyclic aromatic hydrocarbons in surface sediment in the Liaodong Bay were investigated from 2014 to 2015.The total concentrations of PAHs ranged from 88.5 to 347.1 ng/g,and the high value occurred in the central region of the Liaodong Bay.Cluster analysis identified two site clusters representing the coastal region affected by land-based pollution and the central region of the Liaodong Bay.Principal component analysis-multiple linear regression and diagnostic ratios suggested that PAHs contaminants originated from a mixture of combustion and petroleum sources,and the major was combustion sources.Based on sediment quality guideline,naphthalene,acenaphthylene,acenaphthene,phenanthrene and dibenz[a,h]anthracene may occasionally cause adverse biological effects in some stations.The toxic equivalent concentrations of carcinogenic PAHs indicated low carcinogenic risk for the Liaodong Bay.The ecological risk and toxic pollution levels of PAHs were higher in the central region than in the coastal region along the Liaodong Bay.展开更多
Summer and winter campaigns for the chemical compositions and sources of nonmethane hydrocarbons(NMHCs)and oxygenated volatile organic compounds(OVOCs)were conducted in Xi’an.Data from 57 photochemical assessment mon...Summer and winter campaigns for the chemical compositions and sources of nonmethane hydrocarbons(NMHCs)and oxygenated volatile organic compounds(OVOCs)were conducted in Xi’an.Data from 57 photochemical assessment monitoring stations for NMHCs and 20 OVOC species were analyzed.Significant seasonal differences were noted for total VOC(TVOC,NMHCs and OVOCs)concentrations and compositions.The campaign-average TVOC concentrations in winter(85.3±60.6 ppbv)were almost twice those in summer(47.2±31.6 ppbv).Alkanes and OVOCs were the most abundant category in winter and summer,respectively.NMHCs,but not OVOCs,had significantly higher levels on weekends than on weekdays.Total ozone formation potential was higher in summer than in winter(by 50%)because of the high concentrations of alkenes(particularly isoprene),high temperature,and high solar radiation levels in summer.The Hybrid Environmental Receptor Model(HERM)was used to conduct source apportionment for atmospheric TVOCs in winter and summer,with excellent accuracy.HERM demonstrated its suitability in a situation where only partial source profile data were available.The HERM results indicated significantly different seasonal source contributions to TVOCs in Xi’an.In particular,coal and biomass burning had contributions greater than half in winter(53.4%),whereas traffic sources were prevalent in summer(53.1%).This study’s results highlight the need for targeted and adjustable VOC control measures that account for seasonal differences in Xi’an;such measures should target not only the severe problem with VOC pollution but also the problem of consequent secondary pollution(e.g.,from ozone and secondary organic aerosols).展开更多
The deterioration of the surface water environment has become a serious challenge for water resources management due to increasing anthropogenic disturbance. Water resources protection requires control of potential po...The deterioration of the surface water environment has become a serious challenge for water resources management due to increasing anthropogenic disturbance. Water resources protection requires control of potential pollution sources. In this study, 99 water samples were collected from a river in a typical agricultural city of Anhui Province in eastern China, and these samples were analyzed in terms of pH, electrical conductivity, and the concentrations of F-, Cl-, SO42-, Na+, K+, Mg2+, Ca2+, As, Cr, Cu, Zn, and Pb. Cluster analysis, co-occurrence network analysis, and principal component analysis/factor analysis were conducted to qualitatively identify the potential sources of river water pollution in the study area. An absolute principal component score-multiple linear regression receptor model was used to quantitatively evaluate the contribution of each source to water quality parameters. The results showed that all observed water quality indices met the quality criteria specified in the Chinese drinking water standards, except for pH, ρ(F-), ρ(SO42-), and ρ(As). The heat map showed that the frequent recharge of pollutants from the tributaries during the wet season was the main reason for the deterioration of water quality. Five sources of river water pollution were identified, and their contribution ratios in a descending order were as follows: the geogenic process (24%) > agricultural activities (21%) > poultry farming sources (17%) > domestic pollution (9%) > transportation pollution (5%). Therefore, controlling pollution from agricultural activities, strengthening the regulation of livestock farming, and improving the sewage network are the recommended strategies for improving the quality of surface water resources in this area.展开更多
Long-lasting expansion of haze pollution in China has already presented a stern challenge to regional joint prevention and control. There is an urgent need to enlarge and reconstruct the coverage of joint prevention a...Long-lasting expansion of haze pollution in China has already presented a stern challenge to regional joint prevention and control. There is an urgent need to enlarge and reconstruct the coverage of joint prevention and control of air pollution in key area. Air quality models can identify and quantify the regional contribution of haze pollution and its key components with the help of numerical simulation, but it is difficult to be applied to larger spatial scale due to the complexity of model parameters. The time series analysis can recognize the existence of spatial interaction of haze pollution between cities, but it has not yet been used to further identify the spatial sources of haze pollution in large scale. Using econometric framework of time series analysis, this paper developed a new approach to perform spatial source apportionment. We applied this approach to calculate the contribution from spatial sources of haze pollution in China, using the monitoring data of particulate matter(PM_(2.5)) across 161 Chinese cities. This approach overcame the limitation of numerical simulation that the model complexity increases at excess with the expansion of sample range, and could effectively deal with severe large-scale haze episodes.展开更多
In order to identify the day and night pollution sources of PM10 in ambient air in Longyan City,the authors analyzed the elemental composition of respirable particulate matters in the day and night ambient air samples...In order to identify the day and night pollution sources of PM10 in ambient air in Longyan City,the authors analyzed the elemental composition of respirable particulate matters in the day and night ambient air samples and various pollution sources which were collected in January 2010 in Longyan with inductivity coupled plasma-mass spectrometry(ICP-MS).Then chemical mass balance(CMB) model and factor analysis(FA) method were applied to comparatively study the inorganic components in the sources and receptor samples.The results of factor analysis show that the major sources were road dust,waste incineration and mixed sources which contained automobile exhaust,soil dust/secondary dust and coal dust during the daytime in Longyan City,China.There are two major sources of pollution which are soil dust and mixture sources of automobile exhaust and secondary dust during the night in Longyan.The results of CMB show that the major sources are secondary dust,automobile exhaust and road dust during the daytime in Longyan.The major sources are secondary dust,soil dust and automobile exhaust during the night in Longyan.The results of the two methods are similar to each other and the results will guide us to plan to control the PM10 pollution sources in Longyan.展开更多
In this paper,using concentration data of PM2. 5in 2013 in China and referring to a lot of literature,we preliminary studied the pollution of fine particulate matter and summarized PM2. 5source apportionment in the ke...In this paper,using concentration data of PM2. 5in 2013 in China and referring to a lot of literature,we preliminary studied the pollution of fine particulate matter and summarized PM2. 5source apportionment in the key cities in China. Our results showed that PM2. 5showed significant spatial and temporal distribution; high surface concentrations of PM2. 5concentrated mainly in the North China Plain,the Sichuan Basin,Yangtze River Delta and other regions; the average annual concentration of PM2. 5was about 80μg / m3 in North China Plain; Seasonal changes in the concentration of PM2. 5was winter > spring > autumn > summer; fired sources,industrial sources,vehicle exhaust were the major sources of PM2. 5; motor vehicle exhaust mostly contributed 10%- 30% to PM2. 5. This review provides a fundamental understanding of PM2. 5source apportionment and serves as an important reference for future source apportionment studies to be widely conducted in China.展开更多
The formation of heavy metal pollution in soil is closely related to human production and life. In order to effectively control heavy metal pollution and repair damaged soil,the pollution source should be known and ju...The formation of heavy metal pollution in soil is closely related to human production and life. In order to effectively control heavy metal pollution and repair damaged soil,the pollution source should be known and judged first. Based on the preliminary analysis of major sources of soil heavy metal pollution in soil,combined with relevant literatures on heavy metal pollution source of soil or sediment at home and abroad in recent years,application progress of isotope tracer technique,especially lead isotope tracer technique,in the study of heavy metal pollution sources in soils and sediments were reviewed. The key points of future isotope tracer technology in the field of heavy metal pollution source apportionment were prospected.展开更多
In this paper, the sum deviation just-in-time (JIT) sequencing problem in mixed-model production systems is studied relating with the discrete apportionment problem together with their respective mathematical formul...In this paper, the sum deviation just-in-time (JIT) sequencing problem in mixed-model production systems is studied relating with the discrete apportionment problem together with their respective mathematical formulations. The assignment formulation for the first problem is briefly discussed followed by the existence of JIT cyclic sequences. Presenting the concise discussion on divisor methods for the discrete apportionment problem, we have proposed two mean-based divisor functions for this problem claiming that they are better than the existing divisors; hence, we found a better bound for the JIT sequencing problem. The linkage of both the problems is characterized in terms of similar type of objective functions. The problems are shown equivalent via suitable transformations and similar properties. The joint approaches for the two problems are discussed in terms of global and local deviations proposing equitably efficient solution.展开更多
In this work, receptor models were used to identify the PM2.5 sources and its contribution to the air quality in residential, comercial and industrial sampling sites in the Metropolitan Area of Costa Rica. Principal c...In this work, receptor models were used to identify the PM2.5 sources and its contribution to the air quality in residential, comercial and industrial sampling sites in the Metropolitan Area of Costa Rica. Principal component analysis with absolute principal component scores (PCA-APCS), UNIMX and positive matrix factorization (PMF) was applied to analyze the data collected during 1 year of sampling campaign (2010-2011). The PM2.5 samples were characterized through its composition looking for trace elements, inorganic ions and organic and elemental carbon. These three models identified some common sources of PM2.5: marine aerosol, crustal material, traffic, secondary aerosols (secondary sulfate and secondary nitrate resolved by PMF), a mixed source of heavy fuels combustion and biomass burning, and industrial emissions. The three models predicted that the major sources of PM2.5 in the Metropolitan Area of Costa Rica were related to anthropogenic sources (73%, 65% and 69%, respectively, for PCA-APCS, Unmix and PMF) although natural sources also contributed to PM2.5 (21%, 24% and 26%). On average, PCA and PMF methods resolved 94% and 95% of the PM2.5 mass concentrations, respectively. The results were comparable to the estimate using UNMIX.展开更多
Nuclear power plants are always operated under the guidelines stipulated by the regulatory body. These guidelines basically contain the technical specifications of the specific power plant and provide the knowledge of...Nuclear power plants are always operated under the guidelines stipulated by the regulatory body. These guidelines basically contain the technical specifications of the specific power plant and provide the knowledge of the discharge limit of the radioactive effluent into the environment through atmospheric and aquatic route. However, operational constraints sometimes may violate the technical specification due to which there may be a failure to satisfy the stipulated dose apportioned to that plant. In a site having multi facilities sum total of the dose apportioned to all the facilities should be constrained to 1 mSv/year to the members of the public. Dose apportionment scheme basically stipulates the limit of the gaseous and liquid effluent released into the environment. Existing methodology of dose apportionment is subjective in nature that may result the discharge limit of the effluent in atmospheric and aquatic route in an adhoc manner. Appropriate scientific basis for dose apportionment is always preferable rather than judicial basis from the point of harmonization of establishing the dose apportionment. This paper presents an attempt of establishing the discharge limit of the gaseous and liquid effluent first on the basis of the existing value of the release of the same. Existing release data for a few years (for example 10 years) for any nuclear power station have taken into consideration. Bootstrap, a resampling technique, has been adopted on the existing release data sets to generate the corresponding population distribution of the effluent release. Cumulative distribution of the population distribution obtained is constructed and using this cumulative distribution, 95th percentile (upper bound) of the discharge limit of the radioactive effluents is computed. Dose apportioned for a facility is evaluated using this estimated upper bound of the release limit. Paper de- scribes the detail of the bootstrap method in evaluating the release limit and also presents the comparative study of the dose apportionment using this new method and the existing adhoc method.展开更多
Source apportionment studies are useful in understanding sources of pollution and can be used in health risk assessments to evaluate the human health impacts from air pollutants. This study reviewed and analysed avail...Source apportionment studies are useful in understanding sources of pollution and can be used in health risk assessments to evaluate the human health impacts from air pollutants. This study reviewed and analysed available source apportionment studies of air particulate in South Africa in October 2016. Searches were performed using different databases for peer reviewed articles including Google scholar, Scopus, EbscoHost, Science Direct and National Research Foundation database. Source categories were identified and these varied depending on the sites where the research was conducted (rural, urban or remote) but biomass burning dominated. A total of 35 source apportionment records were found with the majority of studies in urban areas (60%) while industrial sites had the least number of records (17.1%). The period 2011-2016 had the highest number of records while 1990-1995 had only three publicly available studies. There is limited research on source apportionment studies of air particulate in South Africa, calling for more research in this area.展开更多
Fireworks(FW)could significantly worsen air quality in short term during celebrations.Due to similar tracers with biomass burning(BB),the fast and precise qualification of FW and BB is still challenging.In this study,...Fireworks(FW)could significantly worsen air quality in short term during celebrations.Due to similar tracers with biomass burning(BB),the fast and precise qualification of FW and BB is still challenging.In this study,online bulk and single-particle measurements were combined to investigate the contributions of FW and BB to the overall mass concentrations of PM_(2.5)and specific chemical species by positive matrix factorization(PMF)during the Chinese New Year in Hong Kong in February 2013.With combined information,fresh/aged FW(abundant ^(140)K_(2)NO_(3)^(+)and ^(213)K_(3)SO_(4)^(+)formed from ^(113)K_(2)Cl^(+)discharged by fresh FW)can be extracted from the fresh/aged BB sources,in addition to the Second Aerosol,Vehicles+Road Dust,and Sea Salt factors.The contributions of FW and BB were investigated during three high particle matter episodes influenced by the pollution transported from the Pearl River Delta region.The fresh BB/FW contributed 39.2%and 19.6%to PM_(2.5)during the Lunar Chinese New Year case.However,the contributions of aged FW/BB enhanced in the last two episodes due to the aging process,evidenced by high contributions from secondary aerosols.Generally,the fresh BB/FW showed more significant contributions to nitrate(35.1%and15.0%,respectively)compared with sulfate(25.1%and 5.9%,respectively)and OC(14.8%and11.1%,respectively)on average.In comparison,the aged FW contributed more to sulfate(13.4%).Overall,combining online bulk and single-particle measurement data can combine both instruments’advantages and provide a new perspective for applying source apportionment of aerosols using PMF.展开更多
基金Under the auspices of National Natural Science Foundation of China(No.42177089,U1906215,41977190)。
文摘The Bohai Sea is one of the most polluted sea areas in China.In this study,we used 2184 integrated concentrations of dissolved inorganic nitrogen(DIN)and dissolved inorganic phosphorus(DIP)in the Bohai Sea of China during spring(March,April,and May),summer(June,July,and August),and autumn(October and November)from 2015 to 2022 to explore the trends and sources of nutrients variations.From 2015 to 2022,DIN showed a downward trend until 2020 and then an upward trend,whereas DIP exhibited a stable trend with a slight decrease.The concentrations of DIN and DIP had similar seasonal pattern which was the highest in autumn(0.292±0.247 mg/L for DIN and 0.013±0.016 mg/L for DIP)but lower in spring(0.267±0.238 mg/L for DIN and 0.006±0.010 mg/L for DIP)and summer(0.263±0.324 mg/L for DIN and 0.008±0.010 mg/L for DIP).Sources of DIN and DIP apportioned by the positive matrix factorization(PMF)model were riverine input,sediment resuspension,sewage discharge,atmospheric deposition,and underground input.During 2015-2022,the largest contributor to DIN was sewage discharge(28.7%)and the largest contributor to DIP was sediment resuspension(44.6%).Seasonally,DIN in spring and autumn was dominated by sewage discharge(45.4%and 27.8%,re-spectively).Whereas in summer,it was dominated by riverine input(32.4%)and atmospheric deposition(29.7%).DIP was dominated by sediment resuspension during all three seasons(35.8%-52.5%).In addition,the increase in DIN concentrations in 2021 and 2022 were mainly due to the incremental input of river discharge and atmospheric deposition caused by increased precipitation during sum-mer and autumn.
基金supported by Open Foundation of the Key Laboratory of Coupling Process and Effect of Natural Resources Elements(No.2023KFKTB001)the Science&Technology Fundamental Resources Investigation Program(2022FY101800)+2 种基金the National Nonprofit Institute Research Grant of IGGE(AS2023D01)the projects of the China Geological Survey(DD20230309 and DD20190305)the National Natural Science Foundation of China(42002105)。
文摘To understand the levels of potentially toxic elements(PTEs)contamination in soils and their effects on human health from different agricultural land use in Sanya,China.128 soil samples(64 topsoil samples and corresponding subsoil samples)were collected from the five representative land-use patterns.Inductively coupled plasma mass spectrometry(ICP-MS),Atomic fluorescence spectrometry(AFS),and Inductively coupled plasma optical emission spectrometry(ICP-OES)were used to determine the content of PTEs(As,Cd,Hg,Cu,Cr,Ni,Pb,Zn,Co,Mo,Sb,and V).Correlation analysis and factor analysis were used to determine the source of PTEs.Geo-accumulation index(I_(geo)),hazard quotient(HQ),and total carcinogenic risk index(TR)were used to measure the PTEs contamination and its relative health impacts.Results showed that the average values of 12 PTEs in topsoil were higher than the Hainan soil geochemical baseline,showing different degrees of PTEs accumulation effect.The concentration of PTEs in the topsoil was lower than those in the subsoil except for Cd and Hg.The I_(geo)revealed that the major accumulated element in soils was As followed by Mo.Source apportionment suggested that parent materials and agricultural practices were the dominant factors for PTEs accumulation in the topsoil.Noncarcinogenic risks of soil samples from five land-use patterns presented a trend of paddy field>dry field>woodland>orchard>garden plot.However,the HQ values of 12 PTEs were less than the recommended limit of HQ=1,representing that there are no non-carcinogenic risks of PTEs for children and adults in the study area.The TR values are within 6.95×10^(-6)-1.38×10^(-5),which corresponds to the low level.Therefore the PTEs in the agricultural soil of the study area show little influence on the health status of the local population.
基金the National Science Fund for Distinguished Young Scholars (No.20725723)
文摘During 2001-2006,PM2.5 (particle matter with aerodynamic diameter less than 2.5 microns) and PM10 (particle matter with aerodynamic diameter less than 10 microns) were collected at the Beijng Normal University (BNU) site,China,and in 2006,at a background site in Duolun (DL).The long-term monitoring data of elements,ions,and black carbon showed that the major constituents of PM2.5 were black carbon (BC) crustal elements,nitrates,ammonium salts,and sulfates.These five major components accounted for 20%-80% of...
基金supported by the Tianjin Fundamental Research Program of the Tianjin Committee of Science and Technology (Grant No. 10JCYBJC050800)the National Special Science and Technology Program for Non-Profit Industry of the Ministry of Environmental Protection (Grant No. 200909022)+2 种基金the 973 Program (Grant No. 2011CB403402)the National Natural Science Foundation of China (NSFC) (Grant No. 40875001)the Basic Research Fund of the Chinese Academy of Meteorological Sciences (Grant No. 2008Z011)
文摘Tianjin is the third largest megacity and the fastest growth area in China,and consequently faces the problems of surface ozone and haze episodes.This study measures and characterizes volatile organic compounds (VOCs),which are ozone precursors,to identify their possible sources and evaluate their contribution to ozone formation in urban and suburban Tianjin,China during the HaChi (Haze in China) summer campaign in 2009.A total of 107 species of ambient VOCs were detected,and the average concentrations of VOCs at urban and suburban sites were 92 and 174 ppbv,respectively.Of those,51 species of VOCs were extracted to analyze the possible VOC sources using positive matrix factorization.The identified sources of VOCs were significantly related to vehicular activities,which specifically contributed 60% to urban and 42% to suburban VOCs loadings in Tianjin.Industrial emission was the second most prominent source of ambient VOCs in both urban and suburban areas,although the contribution of industry in the suburban area (36%) was much higher than that at the urban area (16%).We conclude that controlling vehicle emissions should be a top priority for VOC reduction,and that fast industrialization and urbanization causes air pollution to be more complex due to the combined emission of VOCs from industry and daily life,especially in suburban areas.
基金supported by the National Technology Supporting, Kaifeng Environmental Protec-tion Bureau, Henan Province, China
文摘During 2005, the filter samples of ambient PM10 from five sites and the source samples of particulate matter were collected in Kaifeng, Henan Province of China. Nineteen elements, water-soluble ions, total carbon (TC) and organic carbon (OC) contained in samples were analyzed. Seven contributive source types were identified and their contributions to ambient PM10 were estimated by chemical mass balance (CMB) receptor model. Weak associations between the concentrations of organic carbon and element carbon (EC) were observed during the sampling periods, indicating that there was secondary organic aerosol pollution in the urban atmosphere. An indirect method of "OC/EC minimum ratio" was applied to estimate the concentration of secondary organic carbon (SOC). The results showed that SOC contributed 26.2%, 32.4% and 18.0% of TC in spring, summer-fall and winter, respectively, and the annual average SOC concentration was 7.07 μg/m^3, accounting for 5.73% of the total mass in ambient PM10. The carbon species concentrations in ambient PM10 were recalculated by subtracting SOC concentrations from measured concentrations of TC and OC to increase the compatibility of source and receptor measurements for CMB model.
基金Financial support from the National Natural Science Foundation of China (Grant No. 40475049) the Natural Sciences Foundation of Beijing city (Grant No. 8032012) are acknowledged.
文摘A total of 11 PM2.5 samples were collected from October 2003 to October 2004 at 8 sampling sites in Beijing city. The PM2.5 concentrations are all above the PM2.5 pollution standard (65 μg m^-3) established by Environmental Protection Agency, USA (USEPA) in 1997 except for the Ming Tombs site. PM2.5 concentrations in winter are much higher than in summer. The 16 Polycyclic aromatic hydrocarbons (PAHs) listed as priority pollutants by USEPA in PM2.5 were completely identified and quantified by high performance liquid chromatography (HPLC) with variable wavelength detector (VWD) and fluorescence detector (FLD) employed. The PM2.5 concentrations indicate that the pollution situation is still serious in Beijing. The sum of 16 PAHs concentrations ranged from 22.17 to 5366 ng m^-3. The concentrations of the heavier molecular weight PAHs have a different pollution trend from the lower PAHs. Seasonal variations were mainly attributed to the difference in coal combustion emission and meteorological conditions. The source apportionment analysis suggests that PAHs from PM2.5 in Beijing city mainly come from coal combustion and vehicle exhaust emission. New measures about restricting coal combustion and vehicle exhaust must be established as soon as possible to improve the air pollution situation in Beijing city.
基金supported by the National Natural Science Foundation of China grant number 41830109the National Key R&D Programs of China grant number2017YFB0503901。
文摘Air pollution caused by particulate matter has significantly improved in China in recent years since the implementation of a series of stringent clean-air regulations.However,surface ozone concentrations have increased,especially in developed city clusters,such as the Beijing–Tianjin–Hebei,Yangtze River Delta,Pearl River Delta,and Sichuan Basin regions.Due to the complexity and nonlinearity of the ozone formation,accurately locating major sources of ozone and its precursors is an important basis for the formulation of cost-effective pollution control strategies.In this paper,the authors systematically summarize the reported results and outcomes of the methods and main conclusions of ozone source apportionment(regions and categories)in China from the published literature,based on observation-based methods and emission-based methods,respectively.The authors aim to provide a comprehensive understanding of ozone pollution and reliable references for the formulation of air pollution prevention policies in China.
基金supported by Project of Chongqing Ecology and Environment Bureau(2021111)Project of Chongqing Science and Technology Bureau(cstc2022jxjl0005)。
文摘This study studied the characteristics and source apportionment of heavy metal pollution in the agricultural soil surrounding a gangue coal heap in Chongqing,China by using absolute principal component scores-multiple linear regression(APCSMLR)model and positive matrix factorization(PMF)model.The applicability of the models was compared in the assessment of source apportionment.The results showed that the average contents of Cd,Hg,As,Pb,Cr,Cu,Ni,and Zn in the surface soil were 0.46,0.14,9.66,31.2,127,95.6,76.0,and 158 mg/kg,respectively.Combined with the spatial distribution and correlation analyses,the results of source apportionment were consistent for both the APCSMLR and PMF models.Cd,Hg,As,and Pb were mainly affected by the gangue heap accumulation,with respective contributions of 74.6%,79.4%,69.1%,and 67.2%based on the APCS-MLR model and respective contributions of 69.7%,60.7%,57.4%,and 41.9%based on the PMF model.Ni and Zn were mainly affected by industrial and agricultural activities,while Cr and Cu were mainly affected by natural factors.The results of the source apportionment were approximately consistent between the APCS-MLR and PMF models.The combined application of the two receptor models can make the results of source apportionment more comprehensive,accurate,and reliable.
基金The Liaoning Province Natural Science Foundation under contract No.201602409the Public Science and Technology Research Funds Projects of Ocean under contract No.201505019
文摘The sources and ecological risk from sixteen polycyclic aromatic hydrocarbons in surface sediment in the Liaodong Bay were investigated from 2014 to 2015.The total concentrations of PAHs ranged from 88.5 to 347.1 ng/g,and the high value occurred in the central region of the Liaodong Bay.Cluster analysis identified two site clusters representing the coastal region affected by land-based pollution and the central region of the Liaodong Bay.Principal component analysis-multiple linear regression and diagnostic ratios suggested that PAHs contaminants originated from a mixture of combustion and petroleum sources,and the major was combustion sources.Based on sediment quality guideline,naphthalene,acenaphthylene,acenaphthene,phenanthrene and dibenz[a,h]anthracene may occasionally cause adverse biological effects in some stations.The toxic equivalent concentrations of carcinogenic PAHs indicated low carcinogenic risk for the Liaodong Bay.The ecological risk and toxic pollution levels of PAHs were higher in the central region than in the coastal region along the Liaodong Bay.
基金This research was supported by the Natural Science Foundation of China(Grant No.41907188)Natural Science Foundation of Shaanxi Province,China(Grant No.2019JQ-386)the China Postdoctoral Science Foundation(Grant No.2019M653658).
文摘Summer and winter campaigns for the chemical compositions and sources of nonmethane hydrocarbons(NMHCs)and oxygenated volatile organic compounds(OVOCs)were conducted in Xi’an.Data from 57 photochemical assessment monitoring stations for NMHCs and 20 OVOC species were analyzed.Significant seasonal differences were noted for total VOC(TVOC,NMHCs and OVOCs)concentrations and compositions.The campaign-average TVOC concentrations in winter(85.3±60.6 ppbv)were almost twice those in summer(47.2±31.6 ppbv).Alkanes and OVOCs were the most abundant category in winter and summer,respectively.NMHCs,but not OVOCs,had significantly higher levels on weekends than on weekdays.Total ozone formation potential was higher in summer than in winter(by 50%)because of the high concentrations of alkenes(particularly isoprene),high temperature,and high solar radiation levels in summer.The Hybrid Environmental Receptor Model(HERM)was used to conduct source apportionment for atmospheric TVOCs in winter and summer,with excellent accuracy.HERM demonstrated its suitability in a situation where only partial source profile data were available.The HERM results indicated significantly different seasonal source contributions to TVOCs in Xi’an.In particular,coal and biomass burning had contributions greater than half in winter(53.4%),whereas traffic sources were prevalent in summer(53.1%).This study’s results highlight the need for targeted and adjustable VOC control measures that account for seasonal differences in Xi’an;such measures should target not only the severe problem with VOC pollution but also the problem of consequent secondary pollution(e.g.,from ozone and secondary organic aerosols).
基金supported by the 2021 Graduate Science Research Project of the Anhui Higher Education Institutions(Grant No.YJS20210375)the Natural Science Research Project of Universities in Anhui Province(Grant No.KJ2020ZD64)+2 种基金the Natural Science Foundation of Anhui Province(Grant No.2008085MD122)the Outstanding Young Talents in Higher Education Institutions of Anhui Province(Grant No.ZD2021134)the Research Development Foundation of Suzhou University(Grant No.2021fzjj28).
文摘The deterioration of the surface water environment has become a serious challenge for water resources management due to increasing anthropogenic disturbance. Water resources protection requires control of potential pollution sources. In this study, 99 water samples were collected from a river in a typical agricultural city of Anhui Province in eastern China, and these samples were analyzed in terms of pH, electrical conductivity, and the concentrations of F-, Cl-, SO42-, Na+, K+, Mg2+, Ca2+, As, Cr, Cu, Zn, and Pb. Cluster analysis, co-occurrence network analysis, and principal component analysis/factor analysis were conducted to qualitatively identify the potential sources of river water pollution in the study area. An absolute principal component score-multiple linear regression receptor model was used to quantitatively evaluate the contribution of each source to water quality parameters. The results showed that all observed water quality indices met the quality criteria specified in the Chinese drinking water standards, except for pH, ρ(F-), ρ(SO42-), and ρ(As). The heat map showed that the frequent recharge of pollutants from the tributaries during the wet season was the main reason for the deterioration of water quality. Five sources of river water pollution were identified, and their contribution ratios in a descending order were as follows: the geogenic process (24%) > agricultural activities (21%) > poultry farming sources (17%) > domestic pollution (9%) > transportation pollution (5%). Therefore, controlling pollution from agricultural activities, strengthening the regulation of livestock farming, and improving the sewage network are the recommended strategies for improving the quality of surface water resources in this area.
基金supposed by Shandong Natural Science Foundation[Grant number:ZR2016GM03]Ministry of Education[Grant number:17YJA790054]
文摘Long-lasting expansion of haze pollution in China has already presented a stern challenge to regional joint prevention and control. There is an urgent need to enlarge and reconstruct the coverage of joint prevention and control of air pollution in key area. Air quality models can identify and quantify the regional contribution of haze pollution and its key components with the help of numerical simulation, but it is difficult to be applied to larger spatial scale due to the complexity of model parameters. The time series analysis can recognize the existence of spatial interaction of haze pollution between cities, but it has not yet been used to further identify the spatial sources of haze pollution in large scale. Using econometric framework of time series analysis, this paper developed a new approach to perform spatial source apportionment. We applied this approach to calculate the contribution from spatial sources of haze pollution in China, using the monitoring data of particulate matter(PM_(2.5)) across 161 Chinese cities. This approach overcame the limitation of numerical simulation that the model complexity increases at excess with the expansion of sample range, and could effectively deal with severe large-scale haze episodes.
基金Supported by the Natural Basic Research Program of China(No.2005CB422207)the Fund of Eco-enviromental Impacts and Protection in Devoloping and Utilizing of Oil-shale Resources(No.OSR-01-06)
文摘In order to identify the day and night pollution sources of PM10 in ambient air in Longyan City,the authors analyzed the elemental composition of respirable particulate matters in the day and night ambient air samples and various pollution sources which were collected in January 2010 in Longyan with inductivity coupled plasma-mass spectrometry(ICP-MS).Then chemical mass balance(CMB) model and factor analysis(FA) method were applied to comparatively study the inorganic components in the sources and receptor samples.The results of factor analysis show that the major sources were road dust,waste incineration and mixed sources which contained automobile exhaust,soil dust/secondary dust and coal dust during the daytime in Longyan City,China.There are two major sources of pollution which are soil dust and mixture sources of automobile exhaust and secondary dust during the night in Longyan.The results of CMB show that the major sources are secondary dust,automobile exhaust and road dust during the daytime in Longyan.The major sources are secondary dust,soil dust and automobile exhaust during the night in Longyan.The results of the two methods are similar to each other and the results will guide us to plan to control the PM10 pollution sources in Longyan.
文摘In this paper,using concentration data of PM2. 5in 2013 in China and referring to a lot of literature,we preliminary studied the pollution of fine particulate matter and summarized PM2. 5source apportionment in the key cities in China. Our results showed that PM2. 5showed significant spatial and temporal distribution; high surface concentrations of PM2. 5concentrated mainly in the North China Plain,the Sichuan Basin,Yangtze River Delta and other regions; the average annual concentration of PM2. 5was about 80μg / m3 in North China Plain; Seasonal changes in the concentration of PM2. 5was winter > spring > autumn > summer; fired sources,industrial sources,vehicle exhaust were the major sources of PM2. 5; motor vehicle exhaust mostly contributed 10%- 30% to PM2. 5. This review provides a fundamental understanding of PM2. 5source apportionment and serves as an important reference for future source apportionment studies to be widely conducted in China.
基金Supported by Research Project of Young and Middle-aged Teachers in Fujian Province(JAT170817)Innovation and Entrepreneurship Project of College Students(201712709011)
文摘The formation of heavy metal pollution in soil is closely related to human production and life. In order to effectively control heavy metal pollution and repair damaged soil,the pollution source should be known and judged first. Based on the preliminary analysis of major sources of soil heavy metal pollution in soil,combined with relevant literatures on heavy metal pollution source of soil or sediment at home and abroad in recent years,application progress of isotope tracer technique,especially lead isotope tracer technique,in the study of heavy metal pollution sources in soils and sediments were reviewed. The key points of future isotope tracer technology in the field of heavy metal pollution source apportionment were prospected.
基金supported by the e-LINK project (EM ECW-ref.149674-EM-1-UK-ERAMUNDUS)financial support to carry out the work at Staffordshire University, Stafford, UK
文摘In this paper, the sum deviation just-in-time (JIT) sequencing problem in mixed-model production systems is studied relating with the discrete apportionment problem together with their respective mathematical formulations. The assignment formulation for the first problem is briefly discussed followed by the existence of JIT cyclic sequences. Presenting the concise discussion on divisor methods for the discrete apportionment problem, we have proposed two mean-based divisor functions for this problem claiming that they are better than the existing divisors; hence, we found a better bound for the JIT sequencing problem. The linkage of both the problems is characterized in terms of similar type of objective functions. The problems are shown equivalent via suitable transformations and similar properties. The joint approaches for the two problems are discussed in terms of global and local deviations proposing equitably efficient solution.
文摘In this work, receptor models were used to identify the PM2.5 sources and its contribution to the air quality in residential, comercial and industrial sampling sites in the Metropolitan Area of Costa Rica. Principal component analysis with absolute principal component scores (PCA-APCS), UNIMX and positive matrix factorization (PMF) was applied to analyze the data collected during 1 year of sampling campaign (2010-2011). The PM2.5 samples were characterized through its composition looking for trace elements, inorganic ions and organic and elemental carbon. These three models identified some common sources of PM2.5: marine aerosol, crustal material, traffic, secondary aerosols (secondary sulfate and secondary nitrate resolved by PMF), a mixed source of heavy fuels combustion and biomass burning, and industrial emissions. The three models predicted that the major sources of PM2.5 in the Metropolitan Area of Costa Rica were related to anthropogenic sources (73%, 65% and 69%, respectively, for PCA-APCS, Unmix and PMF) although natural sources also contributed to PM2.5 (21%, 24% and 26%). On average, PCA and PMF methods resolved 94% and 95% of the PM2.5 mass concentrations, respectively. The results were comparable to the estimate using UNMIX.
文摘Nuclear power plants are always operated under the guidelines stipulated by the regulatory body. These guidelines basically contain the technical specifications of the specific power plant and provide the knowledge of the discharge limit of the radioactive effluent into the environment through atmospheric and aquatic route. However, operational constraints sometimes may violate the technical specification due to which there may be a failure to satisfy the stipulated dose apportioned to that plant. In a site having multi facilities sum total of the dose apportioned to all the facilities should be constrained to 1 mSv/year to the members of the public. Dose apportionment scheme basically stipulates the limit of the gaseous and liquid effluent released into the environment. Existing methodology of dose apportionment is subjective in nature that may result the discharge limit of the effluent in atmospheric and aquatic route in an adhoc manner. Appropriate scientific basis for dose apportionment is always preferable rather than judicial basis from the point of harmonization of establishing the dose apportionment. This paper presents an attempt of establishing the discharge limit of the gaseous and liquid effluent first on the basis of the existing value of the release of the same. Existing release data for a few years (for example 10 years) for any nuclear power station have taken into consideration. Bootstrap, a resampling technique, has been adopted on the existing release data sets to generate the corresponding population distribution of the effluent release. Cumulative distribution of the population distribution obtained is constructed and using this cumulative distribution, 95th percentile (upper bound) of the discharge limit of the radioactive effluents is computed. Dose apportioned for a facility is evaluated using this estimated upper bound of the release limit. Paper de- scribes the detail of the bootstrap method in evaluating the release limit and also presents the comparative study of the dose apportionment using this new method and the existing adhoc method.
文摘Source apportionment studies are useful in understanding sources of pollution and can be used in health risk assessments to evaluate the human health impacts from air pollutants. This study reviewed and analysed available source apportionment studies of air particulate in South Africa in October 2016. Searches were performed using different databases for peer reviewed articles including Google scholar, Scopus, EbscoHost, Science Direct and National Research Foundation database. Source categories were identified and these varied depending on the sites where the research was conducted (rural, urban or remote) but biomass burning dominated. A total of 35 source apportionment records were found with the majority of studies in urban areas (60%) while industrial sites had the least number of records (17.1%). The period 2011-2016 had the highest number of records while 1990-1995 had only three publicly available studies. There is limited research on source apportionment studies of air particulate in South Africa, calling for more research in this area.
基金supported by the National Natural Science Foundation of China (No.41875155)Natural Key Research and Development Program of China (No.2019YFA0607004)+1 种基金Environment and Conservation Fund/Woo Wheelock Green Fund (No.ECWW09EG04)Strategic Priority Research Program (B)of the Chinese Academy of Sciences (No.XDB05040502)。
文摘Fireworks(FW)could significantly worsen air quality in short term during celebrations.Due to similar tracers with biomass burning(BB),the fast and precise qualification of FW and BB is still challenging.In this study,online bulk and single-particle measurements were combined to investigate the contributions of FW and BB to the overall mass concentrations of PM_(2.5)and specific chemical species by positive matrix factorization(PMF)during the Chinese New Year in Hong Kong in February 2013.With combined information,fresh/aged FW(abundant ^(140)K_(2)NO_(3)^(+)and ^(213)K_(3)SO_(4)^(+)formed from ^(113)K_(2)Cl^(+)discharged by fresh FW)can be extracted from the fresh/aged BB sources,in addition to the Second Aerosol,Vehicles+Road Dust,and Sea Salt factors.The contributions of FW and BB were investigated during three high particle matter episodes influenced by the pollution transported from the Pearl River Delta region.The fresh BB/FW contributed 39.2%and 19.6%to PM_(2.5)during the Lunar Chinese New Year case.However,the contributions of aged FW/BB enhanced in the last two episodes due to the aging process,evidenced by high contributions from secondary aerosols.Generally,the fresh BB/FW showed more significant contributions to nitrate(35.1%and15.0%,respectively)compared with sulfate(25.1%and 5.9%,respectively)and OC(14.8%and11.1%,respectively)on average.In comparison,the aged FW contributed more to sulfate(13.4%).Overall,combining online bulk and single-particle measurement data can combine both instruments’advantages and provide a new perspective for applying source apportionment of aerosols using PMF.