Source separation is the basic premise for making effective use of household wastes. In eight cities of China, how- ever, several pilot projects of source separation finally failed because of the poor participation ra...Source separation is the basic premise for making effective use of household wastes. In eight cities of China, how- ever, several pilot projects of source separation finally failed because of the poor participation rate of residents. In order to solve this problem, identifying those factors that influence residents’ behavior of source separation becomes crucial. By means of questionnaire survey, we conducted descriptive analysis and ex- ploratory factor analysis. The results show that trouble-feeling, moral notion, environment protection, public education, environment value and knowledge deficiency are the main factors that play an important role for residents in deciding to separate their household wastes. Also, according to the contribution percentage of the six main factors to the total behavior of source separation, their influencing power is analyzed, which will provide suggestions on household waste management for policy makers and decision makers in China.展开更多
The methane(CH4) emissions from municipal solid waste(MSW) landfills in China in 2007 were estimated based on database of the three-dimensional emission factors matrix and point sources, by an IPCC recommended FOD(fir...The methane(CH4) emissions from municipal solid waste(MSW) landfills in China in 2007 were estimated based on database of the three-dimensional emission factors matrix and point sources, by an IPCC recommended FOD(firstorder decay) model. The location, capacity and age of landfills constitute the three dimensions of the emission factors matrix, which were obtained by laboratory analysis and in situ investigation. Key parameters such as waste composition,degradable organic carbon ratio, CH4 correction factor, oxidation factor and recovery rate, were carefully analyzed in terms of these three dimensions. The point sources database consists of 2,107 MSW landfills in cities and towns of China in 2007. The results show that the CH4 emissions from MSW landfills were 1.186 Mt in 2007. Compared with the CH4 emissions of 2.20 Mt in 2005, the significant discrepancy mainly comes from statistical data of landfills, e.g., number of landfills and amount of waste disposed in landfills. CH4 emissions were lower than 700 t for most of the landfills, whereas there were 279 landfills with emissions larger than 1,000 t, and only 10 landfills with emissions larger than 10,000 t.Jiangsu province ranks the largest emitter with 98,700 t while Tibet is the smallest emitter with 2,100 t. In general,the emissions from eastern provinces, such as Jiangsu, Guangdong and Zhejiang, were larger than those from western provinces, such as Ningxia, Tibet and Qinghai.展开更多
Activated sludge process has been widely used to remove phosphorus and nitrogen from wastewater. However,the nitrogen and phosphorus removal is sometimes unsatisfactory due to the low influent COD.Another problem with...Activated sludge process has been widely used to remove phosphorus and nitrogen from wastewater. However,the nitrogen and phosphorus removal is sometimes unsatisfactory due to the low influent COD.Another problem with the activated sludge process is that large amount of waste activated sludge is produced,which needs further treatment.In this study,the waste activated sludge alkaline fermentation liquid was used as the main carbon source for phosphorus and nitrogen removal under anaerobic followed by alternating aerobic-anoxic conditions,and the results were compared with those using acetic acid as the carbon source.The use of alkaline fermentation liquid not only affected the transformations of phosphorus,nitrogen,intracellular polyhydroxyalkanoates and glycogen, but also led to higher removal efficiencies for phosphorus and nitrogen compared with acetic acid.It was observed that ammonium was completely removed with either alkaline fermentation liquid or acetic acid as the carbon source. However,the former resulted in higher removal efficiencies for phosphorus(95%)and nitrogen(82%),while the latter showed lower ones(87%and 74%,respectively).The presence of a large amount of propionic acid in the alkaline fermentation liquid was one possible reason for its higher phosphorus removal efficiency.Exogenous instead of endogenous denitrification was the main pathway for nitrogen removal with the alkaline fermentation liquid as the carbon source,which was responsible for its higher nitrogen removal efficiency.It seems that the alkaline fermentation liquid can replace acetic acid as the carbon source for phosphorus and nitrogen removal in anaerobic fol- lowed by alternating aerobic-anoxic sequencing batch reactor.展开更多
Municipal solid waste(MSW)is an important destination for abandoned plastics.During the waste disposal process,large plastic debris is broken down into microplastics(MPs)and released into the leachate.However,current ...Municipal solid waste(MSW)is an important destination for abandoned plastics.During the waste disposal process,large plastic debris is broken down into microplastics(MPs)and released into the leachate.However,current research only focuses on landfill leachates,and the occurrence of MPs in other leachates has not been studied.Therefore,herein,the abundance and characteristics of MPs in three types of leachates,namely,landfill leachate,residual waste leachate,and household food waste leachate,were studied,all leachates were collected from the largest waste disposal center in China.The results showed that the average MP abundances in the different types of leachates ranged from(129±54)to(1288±184)MP particles per liter(particlesL1)and the household food waste leachate exhibited the highest MP abundance(p<0.05).Polyethylene(PE)and fragments were the dominant polymer type and shape in MPs,respectively.The characteristic polymer types of MPs in individual leachates were different.Furthermore,the conditional fragmentation model indicated that the landfilling process considerably affected the size distribution of MPs in leachates,leading to a higher percentage(>80%)of small MPs(20–100 lm)in landfill leachates compared to other leachates.To the best of our knowledge,this is the first study discussing the sources of MPs in different leachates,which is important for MP pollution control during MSW disposal.展开更多
In order to research whether it is suitable to set a geological disposal repository for high-level radioactive nuclear waste into one target granite body,two active source seismic profles were arranged near a small to...In order to research whether it is suitable to set a geological disposal repository for high-level radioactive nuclear waste into one target granite body,two active source seismic profles were arranged near a small town named Tamusu,Western China.The study area is with complex surface conditions,thus the seismic exploration encountered a variettraveltimey of technical difculties such as crossing obstacles,de-noising harmful scattered waves,and building complex near-surface velocity models.In order to address those problems,techniques including cross-obstacle seismic geometry design,angle-domain harmful scattered noise removal,and an acoustic wave equation-based inversion method jointly utilizing both the and waveform of frst arrival waves were adopted.The fnal seismic images clearly exhibit the target rock’s unconformable contact boundary and its top interface beneath the sedimentary and weathered layers.On this basis,it could be confrmed that the target rock is not thin or has been transported by geological process from somewhere else,but a native and massive rock.There are a few small size fractures whose space distribution could be revealed by seismic images within the rock.The fractures should be kept away.Based on current research,it could be considered that active source seismic exploration is demanded during the sitting process of the geological disposal repository for nuclear waste.The seismic acquisition and processing techniques proposed in the present paper would ofer a good reference value for similar researches in the future.展开更多
This article is focused on technical and economic evaluation of more than 6-years experiences of operating the Waste Heat Recovery technology—the manner and system of flue gas processing generated in the combustion p...This article is focused on technical and economic evaluation of more than 6-years experiences of operating the Waste Heat Recovery technology—the manner and system of flue gas processing generated in the combustion process in heat & power plants, cogeneration units, etc., which burn the gaseous fuel, primarily natural gas, or methane, biogas, geothermal gas, or other gaseous mixtures containing hydrogen. The solution proposes a more effective and non-traditional use of gaseous fuel for heating, the flue gases of which are processed in order to extract additional utilisable heat, with potential elimination of CO2 from them. Deploying of the heating plant in an island regime (OFF-GRID) enables definition of the benefits brought by the 3 years of operational experience and presents visions for the future offering the possibility to utilise the support energy services at the municipal as well as regional level.展开更多
This Article discusses a comprehensive review of biomass energy sources, environment and sustainable development. This includes all the biomass energy technologies, energy efficiency systems, energy conservation scena...This Article discusses a comprehensive review of biomass energy sources, environment and sustainable development. This includes all the biomass energy technologies, energy efficiency systems, energy conservation scenarios, energy savings and other mitigation measures necessary to reduce emissions. The current literature is reviewed regarding the ecological, social, cultural and economic impacts of biomass technology. This article gives an overview of present and future use of biomass as an industrial feed-stock for production of fuels, chemicals and other materials. However, to be truly competitive in an open market situation, higher value products are required. Results suggest that biomass technology must be encouraged, promoted, invested, implemented, and demonstrated, but especially in remote rural areas.展开更多
The low-grade heat source recovery is usually constrained by the physical characteristics of the hot fluid medium. The present work focuses on the importance of energy recovery from low-temperature waste energy source...The low-grade heat source recovery is usually constrained by the physical characteristics of the hot fluid medium. The present work focuses on the importance of energy recovery from low-temperature waste energy sources and its conversion to useful electrical power. The thermal performance analysis is based on the utilization of R-123, R-134a, R-290, R-245fa, R-1234ze-E, and R-1233zd-E fluids in a simple organic Rankine cycle (SORC). A waste energy source from an industrial sector is suggested to be available at a temperature greater than 110 °C. A hypothetical organic Rankine cycle of 10 kW nominal heat recovery was implemented to evaluate the cycle performance. It operates at evaporation and condensation temperatures of 90 °C and 45 °C, respectively. The selected vapor superheat degree at the expander entrance was 5 °C - 15 °C, and the liquid was subcooled by 5 °C at the discharge port of condenser. The estimated first law cycle thermal efficiency fell in the range of 6.4% - 7.7%. The results showed that the thermal efficiencies of R-134a, R-123, R-245fa, R-1233zd-E, and R-1234ze-E were higher than that of R-290 by 10% - 14%, 11% - 12%, 9% - 12%, 4% - 7% and 1% - 3%, respectively. R-1233zd-E, R-1234ze-E, and R-290 showed close thermal efficiency values, and it fell in the range of 6.7% - 7% for the (SORC) at a superheat degree of 15 °C. At the same superheat degree, the corresponding range of thermal efficiency for R-134a, R-123 and R-245fa fell within 7.5% - 7.7%. R-134a possessed the highest net power output of the (SORC);it reached a value of 0.91 kW as predicted at 15 °C superheat degree. Increasing the expander volumetric efficiency value by 10% improved the cycle thermal efficiency by 10% - 12%.展开更多
Continuous concerns about Polycyclic Aromatic Hydrocarbons (PAHs) presence in the environment have raised concern because of their toxic effects to various organisms. Sugarcane farming and cane processing industries a...Continuous concerns about Polycyclic Aromatic Hydrocarbons (PAHs) presence in the environment have raised concern because of their toxic effects to various organisms. Sugarcane farming and cane processing industries are major economic activities within River Nzoia catchment area in Kenya. For instance, the sugar industries produce wastes and by products which can cause PAHs emission and environmental contamination in addition to activities related to rapid urbanization that is being observed within the catchment. This study presents a report on sources and distribution of PAHs levels in sugarcane by products waste, sediments, water and soils within the River Nzoia catchment area. Soil and sediment samples were extracted by soxhlet extraction using dichloro-methane and with C-18 catridges. Analyte separation and identification was done by GC-MS. Fourteen PAHs were detected with concentration ranges of;0.6 μg/L - 80 μg/L for water, 0.01 μg/kg - 1200 μg/kg for soils and 0.13 μg/kg - 19.6 μg/kg for sediments. Bagasse waste had PAHs concentrations in the range of 0.4 - 14 μg/kg, and filter cake in the range of 1.7 - 30 μg/kg. Boiler waters reported the presence of 8 PAHs. The ratio of concentrations of PAHs in boiler water, filter cake and bagasse waste to the soils and water samples within the vicinity to the sugar processing companies did not indicate a point source of contamination;rather it pointed to diffuse sources. The same results were observed for water and sediment samples obtained in the vicinity of waste dumpsite. Variation of PAHs concentrations from sugar manufacturing processes corresponded to the kind and conditions of the processes. Lower molecular weight PAHs dominated in water sample. The presense of benz: 1) pyrene, benz 2) flourancene and Indeno(123,cd)pyrene in both water and sludge soils are of concern since this water is abstracted for domestic use, while sludge soil is used as fertilizer in agricultural farms. Although the levels of PAHs obtained in this study were below the established environment and human health safefty limits, the results underscore the need for mornitoring levels and determining potential sources for PAHs in the environment.展开更多
Over the years,the Shaying River Basin has experienced frequent instances of river pollution.The presence of numerous critical pollutant discharge enterprises and sewage-treatment plants in the vicinity of the Shaying...Over the years,the Shaying River Basin has experienced frequent instances of river pollution.The presence of numerous critical pollutant discharge enterprises and sewage-treatment plants in the vicinity of the Shaying River has transformed it a major tributary with relatively serious pollution challenge within the upper reaches of Huaihe River Basin.To study the sources of manganese(Mn),chromium(Cr),nickel(Ni),arsenic(As),cadmium(Cd)and lead(Pb)in Shaying River water,123 sets of surface water samples were collected from 41 sampling points across the entire basin during three distinct phases from 2019 to 2020,encompassing normal water period,dry season and wet season.The primary origins of heavy metals in river water were determined by analyzing the heavy metal contents in urban sewage wastewater,industrial sewage wastewater,groundwater,mine water,and the heavy metal contributions from agricultural non-point source pollution.The analytical findings reveal that Mn primarily originates from shallow groundwater used for agricultural irrigation,While Cr mainly is primarily sourced from urban sewage treatment plant effluents,coal washing wastewater,tannery wastewater,and industrial discharge related to metal processing and manufacturing.Ni is mainly contributed by urban sewage treatment plant effluents and industrial wastewater streams associated with machinery manufacturing and metal processing.Cd primarily linked to industrial wastewater,particularly from machinery manufacturing and metal processing facilities,while Pb is predominantly associated with urban sewage treatment plant effluents and wastewater generated in Pb processing and recycling wastewater.These research provides a crucial foundation for addressing the prevention and control of dissolved heavy metals at their sources in the Shaying River.展开更多
This research demonstrated the feasibility of converting source-separated human urine into a solid fertilizer by means of continuous absorption and solar thermal evaporation using dried water hyacinth as adsorbent. In...This research demonstrated the feasibility of converting source-separated human urine into a solid fertilizer by means of continuous absorption and solar thermal evaporation using dried water hyacinth as adsorbent. In a preliminary experiment, the dried petioles of water hyacinth (DWH) absorbed urine in a mean rate of 18.78 ml·g-1 within 7 d, retrieving about 3.46% urine dissolved solids (UDS). In an advanced experiment, the DWH’s capacity of urine absorption declined from an initial 2.73 L·kg-1·d-1 to 0.68 L·kg-1·d-1, with a requirement of material change in about 25 effective days and an average ratio of 25 (L) to 1 (kg). Phosphorus (P2O5) concentration in the adsorbent increased from 0.46% (material baseline) to 3.14% (end product), suggesting a satisfactory recovery of the element. In field application, the urine was discharged, not in wet weather, onto the DWH via a tube connected to a waterless urinal. There are several ways to use the UDS-DWH as P(K)-rich fertilizer, e.g., making soluble fertilizer for foliage spraying to encourage prolific flowering and fruiting. Apparently, utilization of water hyacinth waste to recover dissolved plant nutrient elements from source-separated urine will benefit the environment in a wide range of perspectives. The herein innovative use of water hyacinth is also expected to be useful in the recycling of certain dissolved hazardous materials.展开更多
Objective Particulate samples from the atmosphere in an electronic waste dismantling area were collected to investigate the levels and sources of polychlorinated dibenzo‐p‐dioxins and dibenzofurans (PCDD/Fs). Meth...Objective Particulate samples from the atmosphere in an electronic waste dismantling area were collected to investigate the levels and sources of polychlorinated dibenzo‐p‐dioxins and dibenzofurans (PCDD/Fs). Methods Particulate samples including total suspended particulates (TSP) and particulate matter 2.5 μm diameter (PM2.5) were collected on selected non‐rainy days in summer (Jul 10–12, 2006) and winter (Jan 11–13, 2007) from Fengjiang (FJ), an electronic waste (e‐waste) dismantling area in eastern China, and an adjacent area Luqiao (LQ). The samples were analyzed by isotope dilution‐high resolution gas chromatography / high resolution mass spectrometry (HRGC/HRMS). Results In FJ, the mean PCDD/F concentrations (mean TEQ values) were 280.6 pg Nm‐3 (3.432 pg WHO‐TEQ Nm‐3) for the TSP samples and 223.3 pg Nm‐3 (3.180 pg WHO‐TEQ Nm‐3) for the PM2.5 samples. The total PCDD/F concentrations and TEQs in the PM2.5 samples were about 66.8%‐108.0% of the TSP samples, indicating that the fine particles contained higher levels of PCDD/Fs than coarse particles. The PCDD/F levels in FJ were much higher than those detected in common urban areas around the world, suggesting that the study area was heavily polluted by PCDD/Fs. Furthermore, the total average daily PCDD/F intake in FJ was estimated at 62.11 pg WHO‐TEQ kg‐1·day‐1 for adults and 110.11 pg WHO‐TEQ kg‐1·day‐1 for children, which greatly exceeds the WHO (1998) tolerable daily intake of 1–4 pg of WHO‐TEQ kg‐1·day‐1. Conclusion The PCDD/F homologues and congener profiles confirmed that the PCDD/Fs in FJ originated from crude e‐waste recycling activities. The severe dioxin pollution present in FJ has also substantially influenced the adjacent area of LQ through atmospheric transport. Open burning of medical waste was another source of PCDD/Fs identified in LQ.展开更多
The utilization of bioorganic municipal waste (BMW) is considered essentially for the further development of integrated waste management practice in China. Awareness and knowledge about the importance of BMW managemen...The utilization of bioorganic municipal waste (BMW) is considered essentially for the further development of integrated waste management practice in China. Awareness and knowledge about the importance of BMW management and source separation of waste on household level, as a precondition for the implementation of an economically feasible integrated waste management infrastructure, were developed in Europe during the last decade. The Sino–German RRUBMW Project is facilitating applied research investigations in 4 pilot areas in Shenyang to assess the population’s behavior to develop the design criteria for appropriate process technologies and to provide the basis to adopt BMW management policy in China.展开更多
This study presents an overview on solid waste that can be used as a source of bioenergy in Misrata including municipal solid waste (MSW), industrial solid waste (ISW), and healthcare solid waste (HSW) as biomass sour...This study presents an overview on solid waste that can be used as a source of bioenergy in Misrata including municipal solid waste (MSW), industrial solid waste (ISW), and healthcare solid waste (HSW) as biomass sources. The management of solid waste and valorization is based on an understanding of MSW’s and HSW’s composition and physicochemical characteristics. Of MSW’s, the results show that organic matter represents 59% of waste, followed by paper-cardboard 12%, miscellaneous 10%, plastic 8%, metals 7% and glass 4%. While HSW comprised of 72% general healthcare waste (non-risk) and 28% hazardous waste. The average general waste composition was: 38% organic, 24% plastics, and 20% paper. The potential of hydrogen energy produced from biogas in Misrata including MSW, and other organic feedstock such as food and kitchen waste, animal wastes, clover and reeds, wheat residues, barley residues, HSW and sewage waste as biomass sources. The total potential hydrogen output is estimated to be around 10,265 tons per year.展开更多
Anaerobic treatment is the core technology for resource and energy recovery from source-separated domestic bio-wastes. The higher efficiency of an improved upflow solid reactor(IUSR) designed in this study was demon...Anaerobic treatment is the core technology for resource and energy recovery from source-separated domestic bio-wastes. The higher efficiency of an improved upflow solid reactor(IUSR) designed in this study was demonstrated in the treatment of concentrated black water and kitchen waste. The highest methane production of 48 L/person/day was achieved at the hydraulic retention time(HRT) of 7 days, while the other measures of performance at the HRT of 8.3 days were better than at the HRT of 7 or 10 days, achieving a methane production of 43 L/person/day, removal of total chemical oxygen demand(TCOD)of 89%, removal of soluble chemical oxygen demand(SCOD) of 92%, and conversion of chemical oxygen demand(COD) to methane of 71%. It is not recommended to decrease HRT lower than 7 days due to the instability of the initial period. The concentrations of volatile fatty acids(VFAs) in the IUSR were less than 10 mg/L, indicating that the anaerobic process was stable. Sludge bed development showed that sludge bed with high microbial activity was formed in the bottom and that the precipitation zone of effluents formed should preferably occupy 30% of the height of the IUSR. The effluents of the IUSR could be used for irrigation in agriculture in combination with a settling tank accompanied by disinfection to remove solids and pathogens.展开更多
Industrial battery manufacturing facilities generate large quantities of hazardous waste, which must be properly treated before it can be disposed. Reducing the quantities of these waste streams can significantly redu...Industrial battery manufacturing facilities generate large quantities of hazardous waste, which must be properly treated before it can be disposed. Reducing the quantities of these waste streams can significantly reduce the cost of treatment and lead to competitive advantages. Waste minimization at these facilities is beneficial for the stakeholders and the environment. The quantities of hazardous waste can be minimized by upgrading the facility's technology or substituting hazardous substances, which are used in the battery manufacturing process, with more environmentally friendly options. Separation of waste streams will allow for additional reuse opportunities and revenue generation from the sale of these materials, which will enhance the financial performance of the facility. This paper provides a case study of comprehensive waste minimization in a battery manufacturing plant in Ohio, USA. Source reduction, recovery, and recycling methods are taken into account with consideration given to economic impacts. The goal of the study was to develop an understanding of the facility's waste generating processes, to suggest methods to reduce to the waste generation and finally to select an appropriate waste minimization option to suggest the facility's management team. Some of the suggested methods are currently being practiced while others are at the initial stage of development.展开更多
Introduction:The current worldwide electric power&heat&cool production has a negative impact on the environment by emissions and enormous leaks of low-potential waste heat.Transformation of unused industrial l...Introduction:The current worldwide electric power&heat&cool production has a negative impact on the environment by emissions and enormous leaks of low-potential waste heat.Transformation of unused industrial low power heat into“renewable heat”useful to enhance the efficiency of the system is essential and actual innovation in the field of worldwide environmental protection.By introducing and defining the terminology of low-potential,“renewable”,“green heat”has created a new,parallel category of research in the energy sector.Traditional co-generation systems produce heat for space heating and hot water and generate electricity.Moving to tri-generation allows growing demand for air conditioning for homes,offices and commercial spaces such as server rooms and switchboards to be met simultaneously or on a seasonal basis.Tri-generation,or combined cooling,heat and power,is the process by which some of the heat produced by a co-generation plant is used to generate chilled water for air conditioning or refrigeration.Usually an absorption chiller is linked to the plant to provide this functionality.The technical solution is related to the new efficient manner and system of simultaneous generation of heat/cold from multiple heat sources,which has not yet been known,but in practice required.New system also enables advantageous utilization of solar power in supporting of the cooling output.The innovative system can be operated also within the existing central heating distribution systems.展开更多
文摘Source separation is the basic premise for making effective use of household wastes. In eight cities of China, how- ever, several pilot projects of source separation finally failed because of the poor participation rate of residents. In order to solve this problem, identifying those factors that influence residents’ behavior of source separation becomes crucial. By means of questionnaire survey, we conducted descriptive analysis and ex- ploratory factor analysis. The results show that trouble-feeling, moral notion, environment protection, public education, environment value and knowledge deficiency are the main factors that play an important role for residents in deciding to separate their household wastes. Also, according to the contribution percentage of the six main factors to the total behavior of source separation, their influencing power is analyzed, which will provide suggestions on household waste management for policy makers and decision makers in China.
基金funded by the Project Study on Key Issues of China City Carbon Emission Inventory (No. 41101500)supported by National Natural Science Foundation of China
文摘The methane(CH4) emissions from municipal solid waste(MSW) landfills in China in 2007 were estimated based on database of the three-dimensional emission factors matrix and point sources, by an IPCC recommended FOD(firstorder decay) model. The location, capacity and age of landfills constitute the three dimensions of the emission factors matrix, which were obtained by laboratory analysis and in situ investigation. Key parameters such as waste composition,degradable organic carbon ratio, CH4 correction factor, oxidation factor and recovery rate, were carefully analyzed in terms of these three dimensions. The point sources database consists of 2,107 MSW landfills in cities and towns of China in 2007. The results show that the CH4 emissions from MSW landfills were 1.186 Mt in 2007. Compared with the CH4 emissions of 2.20 Mt in 2005, the significant discrepancy mainly comes from statistical data of landfills, e.g., number of landfills and amount of waste disposed in landfills. CH4 emissions were lower than 700 t for most of the landfills, whereas there were 279 landfills with emissions larger than 1,000 t, and only 10 landfills with emissions larger than 10,000 t.Jiangsu province ranks the largest emitter with 98,700 t while Tibet is the smallest emitter with 2,100 t. In general,the emissions from eastern provinces, such as Jiangsu, Guangdong and Zhejiang, were larger than those from western provinces, such as Ningxia, Tibet and Qinghai.
基金Supported by the National High Technology Research and Development Program of China(2007AA06Z326)the Programfor New Century Excellent Talents(06-0373)in University
文摘Activated sludge process has been widely used to remove phosphorus and nitrogen from wastewater. However,the nitrogen and phosphorus removal is sometimes unsatisfactory due to the low influent COD.Another problem with the activated sludge process is that large amount of waste activated sludge is produced,which needs further treatment.In this study,the waste activated sludge alkaline fermentation liquid was used as the main carbon source for phosphorus and nitrogen removal under anaerobic followed by alternating aerobic-anoxic conditions,and the results were compared with those using acetic acid as the carbon source.The use of alkaline fermentation liquid not only affected the transformations of phosphorus,nitrogen,intracellular polyhydroxyalkanoates and glycogen, but also led to higher removal efficiencies for phosphorus and nitrogen compared with acetic acid.It was observed that ammonium was completely removed with either alkaline fermentation liquid or acetic acid as the carbon source. However,the former resulted in higher removal efficiencies for phosphorus(95%)and nitrogen(82%),while the latter showed lower ones(87%and 74%,respectively).The presence of a large amount of propionic acid in the alkaline fermentation liquid was one possible reason for its higher phosphorus removal efficiency.Exogenous instead of endogenous denitrification was the main pathway for nitrogen removal with the alkaline fermentation liquid as the carbon source,which was responsible for its higher nitrogen removal efficiency.It seems that the alkaline fermentation liquid can replace acetic acid as the carbon source for phosphorus and nitrogen removal in anaerobic fol- lowed by alternating aerobic-anoxic sequencing batch reactor.
基金supported by the National Key Research and Development Program of China(2023YFC3711600)the National Natural Science Foundation of China(22076045 and 22376066)the Shanghai Talent Development Funding,and the Shanghai Youth Talent Support Program.
文摘Municipal solid waste(MSW)is an important destination for abandoned plastics.During the waste disposal process,large plastic debris is broken down into microplastics(MPs)and released into the leachate.However,current research only focuses on landfill leachates,and the occurrence of MPs in other leachates has not been studied.Therefore,herein,the abundance and characteristics of MPs in three types of leachates,namely,landfill leachate,residual waste leachate,and household food waste leachate,were studied,all leachates were collected from the largest waste disposal center in China.The results showed that the average MP abundances in the different types of leachates ranged from(129±54)to(1288±184)MP particles per liter(particlesL1)and the household food waste leachate exhibited the highest MP abundance(p<0.05).Polyethylene(PE)and fragments were the dominant polymer type and shape in MPs,respectively.The characteristic polymer types of MPs in individual leachates were different.Furthermore,the conditional fragmentation model indicated that the landfilling process considerably affected the size distribution of MPs in leachates,leading to a higher percentage(>80%)of small MPs(20–100 lm)in landfill leachates compared to other leachates.To the best of our knowledge,this is the first study discussing the sources of MPs in different leachates,which is important for MP pollution control during MSW disposal.
基金This research was supported by the National Key R&D Program of China(No.2018YFC1503200)the Nuclear Waste Geological Disposal Project([2013]727)+2 种基金the National Natural Science Foundation of China(Grant Nos.41790463 and 41730425)the Spark Program of Earthquake Sciences of CEA(XH18063Y)the Special Fund of GEC of CEA(YFGEC2017003,SFGEC2014006).
文摘In order to research whether it is suitable to set a geological disposal repository for high-level radioactive nuclear waste into one target granite body,two active source seismic profles were arranged near a small town named Tamusu,Western China.The study area is with complex surface conditions,thus the seismic exploration encountered a variettraveltimey of technical difculties such as crossing obstacles,de-noising harmful scattered waves,and building complex near-surface velocity models.In order to address those problems,techniques including cross-obstacle seismic geometry design,angle-domain harmful scattered noise removal,and an acoustic wave equation-based inversion method jointly utilizing both the and waveform of frst arrival waves were adopted.The fnal seismic images clearly exhibit the target rock’s unconformable contact boundary and its top interface beneath the sedimentary and weathered layers.On this basis,it could be confrmed that the target rock is not thin or has been transported by geological process from somewhere else,but a native and massive rock.There are a few small size fractures whose space distribution could be revealed by seismic images within the rock.The fractures should be kept away.Based on current research,it could be considered that active source seismic exploration is demanded during the sitting process of the geological disposal repository for nuclear waste.The seismic acquisition and processing techniques proposed in the present paper would ofer a good reference value for similar researches in the future.
文摘This article is focused on technical and economic evaluation of more than 6-years experiences of operating the Waste Heat Recovery technology—the manner and system of flue gas processing generated in the combustion process in heat & power plants, cogeneration units, etc., which burn the gaseous fuel, primarily natural gas, or methane, biogas, geothermal gas, or other gaseous mixtures containing hydrogen. The solution proposes a more effective and non-traditional use of gaseous fuel for heating, the flue gases of which are processed in order to extract additional utilisable heat, with potential elimination of CO2 from them. Deploying of the heating plant in an island regime (OFF-GRID) enables definition of the benefits brought by the 3 years of operational experience and presents visions for the future offering the possibility to utilise the support energy services at the municipal as well as regional level.
文摘This Article discusses a comprehensive review of biomass energy sources, environment and sustainable development. This includes all the biomass energy technologies, energy efficiency systems, energy conservation scenarios, energy savings and other mitigation measures necessary to reduce emissions. The current literature is reviewed regarding the ecological, social, cultural and economic impacts of biomass technology. This article gives an overview of present and future use of biomass as an industrial feed-stock for production of fuels, chemicals and other materials. However, to be truly competitive in an open market situation, higher value products are required. Results suggest that biomass technology must be encouraged, promoted, invested, implemented, and demonstrated, but especially in remote rural areas.
文摘The low-grade heat source recovery is usually constrained by the physical characteristics of the hot fluid medium. The present work focuses on the importance of energy recovery from low-temperature waste energy sources and its conversion to useful electrical power. The thermal performance analysis is based on the utilization of R-123, R-134a, R-290, R-245fa, R-1234ze-E, and R-1233zd-E fluids in a simple organic Rankine cycle (SORC). A waste energy source from an industrial sector is suggested to be available at a temperature greater than 110 °C. A hypothetical organic Rankine cycle of 10 kW nominal heat recovery was implemented to evaluate the cycle performance. It operates at evaporation and condensation temperatures of 90 °C and 45 °C, respectively. The selected vapor superheat degree at the expander entrance was 5 °C - 15 °C, and the liquid was subcooled by 5 °C at the discharge port of condenser. The estimated first law cycle thermal efficiency fell in the range of 6.4% - 7.7%. The results showed that the thermal efficiencies of R-134a, R-123, R-245fa, R-1233zd-E, and R-1234ze-E were higher than that of R-290 by 10% - 14%, 11% - 12%, 9% - 12%, 4% - 7% and 1% - 3%, respectively. R-1233zd-E, R-1234ze-E, and R-290 showed close thermal efficiency values, and it fell in the range of 6.7% - 7% for the (SORC) at a superheat degree of 15 °C. At the same superheat degree, the corresponding range of thermal efficiency for R-134a, R-123 and R-245fa fell within 7.5% - 7.7%. R-134a possessed the highest net power output of the (SORC);it reached a value of 0.91 kW as predicted at 15 °C superheat degree. Increasing the expander volumetric efficiency value by 10% improved the cycle thermal efficiency by 10% - 12%.
文摘Continuous concerns about Polycyclic Aromatic Hydrocarbons (PAHs) presence in the environment have raised concern because of their toxic effects to various organisms. Sugarcane farming and cane processing industries are major economic activities within River Nzoia catchment area in Kenya. For instance, the sugar industries produce wastes and by products which can cause PAHs emission and environmental contamination in addition to activities related to rapid urbanization that is being observed within the catchment. This study presents a report on sources and distribution of PAHs levels in sugarcane by products waste, sediments, water and soils within the River Nzoia catchment area. Soil and sediment samples were extracted by soxhlet extraction using dichloro-methane and with C-18 catridges. Analyte separation and identification was done by GC-MS. Fourteen PAHs were detected with concentration ranges of;0.6 μg/L - 80 μg/L for water, 0.01 μg/kg - 1200 μg/kg for soils and 0.13 μg/kg - 19.6 μg/kg for sediments. Bagasse waste had PAHs concentrations in the range of 0.4 - 14 μg/kg, and filter cake in the range of 1.7 - 30 μg/kg. Boiler waters reported the presence of 8 PAHs. The ratio of concentrations of PAHs in boiler water, filter cake and bagasse waste to the soils and water samples within the vicinity to the sugar processing companies did not indicate a point source of contamination;rather it pointed to diffuse sources. The same results were observed for water and sediment samples obtained in the vicinity of waste dumpsite. Variation of PAHs concentrations from sugar manufacturing processes corresponded to the kind and conditions of the processes. Lower molecular weight PAHs dominated in water sample. The presense of benz: 1) pyrene, benz 2) flourancene and Indeno(123,cd)pyrene in both water and sludge soils are of concern since this water is abstracted for domestic use, while sludge soil is used as fertilizer in agricultural farms. Although the levels of PAHs obtained in this study were below the established environment and human health safefty limits, the results underscore the need for mornitoring levels and determining potential sources for PAHs in the environment.
基金funded and supported by the Youth Science and Technology Project of Henan Provincial Bureau of Geology and Mineral Resources,YDKQKC[2008]No.8.
文摘Over the years,the Shaying River Basin has experienced frequent instances of river pollution.The presence of numerous critical pollutant discharge enterprises and sewage-treatment plants in the vicinity of the Shaying River has transformed it a major tributary with relatively serious pollution challenge within the upper reaches of Huaihe River Basin.To study the sources of manganese(Mn),chromium(Cr),nickel(Ni),arsenic(As),cadmium(Cd)and lead(Pb)in Shaying River water,123 sets of surface water samples were collected from 41 sampling points across the entire basin during three distinct phases from 2019 to 2020,encompassing normal water period,dry season and wet season.The primary origins of heavy metals in river water were determined by analyzing the heavy metal contents in urban sewage wastewater,industrial sewage wastewater,groundwater,mine water,and the heavy metal contributions from agricultural non-point source pollution.The analytical findings reveal that Mn primarily originates from shallow groundwater used for agricultural irrigation,While Cr mainly is primarily sourced from urban sewage treatment plant effluents,coal washing wastewater,tannery wastewater,and industrial discharge related to metal processing and manufacturing.Ni is mainly contributed by urban sewage treatment plant effluents and industrial wastewater streams associated with machinery manufacturing and metal processing.Cd primarily linked to industrial wastewater,particularly from machinery manufacturing and metal processing facilities,while Pb is predominantly associated with urban sewage treatment plant effluents and wastewater generated in Pb processing and recycling wastewater.These research provides a crucial foundation for addressing the prevention and control of dissolved heavy metals at their sources in the Shaying River.
文摘This research demonstrated the feasibility of converting source-separated human urine into a solid fertilizer by means of continuous absorption and solar thermal evaporation using dried water hyacinth as adsorbent. In a preliminary experiment, the dried petioles of water hyacinth (DWH) absorbed urine in a mean rate of 18.78 ml·g-1 within 7 d, retrieving about 3.46% urine dissolved solids (UDS). In an advanced experiment, the DWH’s capacity of urine absorption declined from an initial 2.73 L·kg-1·d-1 to 0.68 L·kg-1·d-1, with a requirement of material change in about 25 effective days and an average ratio of 25 (L) to 1 (kg). Phosphorus (P2O5) concentration in the adsorbent increased from 0.46% (material baseline) to 3.14% (end product), suggesting a satisfactory recovery of the element. In field application, the urine was discharged, not in wet weather, onto the DWH via a tube connected to a waterless urinal. There are several ways to use the UDS-DWH as P(K)-rich fertilizer, e.g., making soluble fertilizer for foliage spraying to encourage prolific flowering and fruiting. Apparently, utilization of water hyacinth waste to recover dissolved plant nutrient elements from source-separated urine will benefit the environment in a wide range of perspectives. The herein innovative use of water hyacinth is also expected to be useful in the recycling of certain dissolved hazardous materials.
基金supported by the National Natural Scientific Foundation of China (No. 20907048 and 30771812)National Special Fund for Scientific Research in the Public Interest (200902009)+2 种基金the National High‐Tech Research Program of China (2006AA06Z403)a China Postdoctoral Science Foundation funded project (200902009)the Natural Science Foundation of Fujian Province (2009J05115)
文摘Objective Particulate samples from the atmosphere in an electronic waste dismantling area were collected to investigate the levels and sources of polychlorinated dibenzo‐p‐dioxins and dibenzofurans (PCDD/Fs). Methods Particulate samples including total suspended particulates (TSP) and particulate matter 2.5 μm diameter (PM2.5) were collected on selected non‐rainy days in summer (Jul 10–12, 2006) and winter (Jan 11–13, 2007) from Fengjiang (FJ), an electronic waste (e‐waste) dismantling area in eastern China, and an adjacent area Luqiao (LQ). The samples were analyzed by isotope dilution‐high resolution gas chromatography / high resolution mass spectrometry (HRGC/HRMS). Results In FJ, the mean PCDD/F concentrations (mean TEQ values) were 280.6 pg Nm‐3 (3.432 pg WHO‐TEQ Nm‐3) for the TSP samples and 223.3 pg Nm‐3 (3.180 pg WHO‐TEQ Nm‐3) for the PM2.5 samples. The total PCDD/F concentrations and TEQs in the PM2.5 samples were about 66.8%‐108.0% of the TSP samples, indicating that the fine particles contained higher levels of PCDD/Fs than coarse particles. The PCDD/F levels in FJ were much higher than those detected in common urban areas around the world, suggesting that the study area was heavily polluted by PCDD/Fs. Furthermore, the total average daily PCDD/F intake in FJ was estimated at 62.11 pg WHO‐TEQ kg‐1·day‐1 for adults and 110.11 pg WHO‐TEQ kg‐1·day‐1 for children, which greatly exceeds the WHO (1998) tolerable daily intake of 1–4 pg of WHO‐TEQ kg‐1·day‐1. Conclusion The PCDD/F homologues and congener profiles confirmed that the PCDD/Fs in FJ originated from crude e‐waste recycling activities. The severe dioxin pollution present in FJ has also substantially influenced the adjacent area of LQ through atmospheric transport. Open burning of medical waste was another source of PCDD/Fs identified in LQ.
文摘The utilization of bioorganic municipal waste (BMW) is considered essentially for the further development of integrated waste management practice in China. Awareness and knowledge about the importance of BMW management and source separation of waste on household level, as a precondition for the implementation of an economically feasible integrated waste management infrastructure, were developed in Europe during the last decade. The Sino–German RRUBMW Project is facilitating applied research investigations in 4 pilot areas in Shenyang to assess the population’s behavior to develop the design criteria for appropriate process technologies and to provide the basis to adopt BMW management policy in China.
文摘This study presents an overview on solid waste that can be used as a source of bioenergy in Misrata including municipal solid waste (MSW), industrial solid waste (ISW), and healthcare solid waste (HSW) as biomass sources. The management of solid waste and valorization is based on an understanding of MSW’s and HSW’s composition and physicochemical characteristics. Of MSW’s, the results show that organic matter represents 59% of waste, followed by paper-cardboard 12%, miscellaneous 10%, plastic 8%, metals 7% and glass 4%. While HSW comprised of 72% general healthcare waste (non-risk) and 28% hazardous waste. The average general waste composition was: 38% organic, 24% plastics, and 20% paper. The potential of hydrogen energy produced from biogas in Misrata including MSW, and other organic feedstock such as food and kitchen waste, animal wastes, clover and reeds, wheat residues, barley residues, HSW and sewage waste as biomass sources. The total potential hydrogen output is estimated to be around 10,265 tons per year.
基金supported by the Major Science and Technology Program for Water Pollution Control and Treatment of China (No. 2011ZX07301-003)the National Key Research and Development Plan (No. 2016YFC0400806)
文摘Anaerobic treatment is the core technology for resource and energy recovery from source-separated domestic bio-wastes. The higher efficiency of an improved upflow solid reactor(IUSR) designed in this study was demonstrated in the treatment of concentrated black water and kitchen waste. The highest methane production of 48 L/person/day was achieved at the hydraulic retention time(HRT) of 7 days, while the other measures of performance at the HRT of 8.3 days were better than at the HRT of 7 or 10 days, achieving a methane production of 43 L/person/day, removal of total chemical oxygen demand(TCOD)of 89%, removal of soluble chemical oxygen demand(SCOD) of 92%, and conversion of chemical oxygen demand(COD) to methane of 71%. It is not recommended to decrease HRT lower than 7 days due to the instability of the initial period. The concentrations of volatile fatty acids(VFAs) in the IUSR were less than 10 mg/L, indicating that the anaerobic process was stable. Sludge bed development showed that sludge bed with high microbial activity was formed in the bottom and that the precipitation zone of effluents formed should preferably occupy 30% of the height of the IUSR. The effluents of the IUSR could be used for irrigation in agriculture in combination with a settling tank accompanied by disinfection to remove solids and pathogens.
文摘Industrial battery manufacturing facilities generate large quantities of hazardous waste, which must be properly treated before it can be disposed. Reducing the quantities of these waste streams can significantly reduce the cost of treatment and lead to competitive advantages. Waste minimization at these facilities is beneficial for the stakeholders and the environment. The quantities of hazardous waste can be minimized by upgrading the facility's technology or substituting hazardous substances, which are used in the battery manufacturing process, with more environmentally friendly options. Separation of waste streams will allow for additional reuse opportunities and revenue generation from the sale of these materials, which will enhance the financial performance of the facility. This paper provides a case study of comprehensive waste minimization in a battery manufacturing plant in Ohio, USA. Source reduction, recovery, and recycling methods are taken into account with consideration given to economic impacts. The goal of the study was to develop an understanding of the facility's waste generating processes, to suggest methods to reduce to the waste generation and finally to select an appropriate waste minimization option to suggest the facility's management team. Some of the suggested methods are currently being practiced while others are at the initial stage of development.
文摘Introduction:The current worldwide electric power&heat&cool production has a negative impact on the environment by emissions and enormous leaks of low-potential waste heat.Transformation of unused industrial low power heat into“renewable heat”useful to enhance the efficiency of the system is essential and actual innovation in the field of worldwide environmental protection.By introducing and defining the terminology of low-potential,“renewable”,“green heat”has created a new,parallel category of research in the energy sector.Traditional co-generation systems produce heat for space heating and hot water and generate electricity.Moving to tri-generation allows growing demand for air conditioning for homes,offices and commercial spaces such as server rooms and switchboards to be met simultaneously or on a seasonal basis.Tri-generation,or combined cooling,heat and power,is the process by which some of the heat produced by a co-generation plant is used to generate chilled water for air conditioning or refrigeration.Usually an absorption chiller is linked to the plant to provide this functionality.The technical solution is related to the new efficient manner and system of simultaneous generation of heat/cold from multiple heat sources,which has not yet been known,but in practice required.New system also enables advantageous utilization of solar power in supporting of the cooling output.The innovative system can be operated also within the existing central heating distribution systems.