The adsorption and separation of diols from dilute aqueous solution using hydrophobic materials is very challenging due to the strong diol-water hydrogen-bonding interactions. Herein, we screened hydrophobic zeolitic ...The adsorption and separation of diols from dilute aqueous solution using hydrophobic materials is very challenging due to the strong diol-water hydrogen-bonding interactions. Herein, we screened hydrophobic zeolitic imidazolate frameworks(ZIFs) with chabazite(CHA) topology for separation of 2,3-butanediol(2,3-BDO) and 1,3-propanediol(1,3-PDO), which had junctional and hydrophobic traps matching the two end methyl groups of the 2,3-BDO molecule. Based on CHA-ZIFs with the same small-sized ligand 2-methylimidazole(mIm) and different large-sized ligand benzimidazole derivatives(RbIm),CHA-ZIFs with larger surface areas were obtained by the addition of excess small-sized ligand mIm in the synthesis process. We showed that all of the hydrophobic CHA-ZIFs preferentially adsorbed 2,3-BDO over 1,3-PDO by static batch adsorption and dynamic column adsorption experiments. But ZIF-301 and ZIF-300 with halogen groups exhibited better adsorptive separation performance for 2,3-BDO/1,3-PDO than ZIF-302 with methyl groups. For a typical ZIF-301, its adsorption capacity for 2,3-BDO was 116.4 mg·g^(-1)and selectivity for 2,3-BDO/1,3-PDO was 3.8 in dynamic column adsorption of the binary-component system(2,3-BDO/1,3-PDO: 50 g·L^(-1)/50 g·L^(-1)). Computational simulations revealed that 2,3-BDO preferentially adsorbed in a trap at the junction between the cha and d6r cages of CHA-ZIFs,meaning the strong host-guest interactions. Therefore, the hydrophobic CHA-ZIFs with a junctional trap were promising candidate materials for adsorbing 2,3-BDO, which also provided a new perspective for separating diols in dilute aqueous solutions.展开更多
A new type of rubidium ion-imprinted polymer has been synthesized by the surface-imprinting technique using methacrylic acid as the functional monomer,the rubidium ion as the template,methanol as the solvent,and silic...A new type of rubidium ion-imprinted polymer has been synthesized by the surface-imprinting technique using methacrylic acid as the functional monomer,the rubidium ion as the template,methanol as the solvent,and silica as a carrier.Ethylene glycol dimethacrylate and 2,2-azobisisobutyronitrile were used as acrosslinker and an initiator,respectively.In addition,based on the macrocyclic effect of crown ethers,the 18-crown-6 ligand was introduced as a ligand to fix the template ions better.Scanning electron microscopy,zeta-potential analysis,Fourier transform infrared spectroscopy,thermogravimetric analysis,and X-ray photoelectron spectroscopy were performed to characterize the ion-imprinted polymer.The effects of the preparation and adsorption conditions on the adsorption performance of the rubidium ion-imprinted polymer were investigated.The results indicated that the rubidium ion-imprinted polymer has high selectivity and faster kinetics than other adsorbents,with an equilibrium adsorption capacity of 200.19 mg·g^(-1)at 298 K within 25 min.The sorption isotherm was well described by the Freundlich isotherm model,while the adsorption kinetics fitted the pseudo-second-order kinetic model.Consecutive adsorption-desorption experiments showed that the ion-imprinted polymer had good chemical stability and reusability.展开更多
Levulinic acid(LA)is one of the top-12 most promising biomass-based platform chemicals,which has a wide range of applications in a variety of fields.However,separation and purification of LA from aqueous solution or a...Levulinic acid(LA)is one of the top-12 most promising biomass-based platform chemicals,which has a wide range of applications in a variety of fields.However,separation and purification of LA from aqueous solution or actual hydrolysate continues to be a challenge.Among various downstream separation technologies,liquid-liquid extraction is a low-cost,effective,and simple process to separate LA.The key breakthrough lies in the development of extractants with high extraction efficiency,good hydrophobicity,and low cost.In this work,three hydrophobic deep eutectic solvents(DESs)based on tri-n-octylamine(TOA)as hydrogen bond acceptor(HBA)and alcohols(butanol,2-octanol,and menthol)as hydrogen bond donors(HBDs)were developed to extract LA from aqueous solution.The molar ratios of HBD and HBA,extraction temperature,contact time,solution pH,and initial LA concentration,DES/water volume ratios were systematically investigated.Compared with 2-octanol-TOA and menthol-TOA DES,the butanol-TOA DES exhibited the superior extraction performance for LA,with a maximum extraction efficiency of 95.79±1.4%.Moreover,the solution pH had a great impact on the LA extraction efficiency of butanol-TOA(molar ratio=3:1).It is worth noting that the extraction equilibrium time was less than 0.5 h.More importantly,the butanol-TOA(3:1)DES possesses good extraction abilities for low,medium,and high concentrations of LA.展开更多
Ozone(O_(3)) generated by a dielectric barrier discharge(DBD) is widely used in various industrial processes. In this study, NaCl aqueous solution was used as a novel electric power transmission electrode in a DBD rea...Ozone(O_(3)) generated by a dielectric barrier discharge(DBD) is widely used in various industrial processes. In this study, NaCl aqueous solution was used as a novel electric power transmission electrode in a DBD reactor(instead of a traditional metal electrode) for highly efficient ozone generation. The results demonstrated that a high O_(3) yield of 242 g k Wh^(-1) with a concentration of 14.6 g m^(-3)O_(3) was achieved. The power transmission mechanism works because NaCl aqueous solution behaves as a capacitor when an alternating pulse voltage below 8 k Hz is used.Compared with the resistance of the discharge barrier and discharge space, the resistance of NaCl aqueous solution can be ignored, which ensures that O_(3) is generated efficiently. It is expected that O_(3) generation using NaCl aqueous solution as a novel electrode in a DBD reactor could be an alternative technology with good application prospects.展开更多
A universal thermodynamic model of calculating mass action concentrations for structural units or ion couples in ternary and binary strong electrolyte aqueous solution was developed based on the ion and molecule coexi...A universal thermodynamic model of calculating mass action concentrations for structural units or ion couples in ternary and binary strong electrolyte aqueous solution was developed based on the ion and molecule coexistence theory and verified in four kinds of binary aqueous solutions and two kinds of ternary aqueous solutions. The calculated mass action concentrations of structural units or ion couples in four binary aqueous solutions and two ternary solutions at 298.15 K have good agreement with the reported activity data from literatures after shifting the standard state and concentration unit. Therefore, the calculated mass action concentrations of structural units or ion couples from the developed universal thermodynamic model for ternary and binary aqueous solutions can be applied to predict reaction ability of components in ternary and binary strong electrolyte aqueous solutions. It is also proved that the assumptions applied in the developed thermodynamic model are correct and reasonable, i.e., strong electrolyte aqueous solution is composed of cations and anions as simple ions, H2O as simple molecule and other hydrous salt compounds as complex molecules. The calculated mass action concentrations of structural units or ion couples in ternary and binary strong electrolyte aqueous solutions strictly follow the mass action law.展开更多
A novel adsorbent was prepared from granular red mud mixed with cement and its potential to be a suitable adsorbent for the removal of cadmium ions from aqueous solutions was evaluated. The wet red mud was directly mi...A novel adsorbent was prepared from granular red mud mixed with cement and its potential to be a suitable adsorbent for the removal of cadmium ions from aqueous solutions was evaluated. The wet red mud was directly mixed up with cement at different mass fractions of 2%-8% and their properties were investigated. Based on the textural characteristics and strength, the granular red mud with 2% addition of cement maintaining for 6 d is identified to have better properties. The batch adsorption experiments for adsorption of Cd2+ ions from solution were performed at 30, 40 and 50 °C at different initial concentrations under the condition of constant pH of 6.5. The equilibrium adsorption was found to increase with the increase of temperature during the adsorption process. Langmuir adsorption isotherm model was found to match the experimental adsorption isotherm better. The kinetics of adsorption was modeled using a pseudo second order kinetic model and the model parameters were estimated.展开更多
Cu nanoparticles were prepared by reducing Cu2+ ions with ascorbic acid through aqueous solution reduction method. The effects of solution pH and average size of Cu2O particles on the preparation of Cu nanoparticles ...Cu nanoparticles were prepared by reducing Cu2+ ions with ascorbic acid through aqueous solution reduction method. The effects of solution pH and average size of Cu2O particles on the preparation of Cu nanoparticles were investigated. Cu particles were prepared at pH 3, 5 or 7, with the smallest Cu particles obtained at pH 7. However, Cu particles could not be prepared at pH 9 or 11. The average size of Cu2O particles can affect that of Cu particles. Larger Cu2O particles result in larger Cu particles. In addition, experiments were conducted to explore the reaction process by measuring the X-ray diffraction (XRD) patterns of specimens collected at different time points during the reaction. It was found that Cu(OH)2 was initially formed as a precursor, followed by the formation of Cu2O, which was finally reduced to Cu particles.展开更多
The preparation of Cu nanoparticles by the aqueous solution reduction method was investigated. The effects of different reaction parameters on the preparation of Cu nanoparticles were studied. The optimum conditions f...The preparation of Cu nanoparticles by the aqueous solution reduction method was investigated. The effects of different reaction parameters on the preparation of Cu nanoparticles were studied. The optimum conditions for preparing well-dispersed nanoparticles were found as follows: 0.4 mol/L NaBH4 was added into solution containing 0.2 mol/L Cu2+, 1.0% gelatin dispersant in mass fraction, and 1.2 mol/L NH3?H2O at pH 12 and 313 K. In addition, a series of experiments were performed to discover the reaction process. NH3?H2O was found to be able to modulate the reaction process. At pH=10, Cu2+ was transformed to Cu(NH3)42+ as precursor after the addition of NH3?H2O, and then Cu(NH3)42+ was reduced by NaBH4 solution. At pH=12, Cu2+ was transformed to Cu(OH)2 as precursor after the addition of NH3?H2O, and Cu(OH)2 was then reduced by NaBH4 solution.展开更多
All-atom molecular dynamics (MD) simulation and the NMR spectra are used to investigate the interactions in N-glycylglycine aqueous solution. Different types of atoms exhibit different capability in forming hydrogen...All-atom molecular dynamics (MD) simulation and the NMR spectra are used to investigate the interactions in N-glycylglycine aqueous solution. Different types of atoms exhibit different capability in forming hydrogen bonds by the radial distribution function analysis. Some typical dominant aggregates are found in different types of hydrogen bonds by the statistical hydrogen-bonding network. Moreover, temperature-dependent NMR are used to compare with the results of the MD simulations. The chemical shifts of the three hydrogen atoms all decrease with the temperature increasing which reveals that the hydrogen bonds are dominant in the glycylglycine aqueous solution. And the NMR results show agreement with the MD simulations. All-atom MD simulations and NMR spectra are successful in revealing the structures and interactions in the N-glycylglycine-water mixtures.展开更多
All-atom molecular simulations and two-dimensional nuclear overhauser effect spectrum have been used to study the conformations of carnosine in aqueous solution. Intramolecular distances, root-mean-square deviation, r...All-atom molecular simulations and two-dimensional nuclear overhauser effect spectrum have been used to study the conformations of carnosine in aqueous solution. Intramolecular distances, root-mean-square deviation, radius of gyration, and solvent-accessible surface are used to characterize the properties of the carnosine. Carnosine can shift between extended and folded states, but exists mostly in extended state in water. Its preference for extension in pure water has been proven by the 2D nuclear magnetic resonance (NMR) experiment. The NMR experimental results are consistent with the molecular dynamics simulations.展开更多
1,5-Pentanediamine(PDA)produced by biological fermentation becomes popular,but the separation of PDA from the broth is a typical difficult problem.In this work,the performance of 200 ionic liquids(ILs),formed by combi...1,5-Pentanediamine(PDA)produced by biological fermentation becomes popular,but the separation of PDA from the broth is a typical difficult problem.In this work,the performance of 200 ionic liquids(ILs),formed by combining 25 cations and 8 anions,in the extraction of PDA from aqueous solution were evaluated using COSMO-RS model.The extraction mechanism was investigated with the help ofσ-profile and interaction energy analyses.Both the cation and anion have impacts on the extraction efficiency,where cation mainly influences the interaction of IL with PDA and anion affects the hydrophobicity of IL.The IL composed of long alkyl-chain in cation and the anion of[PF6]-or[TF2 N]-,which has theσ-profile more likely distributed in the nonpolar region but less distributed in the polar region,is favorable for extraction.The experimental liquid-liquid equilibrium demonstrated the effects of cation and anion on extraction performance,which validated the reliability of COSMO-RS model in IL screening for PDA extraction.The IL[IM-1,8][PF6]could serve as a promising extractant for the downstream separation process of the biological production of PDA.展开更多
Ionic liquids (ILs) have been regarded as the potential novel solvents for improved analytical- and process-scale separation methods.The development of methods for the recovery of ILs from aqueous solutions to escap...Ionic liquids (ILs) have been regarded as the potential novel solvents for improved analytical- and process-scale separation methods.The development of methods for the recovery of ILs from aqueous solutions to escape contamination and recycle samples will ultimately govern the viability of ILs in the future industrial applications. Therefore, in this paper a new method for separation of ILs from their dilute aqueous solutions and simultaneously purification of water was proposed on the basis of the CO2 hydrate formation. For illustration, the dilute aqueous solutions with concentrations of ILs ranging from 2× 10^-3 mol% to 2×10^-1 mol% were concentrated. The results show that the separation efficiency is very impressive and that the new method is applicable to aqueous solutions of both hydrophobic and hydrophilic ILs. Compared to the literature separation method based on the supercritical CO2, the new method is applicable to lower concentrations, and more importantly, its operation condition is mild.展开更多
Coal fly ash(CFA)is composed of minerals containing some oxides in crystalline phase(i.e.,quartz and mullite),as well as unburned carbon as mesoporous material,thus enabling CFA to act as a dual-sites adsorbent with u...Coal fly ash(CFA)is composed of minerals containing some oxides in crystalline phase(i.e.,quartz and mullite),as well as unburned carbon as mesoporous material,thus enabling CFA to act as a dual-sites adsorbent with unique properties.This work focused on the adsorption of Pb(Ⅱ)and Zn(Ⅱ)from binary system,a mixture containing two metal ion solutions present simultaneously,onto NaOH-modified CFA(MCFA).Several adsorption tests were conducted to evaluate the effect of several parameters,including pH and contact times.The experiment results indicated that chemical treatment of CFA with NaOH increased pore volume from 0.021 to 0.223 cm^3·g^(-1).In addition,it could also enhance the availability of functional groups on both minerals and unburned carbon,resulting in almost 100%Pb(Ⅱ)and 97%Zn(Ⅱ)adsorbed.The optimum pH for adsorption system was pH=3 and quasi-equilibrium occurred in 240 minutes.Equilibrium data from the experimental results were analyzed using Modified Extended Langmuir(MEL)and Competitive Adsorption Langmuir-Langmuir(CALL)isotherm models.The analysis results showed that the CALL isotherm model could better describe the Pb(Ⅱ)and Zn(Ⅱ)adsorption process onto MCFA in binary system compared with MEL isotherm model.展开更多
1H NMR chemical shifts of binary aqueous mixtures of acylamide, alcohol, dimethyl sulphoxide (DMSO), and acetone are correlated by statistical associating fluid theory (SAFT) association model. The comparison between ...1H NMR chemical shifts of binary aqueous mixtures of acylamide, alcohol, dimethyl sulphoxide (DMSO), and acetone are correlated by statistical associating fluid theory (SAFT) association model. The comparison between SAPT association model and Wilson equation shows that the former is better for dealing with aqueous solutions. Finally, the specialties of both models are discussed.展开更多
To investigate the degradation of corrosion resistance of Zircaloy-4 in LiOHaqueous solution, SIMS (secondary ion mass spectrometry) analysis was performed to examine theprofiles of Li^+, K^+, and OH^- in oxide layers...To investigate the degradation of corrosion resistance of Zircaloy-4 in LiOHaqueous solution, SIMS (secondary ion mass spectrometry) analysis was performed to examine theprofiles of Li^+, K^+, and OH^- in oxide layers formed in the same concentration (0.1 mol/L) LiOHand KOH solutions. Even though the oxide layers have an equal thickness, the pene-tration depth ofK^+ is shallower than that of Li^+, and the penetration depth of OH^- corroded in KOH solution isalso shal-ower than that corroded in LiOH solution. It shows that the diffusion of OH^- into oxidelayer is accompanied by the corresponding cation. The difference of degradation effect of LiOH andKOH solutions on the corrosion resistance of Zircaloy-4 was discussed.展开更多
Chemical effects in different aqueous solutions induced by plasma with glow discharge electrolysis (GDE) and contact glow discharge electrolysis (CGDE) are described in this paper. The experimental and discharge char...Chemical effects in different aqueous solutions induced by plasma with glow discharge electrolysis (GDE) and contact glow discharge electrolysis (CGDE) are described in this paper. The experimental and discharge characteristics are also reviewed. These are followed by a discussion of their mechanisms of both anodic and cathodic CGDE..展开更多
Degradation of α-naphthol induced by plasma in aqueous solution was investigated in different initial concentration with contact glow discharge electrolysis(CGDE). The results showed that the degradation of α-naphth...Degradation of α-naphthol induced by plasma in aqueous solution was investigated in different initial concentration with contact glow discharge electrolysis(CGDE). The results showed that the degradation of α-naphthol obeyed the first-rate law. Some of predominant products were analyzed by a high performance liquid chromatography (HPLC). A path of α-naphthol disappearance caused by plasma was proposed according to the detected intermediate products.展开更多
Carbonate-bearing fluids widely exist in different geological settings,and play important roles in transporting some elements such as the rare earth elements.They may be trapped as large or small fluid inclusions(with...Carbonate-bearing fluids widely exist in different geological settings,and play important roles in transporting some elements such as the rare earth elements.They may be trapped as large or small fluid inclusions(with the size down to<1μm sometimes),and record critical physical-chemical signals for the formations of their host minerals.Spectroscopic methods like Raman spectroscopy and infrared spectroscopy have been proposed as effective methods to quantify the carbonate concentrations of these fluid inclusions.Although they have some great technical advantages over the conventional microthermometry method,there are still some technical difficulties to overcome before they can be routinely used to solve relevant geological problems.The typical limitations include their interlaboratory difference and poor performance on micro fluid inclusions.This study prepared standard ion-distilled water and K_(2)CO_(3)aqueous solutions at different molarities(from 0.5 to 5.5 mol/L),measured densities,collected Raman and infrared spectra,and explored correlations between the K_(2)CO_(3)molarity and the spectroscopic features at ambient P-T conditions.The result confirms that the Raman O-H stretching mode can be used as an internal standard to determine the carbonate concentrations despite some significant differences among the correlations,established in different laboratories,between the relative Raman intensity of the C-O symmetric stretching mode and that of the O-H stretching mode.It further reveals that the interlaboratory difference can be readily removed by performing one high-quality calibration experiment,provided that later quantifying analyses are conducted using the same Raman spectrometer with the same analytical conditions.Our infrared absorption data were collected from thin fluid films(thickness less than~2μm)formed by pressing the prepared solutions in a Microcompression Cell with two diamond-II plates.The data show that both the O-H stretching mode and the O-H bending mode can be used as internal standards to determine the carbonate concentrations.Since the IR signals of the C-O antisymmetric stretching vibration of the CO32ion,and the O-H stretching and bending vibrations from our thin films are very strong,their relative IR absorbance intensity,if well calibrated,can be used to investigate the micron-sized carbonate-bearing aqueous fluid inclusions.This study establishes the first calibration of this kind,which may have some applications.Additionally,our spectroscopic data suggest that as the K_(2)CO_(3)concentration increases the aqueous solution forms more large water molecule clusters via more intense hydrogen-bonding.This process may significantly alter the physical and chemical behavior of the fluids.展开更多
We compared the photochemical reaction of m-cresol containing ·OH precursors such as H2O2, NO2 and NO3 in aqueous solution with those in ice. The results show that the conversion rate of m-cresol in aqueous solut...We compared the photochemical reaction of m-cresol containing ·OH precursors such as H2O2, NO2 and NO3 in aqueous solution with those in ice. The results show that the conversion rate of m-cresol in aqueous solution was higher than that in ice. H2O2, NO2 and NO3 all accelerated the photoconversion of m-cresol in both aqueous solution and ice. The photochemical reactions of m-cresol obeys the first order kinetics equation. According to the photoproducts identified by GC-MS, we proposed that hydroxylation and nitration reactions occurred in both aqueous solution and ice. Coupling reaction was common in ice, however, in aqueous solution it was found only in UV system. Our results suggest that the photochemical reactions of m-cresol were different in aqueous solution and in ice.展开更多
The use of water hyacinth biomass as adsorbent for Cr3+ and Mn2+ ions from aqueous solution by means of batch-adsorption technique was investigated to determine the potential ability of the biomaterial for metal ion...The use of water hyacinth biomass as adsorbent for Cr3+ and Mn2+ ions from aqueous solution by means of batch-adsorption technique was investigated to determine the potential ability of the biomaterial for metal ion removal. The equilibrium isotherm study showed that the maximum monolayer coverage on the biomass surface was 0.933 mg·g-1 and 0.874 mg·g-1 for Mn2+ and Cr3+ ions respectively. The highest percentage of Cr3+ and Mn2+ ions adsorbed by the biomass was 86.4% and 82.6% at the optimum pH of 4.0 and 6.0 respectively. The results also showed that the highest percentage removal 82.5% and 78.3% was obtained at 30 and 20 minutes respectively for Cr3+ and Mn2+ ions. The sorption process was examined by means of the Langmuir model. The adsorption equilibrium data were found to follow the Langmuir isotherm model with high coefficients of determination (R2 = 0.990 and 0.999) for Cr+ and Mn2+ ions respectively. The adsorption capacity of water hyacinth showed that water hyacinth will be useful in recovering chromium (III) and manganese (II) ions from solution and their subsequent removal from industrial effluents.展开更多
基金supported by the National Natural Science Foundation of China(22278289 and 21822808)the Science Foundation for Distinguished Young Scholar of Shanxi Province(202303021223002)the Special Fund for Science and Technology Innovation Teams of Shanxi Province(202204051001009).
文摘The adsorption and separation of diols from dilute aqueous solution using hydrophobic materials is very challenging due to the strong diol-water hydrogen-bonding interactions. Herein, we screened hydrophobic zeolitic imidazolate frameworks(ZIFs) with chabazite(CHA) topology for separation of 2,3-butanediol(2,3-BDO) and 1,3-propanediol(1,3-PDO), which had junctional and hydrophobic traps matching the two end methyl groups of the 2,3-BDO molecule. Based on CHA-ZIFs with the same small-sized ligand 2-methylimidazole(mIm) and different large-sized ligand benzimidazole derivatives(RbIm),CHA-ZIFs with larger surface areas were obtained by the addition of excess small-sized ligand mIm in the synthesis process. We showed that all of the hydrophobic CHA-ZIFs preferentially adsorbed 2,3-BDO over 1,3-PDO by static batch adsorption and dynamic column adsorption experiments. But ZIF-301 and ZIF-300 with halogen groups exhibited better adsorptive separation performance for 2,3-BDO/1,3-PDO than ZIF-302 with methyl groups. For a typical ZIF-301, its adsorption capacity for 2,3-BDO was 116.4 mg·g^(-1)and selectivity for 2,3-BDO/1,3-PDO was 3.8 in dynamic column adsorption of the binary-component system(2,3-BDO/1,3-PDO: 50 g·L^(-1)/50 g·L^(-1)). Computational simulations revealed that 2,3-BDO preferentially adsorbed in a trap at the junction between the cha and d6r cages of CHA-ZIFs,meaning the strong host-guest interactions. Therefore, the hydrophobic CHA-ZIFs with a junctional trap were promising candidate materials for adsorbing 2,3-BDO, which also provided a new perspective for separating diols in dilute aqueous solutions.
基金supported by the National Natural Science Foundation of China(22125802 and 22078010)Beijing Natural Science Foundation(2222017)Big Science Project from BUCT(XK180301)。
文摘A new type of rubidium ion-imprinted polymer has been synthesized by the surface-imprinting technique using methacrylic acid as the functional monomer,the rubidium ion as the template,methanol as the solvent,and silica as a carrier.Ethylene glycol dimethacrylate and 2,2-azobisisobutyronitrile were used as acrosslinker and an initiator,respectively.In addition,based on the macrocyclic effect of crown ethers,the 18-crown-6 ligand was introduced as a ligand to fix the template ions better.Scanning electron microscopy,zeta-potential analysis,Fourier transform infrared spectroscopy,thermogravimetric analysis,and X-ray photoelectron spectroscopy were performed to characterize the ion-imprinted polymer.The effects of the preparation and adsorption conditions on the adsorption performance of the rubidium ion-imprinted polymer were investigated.The results indicated that the rubidium ion-imprinted polymer has high selectivity and faster kinetics than other adsorbents,with an equilibrium adsorption capacity of 200.19 mg·g^(-1)at 298 K within 25 min.The sorption isotherm was well described by the Freundlich isotherm model,while the adsorption kinetics fitted the pseudo-second-order kinetic model.Consecutive adsorption-desorption experiments showed that the ion-imprinted polymer had good chemical stability and reusability.
基金supported by the Key Area Research&Development Program of Guangdong Province(2020B0101070001)the National Natural Science Foundation of China(21978053,51508547)。
文摘Levulinic acid(LA)is one of the top-12 most promising biomass-based platform chemicals,which has a wide range of applications in a variety of fields.However,separation and purification of LA from aqueous solution or actual hydrolysate continues to be a challenge.Among various downstream separation technologies,liquid-liquid extraction is a low-cost,effective,and simple process to separate LA.The key breakthrough lies in the development of extractants with high extraction efficiency,good hydrophobicity,and low cost.In this work,three hydrophobic deep eutectic solvents(DESs)based on tri-n-octylamine(TOA)as hydrogen bond acceptor(HBA)and alcohols(butanol,2-octanol,and menthol)as hydrogen bond donors(HBDs)were developed to extract LA from aqueous solution.The molar ratios of HBD and HBA,extraction temperature,contact time,solution pH,and initial LA concentration,DES/water volume ratios were systematically investigated.Compared with 2-octanol-TOA and menthol-TOA DES,the butanol-TOA DES exhibited the superior extraction performance for LA,with a maximum extraction efficiency of 95.79±1.4%.Moreover,the solution pH had a great impact on the LA extraction efficiency of butanol-TOA(molar ratio=3:1).It is worth noting that the extraction equilibrium time was less than 0.5 h.More importantly,the butanol-TOA(3:1)DES possesses good extraction abilities for low,medium,and high concentrations of LA.
基金supported by National Natural Science Foundation of China (Nos. 12075037 and 22206013)the Natural Science Foundation of Jiangsu Province (No. BK20210857)the Leading Innovative Talents Cultivation Project of Changzhou City (No. CQ20210083)。
文摘Ozone(O_(3)) generated by a dielectric barrier discharge(DBD) is widely used in various industrial processes. In this study, NaCl aqueous solution was used as a novel electric power transmission electrode in a DBD reactor(instead of a traditional metal electrode) for highly efficient ozone generation. The results demonstrated that a high O_(3) yield of 242 g k Wh^(-1) with a concentration of 14.6 g m^(-3)O_(3) was achieved. The power transmission mechanism works because NaCl aqueous solution behaves as a capacitor when an alternating pulse voltage below 8 k Hz is used.Compared with the resistance of the discharge barrier and discharge space, the resistance of NaCl aqueous solution can be ignored, which ensures that O_(3) is generated efficiently. It is expected that O_(3) generation using NaCl aqueous solution as a novel electrode in a DBD reactor could be an alternative technology with good application prospects.
基金Project supported by Publication Foundation of National Science and Technology Academic Books of China
文摘A universal thermodynamic model of calculating mass action concentrations for structural units or ion couples in ternary and binary strong electrolyte aqueous solution was developed based on the ion and molecule coexistence theory and verified in four kinds of binary aqueous solutions and two kinds of ternary aqueous solutions. The calculated mass action concentrations of structural units or ion couples in four binary aqueous solutions and two ternary solutions at 298.15 K have good agreement with the reported activity data from literatures after shifting the standard state and concentration unit. Therefore, the calculated mass action concentrations of structural units or ion couples from the developed universal thermodynamic model for ternary and binary aqueous solutions can be applied to predict reaction ability of components in ternary and binary strong electrolyte aqueous solutions. It is also proved that the assumptions applied in the developed thermodynamic model are correct and reasonable, i.e., strong electrolyte aqueous solution is composed of cations and anions as simple ions, H2O as simple molecule and other hydrous salt compounds as complex molecules. The calculated mass action concentrations of structural units or ion couples in ternary and binary strong electrolyte aqueous solutions strictly follow the mass action law.
基金Project (51264022) supported by the National Natural Science Foundation of China
文摘A novel adsorbent was prepared from granular red mud mixed with cement and its potential to be a suitable adsorbent for the removal of cadmium ions from aqueous solutions was evaluated. The wet red mud was directly mixed up with cement at different mass fractions of 2%-8% and their properties were investigated. Based on the textural characteristics and strength, the granular red mud with 2% addition of cement maintaining for 6 d is identified to have better properties. The batch adsorption experiments for adsorption of Cd2+ ions from solution were performed at 30, 40 and 50 °C at different initial concentrations under the condition of constant pH of 6.5. The equilibrium adsorption was found to increase with the increase of temperature during the adsorption process. Langmuir adsorption isotherm model was found to match the experimental adsorption isotherm better. The kinetics of adsorption was modeled using a pseudo second order kinetic model and the model parameters were estimated.
文摘Cu nanoparticles were prepared by reducing Cu2+ ions with ascorbic acid through aqueous solution reduction method. The effects of solution pH and average size of Cu2O particles on the preparation of Cu nanoparticles were investigated. Cu particles were prepared at pH 3, 5 or 7, with the smallest Cu particles obtained at pH 7. However, Cu particles could not be prepared at pH 9 or 11. The average size of Cu2O particles can affect that of Cu particles. Larger Cu2O particles result in larger Cu particles. In addition, experiments were conducted to explore the reaction process by measuring the X-ray diffraction (XRD) patterns of specimens collected at different time points during the reaction. It was found that Cu(OH)2 was initially formed as a precursor, followed by the formation of Cu2O, which was finally reduced to Cu particles.
文摘The preparation of Cu nanoparticles by the aqueous solution reduction method was investigated. The effects of different reaction parameters on the preparation of Cu nanoparticles were studied. The optimum conditions for preparing well-dispersed nanoparticles were found as follows: 0.4 mol/L NaBH4 was added into solution containing 0.2 mol/L Cu2+, 1.0% gelatin dispersant in mass fraction, and 1.2 mol/L NH3?H2O at pH 12 and 313 K. In addition, a series of experiments were performed to discover the reaction process. NH3?H2O was found to be able to modulate the reaction process. At pH=10, Cu2+ was transformed to Cu(NH3)42+ as precursor after the addition of NH3?H2O, and then Cu(NH3)42+ was reduced by NaBH4 solution. At pH=12, Cu2+ was transformed to Cu(OH)2 as precursor after the addition of NH3?H2O, and Cu(OH)2 was then reduced by NaBH4 solution.
文摘All-atom molecular dynamics (MD) simulation and the NMR spectra are used to investigate the interactions in N-glycylglycine aqueous solution. Different types of atoms exhibit different capability in forming hydrogen bonds by the radial distribution function analysis. Some typical dominant aggregates are found in different types of hydrogen bonds by the statistical hydrogen-bonding network. Moreover, temperature-dependent NMR are used to compare with the results of the MD simulations. The chemical shifts of the three hydrogen atoms all decrease with the temperature increasing which reveals that the hydrogen bonds are dominant in the glycylglycine aqueous solution. And the NMR results show agreement with the MD simulations. All-atom MD simulations and NMR spectra are successful in revealing the structures and interactions in the N-glycylglycine-water mixtures.
文摘All-atom molecular simulations and two-dimensional nuclear overhauser effect spectrum have been used to study the conformations of carnosine in aqueous solution. Intramolecular distances, root-mean-square deviation, radius of gyration, and solvent-accessible surface are used to characterize the properties of the carnosine. Carnosine can shift between extended and folded states, but exists mostly in extended state in water. Its preference for extension in pure water has been proven by the 2D nuclear magnetic resonance (NMR) experiment. The NMR experimental results are consistent with the molecular dynamics simulations.
基金The financial support from National Natural Science Foundation of China(21978096,21861132019,and 21776074)Natural Science Foundation of Shanghai(19ZR1412600)is greatly acknowledged
文摘1,5-Pentanediamine(PDA)produced by biological fermentation becomes popular,but the separation of PDA from the broth is a typical difficult problem.In this work,the performance of 200 ionic liquids(ILs),formed by combining 25 cations and 8 anions,in the extraction of PDA from aqueous solution were evaluated using COSMO-RS model.The extraction mechanism was investigated with the help ofσ-profile and interaction energy analyses.Both the cation and anion have impacts on the extraction efficiency,where cation mainly influences the interaction of IL with PDA and anion affects the hydrophobicity of IL.The IL composed of long alkyl-chain in cation and the anion of[PF6]-or[TF2 N]-,which has theσ-profile more likely distributed in the nonpolar region but less distributed in the polar region,is favorable for extraction.The experimental liquid-liquid equilibrium demonstrated the effects of cation and anion on extraction performance,which validated the reliability of COSMO-RS model in IL screening for PDA extraction.The IL[IM-1,8][PF6]could serve as a promising extractant for the downstream separation process of the biological production of PDA.
基金supported by the National Natural Science Foundation of China (40673043 and 20576073)the Program for New Century Excellent Talents in University of Ministry of Education of China (NCET-06-0088)
文摘Ionic liquids (ILs) have been regarded as the potential novel solvents for improved analytical- and process-scale separation methods.The development of methods for the recovery of ILs from aqueous solutions to escape contamination and recycle samples will ultimately govern the viability of ILs in the future industrial applications. Therefore, in this paper a new method for separation of ILs from their dilute aqueous solutions and simultaneously purification of water was proposed on the basis of the CO2 hydrate formation. For illustration, the dilute aqueous solutions with concentrations of ILs ranging from 2× 10^-3 mol% to 2×10^-1 mol% were concentrated. The results show that the separation efficiency is very impressive and that the new method is applicable to aqueous solutions of both hydrophobic and hydrophilic ILs. Compared to the literature separation method based on the supercritical CO2, the new method is applicable to lower concentrations, and more importantly, its operation condition is mild.
基金Deanship of Scientific Research(DSR)at King Saud University(KSU),Saudi Arabia for financially supporting this research project(No.RG-1435-078)。
文摘Coal fly ash(CFA)is composed of minerals containing some oxides in crystalline phase(i.e.,quartz and mullite),as well as unburned carbon as mesoporous material,thus enabling CFA to act as a dual-sites adsorbent with unique properties.This work focused on the adsorption of Pb(Ⅱ)and Zn(Ⅱ)from binary system,a mixture containing two metal ion solutions present simultaneously,onto NaOH-modified CFA(MCFA).Several adsorption tests were conducted to evaluate the effect of several parameters,including pH and contact times.The experiment results indicated that chemical treatment of CFA with NaOH increased pore volume from 0.021 to 0.223 cm^3·g^(-1).In addition,it could also enhance the availability of functional groups on both minerals and unburned carbon,resulting in almost 100%Pb(Ⅱ)and 97%Zn(Ⅱ)adsorbed.The optimum pH for adsorption system was pH=3 and quasi-equilibrium occurred in 240 minutes.Equilibrium data from the experimental results were analyzed using Modified Extended Langmuir(MEL)and Competitive Adsorption Langmuir-Langmuir(CALL)isotherm models.The analysis results showed that the CALL isotherm model could better describe the Pb(Ⅱ)and Zn(Ⅱ)adsorption process onto MCFA in binary system compared with MEL isotherm model.
基金Supported by the National Natural Science Foundation of China (No. 29976035)the Natural Science Foundation of Zhejiang Provincial (No. RC01051).
文摘1H NMR chemical shifts of binary aqueous mixtures of acylamide, alcohol, dimethyl sulphoxide (DMSO), and acetone are correlated by statistical associating fluid theory (SAFT) association model. The comparison between SAPT association model and Wilson equation shows that the former is better for dealing with aqueous solutions. Finally, the specialties of both models are discussed.
基金This work was financially supported by the National Natural Science Foundation of China (Nos. 50301009 and 50171039)the Education Development Foundation of Shanghai (No. 03AK24)
文摘To investigate the degradation of corrosion resistance of Zircaloy-4 in LiOHaqueous solution, SIMS (secondary ion mass spectrometry) analysis was performed to examine theprofiles of Li^+, K^+, and OH^- in oxide layers formed in the same concentration (0.1 mol/L) LiOHand KOH solutions. Even though the oxide layers have an equal thickness, the pene-tration depth ofK^+ is shallower than that of Li^+, and the penetration depth of OH^- corroded in KOH solution isalso shal-ower than that corroded in LiOH solution. It shows that the diffusion of OH^- into oxidelayer is accompanied by the corresponding cation. The difference of degradation effect of LiOH andKOH solutions on the corrosion resistance of Zircaloy-4 was discussed.
文摘Chemical effects in different aqueous solutions induced by plasma with glow discharge electrolysis (GDE) and contact glow discharge electrolysis (CGDE) are described in this paper. The experimental and discharge characteristics are also reviewed. These are followed by a discussion of their mechanisms of both anodic and cathodic CGDE..
基金a grant from the Science and Technology Key Project of Education Ministry, China and KJCX-01 of Northwest Normal University, Chi
文摘Degradation of α-naphthol induced by plasma in aqueous solution was investigated in different initial concentration with contact glow discharge electrolysis(CGDE). The results showed that the degradation of α-naphthol obeyed the first-rate law. Some of predominant products were analyzed by a high performance liquid chromatography (HPLC). A path of α-naphthol disappearance caused by plasma was proposed according to the detected intermediate products.
基金the DREAM project of MOST,China(Grant No.2016YFC0600408)the Strategic Priority Research Program(B)of Chinese Academy of Sciences(Grant No.XDB18000000)the Program of the National Mineral Rock and Fossil Specimens Resource Center from MOST,China.
文摘Carbonate-bearing fluids widely exist in different geological settings,and play important roles in transporting some elements such as the rare earth elements.They may be trapped as large or small fluid inclusions(with the size down to<1μm sometimes),and record critical physical-chemical signals for the formations of their host minerals.Spectroscopic methods like Raman spectroscopy and infrared spectroscopy have been proposed as effective methods to quantify the carbonate concentrations of these fluid inclusions.Although they have some great technical advantages over the conventional microthermometry method,there are still some technical difficulties to overcome before they can be routinely used to solve relevant geological problems.The typical limitations include their interlaboratory difference and poor performance on micro fluid inclusions.This study prepared standard ion-distilled water and K_(2)CO_(3)aqueous solutions at different molarities(from 0.5 to 5.5 mol/L),measured densities,collected Raman and infrared spectra,and explored correlations between the K_(2)CO_(3)molarity and the spectroscopic features at ambient P-T conditions.The result confirms that the Raman O-H stretching mode can be used as an internal standard to determine the carbonate concentrations despite some significant differences among the correlations,established in different laboratories,between the relative Raman intensity of the C-O symmetric stretching mode and that of the O-H stretching mode.It further reveals that the interlaboratory difference can be readily removed by performing one high-quality calibration experiment,provided that later quantifying analyses are conducted using the same Raman spectrometer with the same analytical conditions.Our infrared absorption data were collected from thin fluid films(thickness less than~2μm)formed by pressing the prepared solutions in a Microcompression Cell with two diamond-II plates.The data show that both the O-H stretching mode and the O-H bending mode can be used as internal standards to determine the carbonate concentrations.Since the IR signals of the C-O antisymmetric stretching vibration of the CO32ion,and the O-H stretching and bending vibrations from our thin films are very strong,their relative IR absorbance intensity,if well calibrated,can be used to investigate the micron-sized carbonate-bearing aqueous fluid inclusions.This study establishes the first calibration of this kind,which may have some applications.Additionally,our spectroscopic data suggest that as the K_(2)CO_(3)concentration increases the aqueous solution forms more large water molecule clusters via more intense hydrogen-bonding.This process may significantly alter the physical and chemical behavior of the fluids.
基金Supported by the National Natural Science Foundation of China(Nos.20577014 and 41073063)
文摘We compared the photochemical reaction of m-cresol containing ·OH precursors such as H2O2, NO2 and NO3 in aqueous solution with those in ice. The results show that the conversion rate of m-cresol in aqueous solution was higher than that in ice. H2O2, NO2 and NO3 all accelerated the photoconversion of m-cresol in both aqueous solution and ice. The photochemical reactions of m-cresol obeys the first order kinetics equation. According to the photoproducts identified by GC-MS, we proposed that hydroxylation and nitration reactions occurred in both aqueous solution and ice. Coupling reaction was common in ice, however, in aqueous solution it was found only in UV system. Our results suggest that the photochemical reactions of m-cresol were different in aqueous solution and in ice.
文摘The use of water hyacinth biomass as adsorbent for Cr3+ and Mn2+ ions from aqueous solution by means of batch-adsorption technique was investigated to determine the potential ability of the biomaterial for metal ion removal. The equilibrium isotherm study showed that the maximum monolayer coverage on the biomass surface was 0.933 mg·g-1 and 0.874 mg·g-1 for Mn2+ and Cr3+ ions respectively. The highest percentage of Cr3+ and Mn2+ ions adsorbed by the biomass was 86.4% and 82.6% at the optimum pH of 4.0 and 6.0 respectively. The results also showed that the highest percentage removal 82.5% and 78.3% was obtained at 30 and 20 minutes respectively for Cr3+ and Mn2+ ions. The sorption process was examined by means of the Langmuir model. The adsorption equilibrium data were found to follow the Langmuir isotherm model with high coefficients of determination (R2 = 0.990 and 0.999) for Cr+ and Mn2+ ions respectively. The adsorption capacity of water hyacinth showed that water hyacinth will be useful in recovering chromium (III) and manganese (II) ions from solution and their subsequent removal from industrial effluents.