Noncoherent underwater acoustic communication channel in adverse conditions is modeled as a phase-random Rayleigh fading channel,and its capacity curve is derived.To approach the channel capacity curve,the concatenate...Noncoherent underwater acoustic communication channel in adverse conditions is modeled as a phase-random Rayleigh fading channel,and its capacity curve is derived.To approach the channel capacity curve,the concatenated code of the nonbinary LDPC code and the constant weight code is proposed for noncoherent communication which can late be iteratively decoded in the probability domain.Without information of channel amplitude or phase in the receiver,statistic parameters of the respective signal and noise bins were estimated based on the moment estimation method,the posterior probabilities of the constant weight code words were further calculated,and the nonbinary LDPC code was decoded with the nonbinary factor graph algorithm.It is verified by simulations that by utilizing the proposed concatenated code and its processing algorithm,gap to channel capacity curve is reduced by 3 dB when compared to the existing method.Underwater communication experiments were carried out in both deep ocean(vertical communication,5 km)and shallow lake(horizontal communication,near 3 km,delay spread larger than 50 ms),in which the signal frequency band was 6 kHz to10 kHz,and the data transmission rate Was 357 bps.The proposed scheme can work properly in both experiments with a signal-to-noise ratio threshold of 2 dB.The performance of the proposed algorithm Was well verified by the experiments.展开更多
Silt deposition occurs in the downstream approach channel of the tidal lock as in a closed channel or excavated dock basin. It is often difficult to calculate or predict siltation because of complex flow and sediment ...Silt deposition occurs in the downstream approach channel of the tidal lock as in a closed channel or excavated dock basin. It is often difficult to calculate or predict siltation because of complex flow and sediment conditions and many other affecting factors. In this paper, the characteristics of flow movement in the approach channel (including its mouth) of the tidal lock are analyzed, the basic laws of sediment movement and siltation mechanism are investigated, the conditions for three types of siltation (circumfluence siltation, density flow siltation and slow flow siltation) are discussed, and corresponding calculating formulas are proposed. A practical example shows that the difference between measured and calculated results is small, indicating that the present calculating methods could be used in design and management of practical engineering projects.展开更多
The variation of the amplitude of waves with varying incident angles when waves propagate through a typical approach channel is discussed by a numerical calculation method, the result of which shows that the influence...The variation of the amplitude of waves with varying incident angles when waves propagate through a typical approach channel is discussed by a numerical calculation method, the result of which shows that the influence of the channel on wave propagation is obvious. When the wave propagation direction is in coincidence with the channel axis, the wave amplitude ratio will decrease with the increase of propagation distance. When the incident angle is 15 - 30 , there appears an area of larger wave amplitude ratio on the side slope facing the waves, but at the another side, the wave amplitude ratio is generally small, indicating that the channel has a shielding effect. When waves propagate across the channel perpendicularly, the wave amplitude ratio can be calculated with the shallow water coefficient.展开更多
The two-axis underwater channel often exists in deep ocean. Sound propagation in the two-axis underwater channel is a benchmark problem for computational methods of underwater acoustics. In this paper, the generalized...The two-axis underwater channel often exists in deep ocean. Sound propagation in the two-axis underwater channel is a benchmark problem for computational methods of underwater acoustics. In this paper, the generalized phase-integral (WKBZ) normal mo de approach is extended to deal with this kind of problem. Numerical results show that the extended WKBZ approach is effective.展开更多
基金supported by the Chinese National 863 Projects(2002AA401004,2009AA093301,2009AA093601)
文摘Noncoherent underwater acoustic communication channel in adverse conditions is modeled as a phase-random Rayleigh fading channel,and its capacity curve is derived.To approach the channel capacity curve,the concatenated code of the nonbinary LDPC code and the constant weight code is proposed for noncoherent communication which can late be iteratively decoded in the probability domain.Without information of channel amplitude or phase in the receiver,statistic parameters of the respective signal and noise bins were estimated based on the moment estimation method,the posterior probabilities of the constant weight code words were further calculated,and the nonbinary LDPC code was decoded with the nonbinary factor graph algorithm.It is verified by simulations that by utilizing the proposed concatenated code and its processing algorithm,gap to channel capacity curve is reduced by 3 dB when compared to the existing method.Underwater communication experiments were carried out in both deep ocean(vertical communication,5 km)and shallow lake(horizontal communication,near 3 km,delay spread larger than 50 ms),in which the signal frequency band was 6 kHz to10 kHz,and the data transmission rate Was 357 bps.The proposed scheme can work properly in both experiments with a signal-to-noise ratio threshold of 2 dB.The performance of the proposed algorithm Was well verified by the experiments.
文摘Silt deposition occurs in the downstream approach channel of the tidal lock as in a closed channel or excavated dock basin. It is often difficult to calculate or predict siltation because of complex flow and sediment conditions and many other affecting factors. In this paper, the characteristics of flow movement in the approach channel (including its mouth) of the tidal lock are analyzed, the basic laws of sediment movement and siltation mechanism are investigated, the conditions for three types of siltation (circumfluence siltation, density flow siltation and slow flow siltation) are discussed, and corresponding calculating formulas are proposed. A practical example shows that the difference between measured and calculated results is small, indicating that the present calculating methods could be used in design and management of practical engineering projects.
文摘The variation of the amplitude of waves with varying incident angles when waves propagate through a typical approach channel is discussed by a numerical calculation method, the result of which shows that the influence of the channel on wave propagation is obvious. When the wave propagation direction is in coincidence with the channel axis, the wave amplitude ratio will decrease with the increase of propagation distance. When the incident angle is 15 - 30 , there appears an area of larger wave amplitude ratio on the side slope facing the waves, but at the another side, the wave amplitude ratio is generally small, indicating that the channel has a shielding effect. When waves propagate across the channel perpendicularly, the wave amplitude ratio can be calculated with the shallow water coefficient.
文摘The two-axis underwater channel often exists in deep ocean. Sound propagation in the two-axis underwater channel is a benchmark problem for computational methods of underwater acoustics. In this paper, the generalized phase-integral (WKBZ) normal mo de approach is extended to deal with this kind of problem. Numerical results show that the extended WKBZ approach is effective.