期刊文献+
共找到1,233篇文章
< 1 2 62 >
每页显示 20 50 100
Effect of mesopore spatial distribution of HZSM-5 catalyst on zinc state and product distribution in 1-hexene aromatization
1
作者 Chenhao Wei Di Gao +3 位作者 Guohao Zhang Liang Zhao Jinsen Gao Chunming Xu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第3期16-26,共11页
1-hexene aromatization is a promising technology to convert excess olefin in fluid catalytic cracking(FCC)gasoline to high-value benzene(B),toluene(T),and xylene.Besides,the increasing market demand of xylene has put ... 1-hexene aromatization is a promising technology to convert excess olefin in fluid catalytic cracking(FCC)gasoline to high-value benzene(B),toluene(T),and xylene.Besides,the increasing market demand of xylene has put forward higher requirements for new generation of catalyst.For increasing xylene yield in 1-hexene aromatization,the effect of mesopore structure and spatial distribution on product distribution and Zn loading was studied.Catalysts with different mesopore spatial distribution were prepared by post-treatment of parent HZSM-5 zeolite,including NaOH treatment,tetra-propylammonium hydroxide(TPAOH)treatment,and recrystallization.It was found the evenly distributed mesopore mainly prolongs the catalyst lifetime by enhancing diffusion properties but reduces the aromatics selectivity,as a result of damage of micropores close to the catalyst surface.While the selectivity of high-value xylene can be highly promoted when the mesopore is mainly distributed interior the catalyst.Besides,the state of loaded Zn was also affected by mesopores spatial distribution.On the optimized catalyst,the xylene selectivity was enhanced by 12.4%compared with conventional Zn-loaded parent HZSM-5 catalyst at conversion over 99%.It was attributed to the synergy effect of mesopores spatial distribution and optimized acid properties.This work reveals the role of mesopores in different spatial positions of 1-hexene aromatization catalysts in the reaction process and the influence on metal distribution,as well as their synergistic effect two on the improvement of xylene selectivity,which can improve our understanding of catalyst pore structure and be helpful for the rational design of high-efficient catalyst. 展开更多
关键词 1-Hexene aromatization Alkali treatment Xylene selectivity MESOPORES Zinc state
下载PDF
Extend ethylene aromatization single-event kinetic modeling with physical and chemical descriptor based on ZSM-5 catalyst
2
作者 Jia-Rong Xie Fang Jin 《Petroleum Science》 SCIE EI CAS CSCD 2023年第6期3841-3853,共13页
The ethylene aromatization is critical for the methanol to aromatics and light alkane dehydroaromatization process.The single-event microkinetic(SEMK)model combining the linear free energy theory and solid acid distri... The ethylene aromatization is critical for the methanol to aromatics and light alkane dehydroaromatization process.The single-event microkinetic(SEMK)model combining the linear free energy theory and solid acid distribution concept were established and extend for the ethylene aromatization process,which can reduce the kinetic parameters and simplify the reaction network by comparison with the SEMK model including subtype elementary steps based on the type of carbenium ions.Further introducing deactivation parametersφinto the model and applying the linear free energy model to the deactivation experimental data,the obtained deactivation parametersφindicate that the carbon deposition precursors have the greatest impact on reducing the reaction rate of single-molecular reactions and the smallest impact on the hydrogen transfer reaction.Meanwhile,according to the change of reaction enthalpy,effect of carbenium ion structure on methylation,ethylation,cyclization and endo-βscission was investigated by introducing linear free energy concept into the SEMK model.The effect of different acid strengths on elementary steps was investigated based on the acid strength distribution model,it was found that the methylation and oligomerization reactions,the ali-βscission reaction,endo-βscission reaction and the cyclization reaction were more sensitive to strong acidity sites.The physisorption and chemisorption heat are separated from the protonation heat in the linear free energy kinetic model and the acid strength distribution kinetic model,and the absolute values of the obtained physisorption and chemisorption heat increase with the carbon number of carbenium ions.Furthermore,the parameters of the acid strength distribution kinetic model were applied to propane dehydroaromatization on H-ZSM-5 and the ethane dehydroaromatization on Zn/ZSM-5 to confirm the independence of parameters in the SEMK model with the similar reaction network. 展开更多
关键词 Kinetic model Ethylene aromatization Acid strength distribution Linear free energy theory
下载PDF
Intensified shape selectivity and alkylation reaction for the two-step conversion of methanol aromatization to p-xylene
3
作者 Tingjun Fu Ran Wang +2 位作者 Kun Ren Liangliang Zhang Zhong Li 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第7期240-250,共11页
Two-step conversion of methanol to aromatics via light hydrocarbons can significantly improve the conversion stability compared with direct aromatization of methanol,but it remains a challenge to achieve a high p-xyle... Two-step conversion of methanol to aromatics via light hydrocarbons can significantly improve the conversion stability compared with direct aromatization of methanol,but it remains a challenge to achieve a high p-xylene(PX)selectivity.Herein,silica coating was firstly used to passivate external acid sites of ZSM-5 catalyst for the aromatization of light hydrocarbons by the chemical liquid deposition method.With the increase of SiO_(2) deposition,the density of the external acid sites of the catalyst was decreased from 0.1 to 0.03 mmol·g^(-1),which inhibited the surface secondary reactions and increased the PX/X from 34.6% to 60.0%.In view of the fact that the aromatization process in the second step was partly inhibited as methanol was consumed in advance in the upper methanol-to-light hydrocarbons catalyst layer,part of methanol was directly introduced into the lower aromatization catalyst layer to promote the alkylation process during the aromatization,which decreased the toluene selectivity from 34.5% to 14.3% but increased the xylene selectivity from 40.0%to 55.3%.It was also found that an appropriate external acid density was needed for aromatization catalyst to strengthen the alkylation process and improve the selectivity of xylene under the conditions of methanol introduction. 展开更多
关键词 Methanol to aromatics Two-step conversion PARA-XYLENE Zeolite Silica Catalysis
下载PDF
Preparation of Zn-modified nano-ZSM-5 zeolite and its catalytic performance in aromatization of 1-hexene 被引量:6
4
作者 王高亮 吴伟 +4 位作者 昝望 白雪峰 王文静 戚鑫 O.V.KIKHTYANIN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第5期1580-1586,共7页
The promoting effect of introducing Zn into nano-ZSM-5 zeolites by conventional impregnation method and isomorphous substitution on the performance of 1-hexene aromatization was investigated. The nano-ZSM-5 zeolite wa... The promoting effect of introducing Zn into nano-ZSM-5 zeolites by conventional impregnation method and isomorphous substitution on the performance of 1-hexene aromatization was investigated. The nano-ZSM-5 zeolite was synthesized by a seed-induced method without organic templates. The Zn-modified nano-ZSM-5 zeolite catalysts, xZ n/HNZ5 and y Zn/Al-HNZ5, were prepared by the conventional impregnation method and isomorphous substitution, respectively. The structure, chemical composition and acidity of the catalysts were characterized by XRD, XRF, N2 adsorption, SEM, NH3-TPD and Py-IR, while the catalytic properties were evaluated at 480 °C and a weight hourly space velocity(WHSV) of 2.0 h-1 in the aromatization procedure of 1-hexene. Compared with xZ n/HNZ5, y Zn/Al-HNZ5 exhibited smaller particles and higher dispersion of Zn species, which led to greater intergranular mesopore and homogeneous acidity distribution. Experimental results indicated that the synergy effect between the Brnsted and Lewis acid sites of the isomorphously substituted nano-ZSM-5 zeolites could significantly increase aromatics yield and improve catalytic stability in the 1-hexene aromatization. 展开更多
关键词 nano-ZSM-5 zeolite Zn-modification catalytic performance isomorphous substitution aromatization
下载PDF
Iron(Ⅲ) phthalocyanine chloride-catalyzed oxidation–aromatization of α,β-unsaturated ketones with hydrazine hydrate: Synthesis of 3,5-disubstituted 1H-pyrazoles 被引量:4
5
作者 赵军龙 邱骏 +2 位作者 苟小锋 花成文 陈邦 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第4期571-578,共8页
We have developed an iron(III) phthalocyanine chloride‐catalyzed oxidation–aromatization ofα,β‐unsaturated ketones with hydrazine hydrate. Various 3,5‐disubstituted 1H‐pyrazoles were obtained in good to excel... We have developed an iron(III) phthalocyanine chloride‐catalyzed oxidation–aromatization ofα,β‐unsaturated ketones with hydrazine hydrate. Various 3,5‐disubstituted 1H‐pyrazoles were obtained in good to excellent yields. This method offers several advantages, including room‐tem‐perature conditions, short reaction time, high yields, simple work‐up procedure, and use of air as an oxidant. The catalyst can be recovered and reused five times without loss of activity. 展开更多
关键词 Iron(III) phthalocyanine chloride aromatization Pyrazole Michael addition Recyclable catalyst Green chemistry
下载PDF
Aromatization of Methanol over La/Zn/HZSM-5 Catalysts 被引量:13
6
作者 倪友明 孙爱明 +3 位作者 吴小岭 胡江林 李涛 李光兴 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2011年第3期439-445,共7页
Aromatization of methanol over co-impregnated La/Zn/HZSM-5 zeolite catalyst was studied.The selectivity of aromatics and BTX(benzene,toluene,and xylene)reached 64.0%and 56.6%,respectively,using La/Zn/HZSM-5 at 437... Aromatization of methanol over co-impregnated La/Zn/HZSM-5 zeolite catalyst was studied.The selectivity of aromatics and BTX(benzene,toluene,and xylene)reached 64.0%and 56.6%,respectively,using La/Zn/HZSM-5 at 437°C,0.1 MPa and methanol WHSV(weight hourly space velocity)=0.8 h-1.Catalytic results showed that the La species was a very good promoter,increased selectivity of aromatics,and prolonged the catalyst lifetime on stream.The effects of the SiO2/Al2O3 ratio in zeolite,Zn and La loading,WHSV,reaction temperature, water content in the feed and H2 pretreatment of catalysts on the catalytic performance were studied in detail. Characterizations of the catalysts by thermogravimetric analysis(TGA),NH3-TPD(temperature programmed desorption),SEM(scanning electron micrograph),N2 adsorption-desorption,XRD(X-ray diffraction)and XRF (X-ray fluorescence),were carried out to understand the structure and discuss the aromatization performance of La/Zn/HZSM-5 zeolite catalyst. 展开更多
关键词 METHANOL aromatization LA ZN ZSM-5
下载PDF
Coking kinetics and influence of reaction-regeneration on acidity, activity and deactivation of Zn/HZSM-5 catalyst during methanol aromatization 被引量:13
7
作者 Guiquan Zhang Xin Zhang +2 位作者 Ting Bai Tengfei Chen Wentao Fan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2015年第1期108-118,共11页
The coking kinetics and reaction-regeneration on Zn/HZSM-5 (Zn/HZ) catalyst in the conversion of methanol to aromatics were investigated. The highest initial benzene, toluene and xylene (BTX) yield of ca. 67.7% wa... The coking kinetics and reaction-regeneration on Zn/HZSM-5 (Zn/HZ) catalyst in the conversion of methanol to aromatics were investigated. The highest initial benzene, toluene and xylene (BTX) yield of ca. 67.7% was obtained on fresh Zn/HZ catalyst, which showed the worst catalytic stability. The cycle of reaction-regeneration significantly modified the texture and acidity of Zn/HZ catalyst, which in turn affected its catalytic performance and coking behavior in methanol conversion to BTX. The residual carbon located on the surface of Zn/HZ catalyst led to the decrease of acid sites and the change on the acid sites distribution, which played an important roles on its activity and deactivation. It was found that the high B/L ratio and the low total acid sites concentration of the Zn/HZ catalyst favored to the high BTX yield and good catalytic stability in methanol conversion. 展开更多
关键词 METHANOL aromatization reaction-regeneration ACIDITY DEACTIVATION
下载PDF
Aromatization over nanosized Ga-containing ZSM-5 zeolites prepared by different methods:Effect of acidity of active Ga species on the catalytic performance 被引量:10
8
作者 Yujun Fang Xiaofang Su +4 位作者 Xuefeng Bai Wei Wu Gaoliang Wang Linfei Xiao Anran Yu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第4期768-775,共8页
Nanosized Ga-containing ZSM-5 zeolites were prepared via isomorphous substitution and impregnation followed by characterized using various techniques. The catalytic performance of the zeolites for the aromatization of... Nanosized Ga-containing ZSM-5 zeolites were prepared via isomorphous substitution and impregnation followed by characterized using various techniques. The catalytic performance of the zeolites for the aromatization of 1-hexene was investigated. The results indicate that isomorphous substitution promotes the incorporation of Ga heteroatoms into the framework along with the formation of extra-framework GaO;species([GaO;]a) that have stronger interactions with the negative potential of the framework. In addition, based on the Py-IR results and catalytic performance, the [GaO;]aspecies with stronger Lewis acid sites produced a better synergism with moderate Br?nsted acid sites and thus improved the selectivity to aromatic compounds. However, the impregnation results in the formation of Ga;O;phase and small amounts of GaO;species that are mainly located on the external surface([GaO;];), which contribute to weaker Lewis acid sites due to weaker interactions with the zeolite framework. During 1-hexene aromatization, the nanosized Ga isomorphously substituted ZSM-5 zeolite samples(Gax-NZ5) exhibited better catalytic performance compared to the impregnated samples, and the highest aromatic yield(i.e.,65.4 wt%) was achieved over the Ga4.2-NZ5 sample, which contained with the highest Ga content. 展开更多
关键词 Nanosized ZSM-5 zeolite Isomorphous substitution IMPREGNATION Active gallium species aromatization
下载PDF
Methane aromatization in the absence of oxygen over extruded and molded MoO_3/ZSM-5 catalysts:Influences of binder and molding method 被引量:8
9
作者 Dongmei Ren Xiangsheng Wang +3 位作者 Gang Li Xiaojing Cheng Huayun Long Lidong Chen 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2010年第6期646-652,共7页
The influences of binder and molding method on the catalytic performance of methane aromatization in the absence of O2 over MoO3/ZSM-5 catalysts were investigated.SEM,NH3-TPD,FT-IR of adsorbed pyridine,N2 adsorption-d... The influences of binder and molding method on the catalytic performance of methane aromatization in the absence of O2 over MoO3/ZSM-5 catalysts were investigated.SEM,NH3-TPD,FT-IR of adsorbed pyridine,N2 adsorption-desorption,cyclohexane adsorption and XPS were employed to characterize the physical and chemical properties of the catalysts.It was found that SiO2 was a suitable binder for the catalyst due to its appropriate weak acidity.The laminar catalyst comprising of an inert spherical core and a MoO3/ZSM-5 laminar shell with 0.1 0.2 mm in thickness showed a better catalytic performance than the extruded catalyst.The improved activity of the laminar catalyst could be attributed to the easy carbonization of Mo species and the quick removal of reaction products from the catalyst surface. 展开更多
关键词 methane aromatization extruded catalyst laminar catalyst ZSM-5 molybdenum
下载PDF
Promoted effect of zinc–nickel bimetallic oxides supported on HZSM-5 catalysts in aromatization of methanol 被引量:8
10
作者 Yanming Jia Junwen Wang +4 位作者 Kan Zhang Wei Feng Shibin Liu Chuanmin Ding Ping Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第3期540-548,共9页
Zn/ZSM-5(NZ2) and Zn/Ni/ZSM-5(NZ3) as the catalysts for methanol to aromatics(MTA) were synthesized by a simple ultrasonic impregnation. The textural and acid properties of all catalysts were characterized using... Zn/ZSM-5(NZ2) and Zn/Ni/ZSM-5(NZ3) as the catalysts for methanol to aromatics(MTA) were synthesized by a simple ultrasonic impregnation. The textural and acid properties of all catalysts were characterized using XRD, HRTEM, NH;-TPD, Py-IR, XPS, XRF and TG techniques. The XRD and HRTEM results showed that the basic zeolite structures were not affected much with the incorporation of Zn and Ni species. However, great changes have taken place in acid properties. The Py-IR and XPS results indicated that the Zn-Lewis acid sites(ZnOH;species), which have stronger interaction with the zeolite framework compared with ZnO species, were generated at the expense of B acid sites with the incorporation of zinc species. Moreover, the product analysis results showed that the incorporation of zinc species promoted the primary aromatization by enhancing the dehydroaromatization and suppressing the cracking and subsequent H-transfer reaction. Furthermore, the addition of Ni species well inhibited the loss of zinc species by converting partial ZnO species to ZnOH;species, and thus improved the aromatization activity and catalyst stability. The catalytic performance results showed that the NZ3 possess higher conversion of methanol in a longer time and lower average rate of coke formation compared with NZ2. In addition,the NZ3 also exhibited the highest yield of BTX as the reaction proceeds. 展开更多
关键词 Zn/Ni/ZSM-5 Acid properties METHANOL aromatization
下载PDF
Non-Oxidative Aromatization of CH4-C_3H_8 over La-Promoted Zn/HZSM-5 Catalysts 被引量:4
11
作者 Lihe Zheng Dong Xuan Jianjun Guo Hui Lou Xiaoming Zheng 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2006年第1期52-57,共6页
The non-oxidative aromatization of mixed CH4 with C3H8 over La-promoted Zn/HZSM-5 catalysts was studied in a fixed-bed reactor at 823 K with space velocity 600 h^-1 and CH4/C3H8 (mol ratio)=5:l. The propane convers... The non-oxidative aromatization of mixed CH4 with C3H8 over La-promoted Zn/HZSM-5 catalysts was studied in a fixed-bed reactor at 823 K with space velocity 600 h^-1 and CH4/C3H8 (mol ratio)=5:l. The propane conversion and the aromatic selectivities were up to 99% and 60% over the catalyst respectively, while methane conversion had an induction period with the highest conversion of 30%. The structure and surface acidity of the catalysts were characterized by XRD, NH3-TPD and TG-DTA. The influences of reaction and regenerative conditions on the activity and selectivity were also investigated. 展开更多
关键词 aromatization METHANE PROPANE regeneration LA Zn HZSM-5
下载PDF
Non-oxidative aromatization of C1 to C3 hydrocarbons over Pd-promoted Ga/HZSM-5 catalyst under mild conditions 被引量:4
12
作者 Xiao Chun Shen Hui Lou Kai Hu Xiao Ming Zheng 《Chinese Chemical Letters》 SCIE CAS CSCD 2007年第4期479-482,共4页
The Pd-promoted Ga/HZSM-5 catalyst was prepared by impregnation method and its catalytic activity for non-oxidative aromatization of C1 to C3 hydrocarbons was assessed using a microreactor-GC system operated with temp... The Pd-promoted Ga/HZSM-5 catalyst was prepared by impregnation method and its catalytic activity for non-oxidative aromatization of C1 to C3 hydrocarbons was assessed using a microreactor-GC system operated with temperature at 823 K and space velocity at 410 h-1. The catalyst is more catalytically active for methane conversion than Ga/HZSM-5. The mass spectroscopy analyses confirmed that 13CH4 was converted to aromatic products. 展开更多
关键词 aromatization Methane PROPANE LOW-TEMPERATURE ISOTOPE
下载PDF
Pt supported on Zn modified silicalite-1 zeolite as a catalyst for n-hexane aromatization 被引量:2
13
作者 Guodong Liu Jiaxu Liu +3 位作者 Ning He Shishan Sheng Guiru Wang Hongchen Guo 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第7期96-103,共8页
Platinum(Pt)supported on Zinc(Zn)modified silicalite-1(S-1)zeolite(denoted as Pt-Zn/S-1)was prepared by using a wetness-impregnation method and applied in the n-hexane aromatization reaction for the first time.Both Le... Platinum(Pt)supported on Zinc(Zn)modified silicalite-1(S-1)zeolite(denoted as Pt-Zn/S-1)was prepared by using a wetness-impregnation method and applied in the n-hexane aromatization reaction for the first time.Both Lewis and Bronsted acid sites were detected in Pt-Zn/S-1 catalyst by means of FT-IR adsorption of NH3 experiment,which were identified as mostly weak and medium ones.Besides,Pt and Zn species showed strong interaction,as revealed by the TPR(Temperature-programmed reduction)and XPS(X-ray photoelectron spectroscopy)experiments.Pt-Zn/S-1 catalyst exhibited excellent aromatization function rather than isomerization and cracking side reactions in the conversion of n-hexane.Pulse experimental study showed that 75.6%of n-hexane conversion and 76.8%of benzene selectivity were obtained over Pt0.1-Zn60/S-l catalyst at 550℃ and under atmospheric pressure.By spectroscopy tests and pulse experimental results,it was concluded that the n-hexane aromatization over Pt-Zn/S-1 catalyst follows a metal-acid bifunctional mechanism.Furthermore,with the assistance of Zn,the electron-deficient Pt species in Pt-Zn/S-1 showed good sulfur tolerance performance. 展开更多
关键词 SILICALITE-1 ZEOLITE Pt-Zn/Silicalite-1 N-HEXANE aromatization Sulfur-resistance
下载PDF
The study of methanol aromatization on transition metal modified ZSM-5 catalyst 被引量:2
14
作者 Keming Ji Jiayao Xun +4 位作者 Ping Liu Qingwen Song Junhua Gao Kan Zhang Jingyuan Li 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2018年第9期1949-1953,共5页
In this article, transition metals of Cu, La and Zn were used as adjuvant to prepare modified HZSM-5 by impregnation method. The catalysts were characterized by XRD, BET, NH_3-TPD and Py-IR to reveal the microstructur... In this article, transition metals of Cu, La and Zn were used as adjuvant to prepare modified HZSM-5 by impregnation method. The catalysts were characterized by XRD, BET, NH_3-TPD and Py-IR to reveal the microstructure and acid property. The catalysis performances of methanol aromatization of catalysts were investigated in a fixed-bed reactor. The results show that the strength and distribution of acid center of these catalysts are significantly influenced by the species of transition metal. There are more mediate strong Lewis acid center in Zn modified HZSM-5 catalyst and therefore exhibits higher selectivity to aromatic, benzene, toluene and xylenes in the MTA reaction.. 展开更多
关键词 aromatization ZSM-5 Metal modified
下载PDF
Co-feeding with DME:An effective way to enhance gasoline production via low temperature aromatization of LPG 被引量:1
15
作者 Xiangxue Zhu Yuzhong Wang +9 位作者 Xiujie Li Hongbing Li Peng Zeng Jie An Fucun Chen Sujuan Xie Hongping Lan Dawei Wang Shenglin Liu Longya Xu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2013年第5期755-760,共6页
The aromatization of light alkenes in liquefied petroleum gas (LPG) with and without dimethyl ether (DME) addition in the feed was investigated on a modified ZSM-5 catalyst.The results showed that under the given reac... The aromatization of light alkenes in liquefied petroleum gas (LPG) with and without dimethyl ether (DME) addition in the feed was investigated on a modified ZSM-5 catalyst.The results showed that under the given reaction conditions the selectivity of alkenes to high-octane gasoline blending components was markedly enhanced and the formation of propane and butanes was greatly suppressed with the addition of DME.It was also found that the distribution of C5+ components was changed a lot with DME addition into the LPG feed.The formation of branched hydrocarbons (mainly C6 C8 i-paraffin) and multi-methyl substituted aromatics,which are high octane number gasoline blending components,was promoted significantly,while the content of n-paraffins and olefins in C5+ components was decreased obviously,indicating that in addition to the oligomerization,cracking,hydrogen-transfer and dehydrogenation-cyclization of alkenes,the methylation of the formed aromatics and olefins intermediates also plays an important role in determining the product distribution due to the high reactivity of surface methoxy groups formed by DME.And this process,in combination with the syngas-to-methanol/DME technology,provides an alternative way to the production of high-octane gasoline from coal,natural gas or renewable raw materials. 展开更多
关键词 aromatization gasoline ALKENE BUTENE dimethyl ether co-feeding ZSM-5
下载PDF
Studies on Mo/HZSM-5 Complex Catalyst for Methane Aromatization 被引量:1
16
作者 Qun Dong Xiaofei Zhao +1 位作者 Jian Wang M.Ichikawa 《Journal of Natural Gas Chemistry》 CAS CSCD 2004年第1期36-40,共5页
The influence of adding Fe, Cr, Co, and Ga into 3%Mo/HZSM-5 catalyst on methane aromatization, and the influence of additives ratio on methane conversion, selectivity to hydrocarbons and coke, as well as distribution ... The influence of adding Fe, Cr, Co, and Ga into 3%Mo/HZSM-5 catalyst on methane aromatization, and the influence of additives ratio on methane conversion, selectivity to hydrocarbons and coke, as well as distribution of aromatics were investigated. The experimental results showed that the addition of Fe, Cr, Co and Ga promoted the dehydrogenation and dissociation of methane. The results of NH3-TPD indicated that the acidity of HZSM-5 was changed by adding Fe and Co components, consequently the catalytic properties of Mo/HZSM-5 were changed. It was also revealed that strong acid sites were the center of methane aromatization. The results of XRD characterization showed that the crystallinity of Mo on ZSM-5 zeolite was increased after adding Fe, Co additives. 展开更多
关键词 METHANE aromatization BENZENE HZSM-5 zeolite Fe GA CR Co
下载PDF
Aromatization and isomerization of methylcyclohexane over Ni catalysts supported on different supports 被引量:1
17
作者 Ye Song Wei Lin +4 位作者 Xingcui Guo Linlin Dong Xindong Mu Huiping Tian Lei Wang 《Green Energy & Environment》 SCIE CSCD 2019年第1期75-82,共8页
In this work, nickel metal supported on different supports(SiO_2, Al_2O_3, ZSM-5) were prepared by spraying nickel nitrate on the supports and calcined at 873 K. Then, they were characterized by XRD, XRF, N_2 adsorpt... In this work, nickel metal supported on different supports(SiO_2, Al_2O_3, ZSM-5) were prepared by spraying nickel nitrate on the supports and calcined at 873 K. Then, they were characterized by XRD, XRF, N_2 adsorption–desorption, NH_3-TPD, MCH-TPD, H_2-TPR, and pyridine-FTIR,and tested as catalysts for the dehydrogenation aromatization and isomerization of methylcyclohexane(MCH) under the conditions of S-Zorb catalytic adsorption desulfurization(T ? 673 K, P ? 1.5 MPa, WHSV ? 5 h^(-1)). The H2-TPR results showed that the interaction of NiO with support decreased in the order of NiO/ZSM-5-Fe < NiO/ZSM-5 < NiO/Al_2O_3< NiO/SiO2. The decrease of the interaction appeared to facilitate the reduction of Ni and therefore to promote the dehydrogenation aromatization of MCH.It was found that a direct correlation existed between the gasoline components yields, cracking activity and the total number of different supports acid sites measured by NH_3-TPD tests. Higher total acidity of ZSM-5 resulted in gasoline loss because of higher cracking activity of MCH. The number of total acid sites of NiO/ZSM-5-Fe decreased and the medium strong Br€onsted acid sites necessary for MCH isomerization increased after the modification of ZSM-5 by iron metal. So, NiO/ZSM-5-Fe exhibited enhanced MCH conversion, aromatic and isomerization yields when compared to NiO/ZSM-5 and other Ni-based catalysts. This study shows that NiO/ZSM-5-Fe catalyst may be possible to be integrated into the S-Zorb system achieving the recovery of the octane number of gasoline. 展开更多
关键词 Modified ZSM-5 METHYLCYCLOHEXANE aromatization OCTANE number
下载PDF
Estimation on Global Reaction Heat for the Aromatization Process of Liquefied Petroleum Gas 被引量:1
18
作者 黎小辉 朱建华 郝代军 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2013年第8期906-913,共8页
The reaction heat effect analysis for the aromatization process of Liquefied Petroleum Gas (LPG) was completed in this paper. In order to characterize this complex reaction system, one set of independent reactions was... The reaction heat effect analysis for the aromatization process of Liquefied Petroleum Gas (LPG) was completed in this paper. In order to characterize this complex reaction system, one set of independent reactions was determined by means of atomic coefficient matrix method. Based on reaction thermodynamic and stoichiometric knowledge, the heat effect, Gibbs free energy change and equilibrium constant for each independent reaction was calculated for the specified conditions. Under these conditions, based on the initial and final composition data from LPG aromatization experiments, the actual extent of reaction for each independent reaction was determined. Furthermore, the global reaction heat and adiabatic temperature rise of LPG aromatization reaction system could be estimated. This work would provide a theoretical guidance for the design and scale-up of reactor for LPG aromatization process, as well as for the selection of proper operating conditions. 展开更多
关键词 global reaction heat aromatization process liquefied petroleum gas
下载PDF
Development of FCC Naphtha Hydrodesulfurization and Aromatization Process 被引量:1
19
作者 Zhu Huaxing Zhu Jianhua +2 位作者 Liu Jinlong Sun Diancheng Gong Xuhui 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2005年第4期47-51,共5页
This articles refers to the development of the technology for hydrodesulfurization (HDS) and aromatization of FCC naphtha This technology adopts a catalyst with aromatization performance, which does not reduce the oct... This articles refers to the development of the technology for hydrodesulfurization (HDS) and aromatization of FCC naphtha This technology adopts a catalyst with aromatization performance, which does not reduce the octane rating of gasoline in the course of HDS of FCC naphtha. Experimental results have shown that the sulfur removal rate of FCC naphtha could reach over 85%, with the RON of gasoline increased by 0.2-0.6 units, the MON increased by 1.3-1.8 units and the antiknock index of the gasoline increased by around one unit. The total C5+ liquid yield was over 95%. The activity of regenerated catalyst could be restored to be equal to that of fresh one after coke burning on the spent catalyst. 展开更多
关键词 FCC gasoline catalyst: hydrodesulfurization octane number aromatization
下载PDF
Propane Aromatization over Mo/HZSM-5 Catalysts 被引量:1
20
作者 Junwei Wang Maoqing Kang +1 位作者 Zhixin Zhang Xinkui Wang 《Journal of Natural Gas Chemistry》 CAS CSCD 2002年第1期43-50,共8页
Impregnation, mechanical mixing and hydrothermal treatment methods were used to introduce molybdenum species into the HZSM-5 zeolite. The structure and surface acidity of the catalysts were studied by means of XRD, FT... Impregnation, mechanical mixing and hydrothermal treatment methods were used to introduce molybdenum species into the HZSM-5 zeolite. The structure and surface acidity of the catalysts were studied by means of XRD, FT-IR, NH3-TPD, TPR and XPS. The effects of Mo content and reaction time on stream on the aromatization of propane were investigated. It was found that the performance of the Mo/HZSM-5 catalyst prepared by the hydrothermal treatment method was much better than that of the other two catalysts. For example, under the reaction conditions of 823 K and 600 h-1, propane conversion and aromatics selectivity over the catalyst prepared by hydrothermal pretreatment could reach 89.17% and 78.56%, respectively. XRD and XPS results showed that the Mo species in the catalysts prepared by hydrothermal treatment were highly dispersed on the surface of the HZSM-5, and larger amounts of them could penetrate into the HZSM-5 channel, as compared with the other two kinds of catalysts. These factors may be responsible for their high activities for propane aromatization. IR and NH3-TPD studies indicated that the number of Bronsted acid centers decreased and the Lewis acid centers increased after Mo was introduced into the HZSM-5 zeolite. 展开更多
关键词 MO/HZSM-5 PROPANE aromatization PREPARATION hydrothermal treatment
下载PDF
上一页 1 2 62 下一页 到第
使用帮助 返回顶部