To adapt to the change of aquaculture workshop site,optimize the shape of aquaculture tanks and improve the utilization rate of breeding space,it is necessary to determine the appropriate length width ratio parameters...To adapt to the change of aquaculture workshop site,optimize the shape of aquaculture tanks and improve the utilization rate of breeding space,it is necessary to determine the appropriate length width ratio parameters of aquaculture tanks.In this paper,computational fluid dynamics(CFD)technology is adopted to study the flow field performance of aquaculture tanks with different L/B ratios(L:the length;B:the width,of aquaculture tank)and different jet direction conditions(lengthways jet and widthways jet).A three-dimensional numerical calculation model of turbulence in rounded rectangle aquaculture tanks in dual-diagonal-inlet layout was established.Jet directions are arranged lengthways and widthways,and the water flow velocity,resistance coefficient change,vorticity,etc.are analyzed under two working conditions.Results show that the flow field performance in aquaculture tank decreases with the increase of the L/B ratio.The flow field performed well when L/B was 1.0-1.3,sharply dropped at 1.4-1.6,and poor at 1.7-1.9.The results provided a theoretical basis for the design and optimization in flow field performance of the industrialized circulating aquaculture tanks.展开更多
To improve the self-cleaning ability of aquaculture tank and the efficiency of circulating water,physical and numerical experiments were conducted on the influence of inlet structure on sewage discharge in a rounded s...To improve the self-cleaning ability of aquaculture tank and the efficiency of circulating water,physical and numerical experiments were conducted on the influence of inlet structure on sewage discharge in a rounded square aquaculture tank with a single inlet.Based on the physical model of the tank,analysis of how inlet structure adjustment affects sewage discharge efficiency and flow field characteristics was conducted to provide suitable flow field conditions for sinkable solid particle discharge.In addition,an internal flow field simulation was conducted using the RNG k-εturbulence model in hydraulic drive mode.Then a solid-fluid multiphase model was created to investigate how the inlet structure affects sewage collection in the rounded square aquaculture tank with single inlet and outlet.The finding revealed that the impact of inlet structure is considerably affecting sewage collection.The conditions of C/B=0.07-0.11(the ratio of horizontal distance between the center of the inlet pipe and the tank wall(C)to length of the tank(B))andα=25°(αis the angle between the direction of the jet and the tangential direction of the arc angle)resulted in optimal sewage collection,which is similar to the flow field experiment in the rounded square aquaculture tank with single inlet and outlet.An excellent correlation was revealed between sewage collection and fluid circulation stability in the aquaculture tank.The present study provided a reference for design and optimization of circulating aquaculture tanks in aquaculture industry.展开更多
The environment and structure of the tanks used in aquaculture vessels are remarkably different from those of ordinary ships,and the resulting problem of structural strength is related to breeding safety.In this study...The environment and structure of the tanks used in aquaculture vessels are remarkably different from those of ordinary ships,and the resulting problem of structural strength is related to breeding safety.In this study,a model of aquaculture tank corrosion was constructed by using the multiphysical field coupling analysis software COMSOL Multiphysics,and wave and sloshing loads were calculated on the basis of potential flow theory and computational fluid dynamics.The influence of different calculation methods for corrosion allowance and sloshing load on the structural responses of aquaculture tanks was analyzed.Through our calculations,we found that the corrosion of aquaculture tanks is different from that of ordinary ships.The corrosion allowance in Rules for the Classification of Sea-going Steel Ships is small,and the influence of the aquaculture environment on corrosion can be ignored.Compared with the method set in the relevant rules,our proposed coupling direct calculation method for the structural response calculation of aquaculture tanks can better combine the specific environment of aquaculture tanks and provide more accurate calculations.展开更多
基金Supported by the National Natural Science Foundation of China(No.31872609)the Innovation Support Program for High-level Talents of Dalian City(No.2019RD12)+1 种基金the Key Research Project of Liaoning Provincial Department of Education in 2022(No.LJKZZ 20220091)the earmarked fund for CARS-49(CARS-49)。
文摘To adapt to the change of aquaculture workshop site,optimize the shape of aquaculture tanks and improve the utilization rate of breeding space,it is necessary to determine the appropriate length width ratio parameters of aquaculture tanks.In this paper,computational fluid dynamics(CFD)technology is adopted to study the flow field performance of aquaculture tanks with different L/B ratios(L:the length;B:the width,of aquaculture tank)and different jet direction conditions(lengthways jet and widthways jet).A three-dimensional numerical calculation model of turbulence in rounded rectangle aquaculture tanks in dual-diagonal-inlet layout was established.Jet directions are arranged lengthways and widthways,and the water flow velocity,resistance coefficient change,vorticity,etc.are analyzed under two working conditions.Results show that the flow field performance in aquaculture tank decreases with the increase of the L/B ratio.The flow field performed well when L/B was 1.0-1.3,sharply dropped at 1.4-1.6,and poor at 1.7-1.9.The results provided a theoretical basis for the design and optimization in flow field performance of the industrialized circulating aquaculture tanks.
基金Supported by the 2023 Central Government Finance Subsidy Project for Liaoning Fisheries,the Key Research Project of Liaoning Provincial Department of Education in 2022(No.LJKZZ20220091)the National Natural Science Foundation of China(No.31872609)+1 种基金the Innovation Support Program for High-level Talents of Dalian City(No.2019RD12)the earmarked fund for CARS-49。
文摘To improve the self-cleaning ability of aquaculture tank and the efficiency of circulating water,physical and numerical experiments were conducted on the influence of inlet structure on sewage discharge in a rounded square aquaculture tank with a single inlet.Based on the physical model of the tank,analysis of how inlet structure adjustment affects sewage discharge efficiency and flow field characteristics was conducted to provide suitable flow field conditions for sinkable solid particle discharge.In addition,an internal flow field simulation was conducted using the RNG k-εturbulence model in hydraulic drive mode.Then a solid-fluid multiphase model was created to investigate how the inlet structure affects sewage collection in the rounded square aquaculture tank with single inlet and outlet.The finding revealed that the impact of inlet structure is considerably affecting sewage collection.The conditions of C/B=0.07-0.11(the ratio of horizontal distance between the center of the inlet pipe and the tank wall(C)to length of the tank(B))andα=25°(αis the angle between the direction of the jet and the tangential direction of the arc angle)resulted in optimal sewage collection,which is similar to the flow field experiment in the rounded square aquaculture tank with single inlet and outlet.An excellent correlation was revealed between sewage collection and fluid circulation stability in the aquaculture tank.The present study provided a reference for design and optimization of circulating aquaculture tanks in aquaculture industry.
基金financially supported by the National Natural Science Foundation of China(Grant No.52071110)Fundamental Research Funds for the Central Universities(Grant No.3072022QBZ0101).
文摘The environment and structure of the tanks used in aquaculture vessels are remarkably different from those of ordinary ships,and the resulting problem of structural strength is related to breeding safety.In this study,a model of aquaculture tank corrosion was constructed by using the multiphysical field coupling analysis software COMSOL Multiphysics,and wave and sloshing loads were calculated on the basis of potential flow theory and computational fluid dynamics.The influence of different calculation methods for corrosion allowance and sloshing load on the structural responses of aquaculture tanks was analyzed.Through our calculations,we found that the corrosion of aquaculture tanks is different from that of ordinary ships.The corrosion allowance in Rules for the Classification of Sea-going Steel Ships is small,and the influence of the aquaculture environment on corrosion can be ignored.Compared with the method set in the relevant rules,our proposed coupling direct calculation method for the structural response calculation of aquaculture tanks can better combine the specific environment of aquaculture tanks and provide more accurate calculations.