The electronic modulation characteristics of efficient metal phosphide electrocatalysts can be utilized to tune the performance of oxygen evolution reaction(OER).However,improving the overall water splitting performan...The electronic modulation characteristics of efficient metal phosphide electrocatalysts can be utilized to tune the performance of oxygen evolution reaction(OER).However,improving the overall water splitting performance remains a challenging task.By building metal organic framework(MOF)on MOF heterostructures,an efficient strategy for controlling the electrical structure of MOFs was presented in this study.ZIF-67 was in-situ synthesized on MIL-88(Fe)using a two-step self-assembly method,followed by low-temperature phosphorization to ultimately synthesize FeP-CoP_(3)bimetallic phosphides.By combining atomic orbital theory and theoretical calculations(density functional theory),the results reveal the successful modulation of electronic orbitals in FeP-CoP_(3)bimetallic phosphides,which are synthesized from MOF on MOF structure.The synergistic impact of the metal center Co species and the phase conjugation of both kinds of MOFs are responsible for this regulatory phenomenon.Therefore,the catalyst demonstrates excellent properties,demonstrating HER 81 mV(η10)in a 1.0 mol L^(−1)KOH solution and OER 239 mV(η50)low overpotentials.The FeP-CoP_(3)linked dual electrode alkaline batteries,which are bifunctional electrocatalysts,have a good electrocatalytic ability and may last for 50 h.They require just 1.49 V(η50)for total water breakdown.Through this technique,the electrical structure of electrocatalysts may be altered to increase catalytic activity.展开更多
The purpose of this paper is to present the class of atomic basis functions(ABFs)which are of exponential type and are denoted by EFupn(x,ω).While ABFs of the algebraic type are already represented in the numerical m...The purpose of this paper is to present the class of atomic basis functions(ABFs)which are of exponential type and are denoted by EFupn(x,ω).While ABFs of the algebraic type are already represented in the numerical modeling of various problems inmathematical physics and computationalmechanics,ABFs of the exponential type have not yet been sufficiently researched.These functions,unlike the ABFs of the algebraic type Fupn(x),contain the tension parameterω,which gives them additional approximation properties.Exponential monomials up to the nth degree can be described exactly by the linear combination of the functions EFupn(x,ω).The function EFupn for n=0 is called the“mother”ABF of the exponential type,i.e.,EFup0(x,ω)≡Eup(x,ω).In other words,the functions EFupn(x,ω)are elements of the linear vector space EUPn and retain all the properties of their“mother”function Eup(x,ω).Thus,this paper,in terms of its content and purpose,can be understood as a sequel of the article by Brajcic Kurbasa et al.,which shows the basic properties and application of the basis function Eup(x,ω).This paper presents,in an analogous way,the development and application of the exponential basis functions EFupn(x,ω).Here,for the first time,expressions for calculating the values of the functions EFupn(x,ω)and their derivatives are given in a form suitable for application in numerical analyses,which is shown in the verification examples of the approximations of known functions.展开更多
Atomically‐dispersed copper sites coordinated with nitrogen‐doped carbon(Cu–N–C)can provide novel possibilities to enable highly selective and active electrochemical CO_(2) reduction reactions.However,the construc...Atomically‐dispersed copper sites coordinated with nitrogen‐doped carbon(Cu–N–C)can provide novel possibilities to enable highly selective and active electrochemical CO_(2) reduction reactions.However,the construction of optimal local electronic structures for nitrogen‐coordinated Cu sites(Cu–N_(4))on carbon remains challenging.Here,we synthesized the Cu–N–C catalysts with atomically‐dispersed edge‐hosted Cu–N_(4) sites(Cu–N_(4)C_(8))located in a micropore between two graphitic sheets via a facile method to control the concentration of metal precursor.Edge‐hosted Cu–N_(4)C_(8) catalysts outperformed the previously reported M–N–C catalysts for CO_(2)‐to‐CO conversion,achieving a maximum CO Faradaic efficiency(FECO)of 96%,a CO current density of–8.97 mA cm^(–2) at–0.8 V versus reversible hydrogen electrode(RHE),and over FECO of 90%from–0.6 to–1.0 V versus RHE.Computational studies revealed that the micropore of the graphitic layer in edge‐hosted Cu–N_(4)C_(8) sites causes the d‐orbital energy level of the Cu atom to shift upward,which in return decreases the occupancy of antibonding states in the*COOH binding.This research suggests new insights into tailoring the locally coordinated structure of the electrocatalyst at the atomic scale to achieve highly selective electrocatalytic reactions.展开更多
Following A. Einsteins aspirations for an atomic theory, a novel theory of spacetime quantization/atomization based on finite Atomic AString Functions evolving since the 1970s is offered. Atomization Theorems allow re...Following A. Einsteins aspirations for an atomic theory, a novel theory of spacetime quantization/atomization based on finite Atomic AString Functions evolving since the 1970s is offered. Atomization Theorems allow representing polynomials, analytic functions, and solutions of General Relativity via the superposition of solitonic atoms which can be associated with flexible spacetime quanta, metriants, or elementary distortions. With multiple interpretations discussed, discrete-continuous spacetime is conceptualized as a lattice network of flexible solitonic atoms adjusting locations to reproduce different metrics. The theory may offer some variants of unified field theory under research based on Atomic AString Function where, like in string theory, fields become interconnected having a common mathematical ancestor.展开更多
A novel model of spacetime and fields atomization based on Atomic Series over finite Atomic AString Functions is offered. Formulated Atomization Theorems allow representing polynomials, analytic functions, and solutio...A novel model of spacetime and fields atomization based on Atomic Series over finite Atomic AString Functions is offered. Formulated Atomization Theorems allow representing polynomials, analytic functions, and solutions of field equations including General Relativity via superposition of solitonic atoms which can be associated with flexible spacetime quantum, metriants, or elementary distortions. Spacetime is conceptualized as a lattice of flexible Atomic Solitons adjusting locations to reproduce different metrics and other physical fields. It may offer the variants of unified field theory based on Atomic Solitons where, like in string theory, fields become interconnected having a common mathematical ancestor.展开更多
In present article a number of results are described in a systematic way concerning both signal and image processing problems with respect to atomic functions theory and Prouhet-Tbue-Morse sequence.
The possibility of using finite atomic functions of Kravchenko-Rvachev for description of the laws of distribution of the refractive index of the troposphere,the intensity of the scattering from the sea,seasonal behav...The possibility of using finite atomic functions of Kravchenko-Rvachev for description of the laws of distribution of the refractive index of the troposphere,the intensity of the scattering from the sea,seasonal behavior unit radar cross section(RCS)of land areas with vegetation covering,as well as the spectrum of electromagnetic spikes of lithospheric origin is considered.展开更多
Due to low cost,high capacity,and high energy density,lithium–sulfur(Li–S)batteries have attracted much attention;however,their cycling performance was largely limited by the poor redox kinetics and low sulfur utili...Due to low cost,high capacity,and high energy density,lithium–sulfur(Li–S)batteries have attracted much attention;however,their cycling performance was largely limited by the poor redox kinetics and low sulfur utilization.Herein,predicted by density functional theory calculations,single‐atomic Co‐B2N2 site‐imbedded boron and nitrogen co‐doped carbon nanotubes(SA‐Co/BNC)were designed to accomplish high sulfur loading,fast kinetic,and long service period Li–S batteries.Experiments proved that Co‐B2N2 atomic sites can effectively catalyze lithium polysulfide conversion.Therefore,the electrodes delivered a specific capacity of 1106 mAh g−1 at 0.2 C after 100 cycles and exhibited an outstanding cycle performance over 1000 cycles at 1 C with a decay rate of 0.032%per cycle.Our study offers a new strategy to couple the combined effect of nanocarriers and single‐atomic catalysts in novel coordination environments for high‐performance Li–S batteries.展开更多
Diatomic catalysts(DACs)with two adjacent metal atoms supported on graphene can offer diverse functionalities,overcoming the inherent limitations of single atom catalysts(SACs).In this study,density functional theory ...Diatomic catalysts(DACs)with two adjacent metal atoms supported on graphene can offer diverse functionalities,overcoming the inherent limitations of single atom catalysts(SACs).In this study,density functional theory calculations were conducted to investigate the reactivity of the carbon dioxide(CO_(2))reduction reaction(CO_(2)RR)on metal sites of both DACs and SACs,as well as their synergistic effects on activity and selectivity.Calculation of the Gibbs free energies of CO_(2)RR and associated values of the limiting potentials to generate C_(1) products showed that Cu acts as a promoter rather than an active catalytic centre in the catalytic CO_(2)conversion on heteronuclear DACs(CuN_(4)-MN_(4)),improving the catalytic activity on the other metal compared to the related SAC MN_(4).Cu enhances the initial reduction of CO_(2)by promoting orbital hybridization between the key intermediate*COOH 2p-orbitals and the metals 3d-orbitals around the Fermi level.This degree of hybridization in the DACs CuN_(4)-MN_(4) decreases from Fe to Co,Ni,and Zn.Our work demonstrates how Cu regulates the CO_(2)RR performance of heteronuclear DACs,offering an effective approach to designing practical,stable,and high-performing diatomic catalysts for CO_(2)electroreduction.展开更多
Strongly-interacting Rydberg atomic ensembles have shown intense collective excitation effects due to the inclusion of single Rydberg excitation shared by multiple atoms in the ensemble.In this paper we investigate a ...Strongly-interacting Rydberg atomic ensembles have shown intense collective excitation effects due to the inclusion of single Rydberg excitation shared by multiple atoms in the ensemble.In this paper we investigate a counter-intuitive Rydberg excitation facilitation with a strongly-interacting atomic ensemble in the strong probe-field regime,which is enabled by the role of a control atom nearby.Differing from the case of a single ensemble,we show that,the control atom's excitation adds to a second two-photon transition onto the doubly-excited Rydberg state,arising an excitation facilitation for the ensemble atoms.Our numerical studies depending on the method of quantum Monte Carlo wave function,exhibit the observation constraints of this excitation facilitation effect under practical experimental conditions.The results obtained can provide a flexible control for the excitation of Rydberg atomic ensembles and participate further uses in developing mesoscopic Rydberg gates for multiqubit quantum computation.展开更多
The atomic pair distribution function(PDF) reveals the interatomic distance in a material directly in real-space. It is a very powerful method to characterize the local structure of materials. With the help of the t...The atomic pair distribution function(PDF) reveals the interatomic distance in a material directly in real-space. It is a very powerful method to characterize the local structure of materials. With the help of the third generation synchrotron facility and spallation neutron source worldwide, the PDF method has developed quickly both experimentally and theoretically in recent years. Recently this method was successfully implemented at the Shanghai Synchrotron Radiation Facility(SSRF). The data quality is very high and this ensures the applicability of the method to study the subtle structural changes in complex materials. In this article, we introduce in detail this new method and show some experimental data we collected.展开更多
Based on the Einstein, Podolsky, and Rosen (EPR) entangled state representation, this paper introduces the wave function for the squeezed atomic coherent state (SACS), which turns out to be just proportional to a ...Based on the Einstein, Podolsky, and Rosen (EPR) entangled state representation, this paper introduces the wave function for the squeezed atomic coherent state (SACS), which turns out to be just proportional to a single-variable ordinary Hermite polynomial of order 2j. As important applications of the wave function, the Wigner function of the SACS and its marginal distribution are obtained and the eigenproblems of some Hamiltonians for the generalized angular momentum system are solved.展开更多
The polarization switching plays a crucial role in controlling the final products in the catalytic pro-cess.The effect of polarization orientation on nitrogen reduction was investigated by anchoring transition metal a...The polarization switching plays a crucial role in controlling the final products in the catalytic pro-cess.The effect of polarization orientation on nitrogen reduction was investigated by anchoring transition metal atoms to form active centers on ferroelectric material In_(2)Se_(3).During the polariza-tion switching process,the difference in surface electrostatic potential leads to a redistribution of electronic states.This affects the interaction strength between the adsorbed small molecules and the catalyst substrate,thereby altering the reaction barrier.In addition,the surface states must be considered to prevent the adsorption of other small molecules(such as *O,*OH,and *H).Further-more,the V@↓-In_(2)Se_(3) possesses excellent catalytic properties,high electrochemical and thermody-namic stability,which facilitates the catalytic process.Machine learning also helps us further ex-plore the underlying mechanisms.The systematic investigation provides novel insights into the design and application of two-dimensional switchable ferroelectric catalysts for various chemical processes.展开更多
We propose a scheme for the reconstruction of a cavity field state. In the scheme the cavity field is first displaced by a microwave source, and then is placed in front of one slit of the two-slit apparatus. Ground st...We propose a scheme for the reconstruction of a cavity field state. In the scheme the cavity field is first displaced by a microwave source, and then is placed in front of one slit of the two-slit apparatus. Ground state atoms pass through the apparatus, hitting upon the screen far away from the two-slit apparatus. The atom-field interaction is dispersive. The contrast of interference fringes is directly related to the Wigner function for the field state. The scheme can be easily generalized to measure the Wigner function of an entangled state of two spatially separated single-mode cavities.展开更多
Three novel branched polyamines N,N,N’,N’-tetrakis-[3((pyridine-2-methyl)-amine) propyl]-1,4- butanediamine (1), N,N,N’,N’-tetrakis-[N-((2-methylpyridine)ethyl)propanamide]ethylenediamine (2) and N,N,N’,N’-tetra...Three novel branched polyamines N,N,N’,N’-tetrakis-[3((pyridine-2-methyl)-amine) propyl]-1,4- butanediamine (1), N,N,N’,N’-tetrakis-[N-((2-methylpyridine)ethyl)propanamide]ethylenediamine (2) and N,N,N’,N’-tetrakis-[3((2-hidroxibenziliden)-amine)propyl]-1,4-butanediamine (3), were synthesized starting from 2-pyridinecarboxaldeyde with DAB-Am-4 for 1, PAMAM G0 for 2 and from salicylaldehyde with DAB-Am-4 for 3. The pathway reactions have been proposed by 1H-NMR, IR and Atomic Absorption Spectroscopy. The optimal reaction time was set by IR spectroscopy following aldehyde? peak modification. 1 and 2 were obtained as both hydrochlorides and as free amines and 3 only as free imine. These polyamines were characterized by UV-Vis, IR, 1H-NMR and 13C-NMR and Mass Spectrometry.展开更多
This paper presents exponential Atomic Basis Functions(ABF),which are called Eup(x;w).These functions are infinitely differentiable finite functions that unlike algebraic up(x)basis functions,have an unspecified param...This paper presents exponential Atomic Basis Functions(ABF),which are called Eup(x;w).These functions are infinitely differentiable finite functions that unlike algebraic up(x)basis functions,have an unspecified parameter-frequency w.Numerical experiments show that this class of atomic functions has good approximation properties,especially in the case of large gradients(Gibbs phenomenon).In this work,for the first time,the properties of exponential ABF are thoroughly investigated and the expression for calculating the value of the basis function at an arbitrary point of the domain is given in a form suitable for implementation in numerical analysis.Application of these basis functions is shown in the function approximation example.The procedure for determining the best frequencies,which gives the smallest approximation error in terms of the least squares method,is presented.展开更多
Pd-Rh nanoparticles are known to easily undergo surface restructuring in reactive environment. This study quantifies, with the help of density functional(DFT) calculations and a novel topological approach, atomic orde...Pd-Rh nanoparticles are known to easily undergo surface restructuring in reactive environment. This study quantifies, with the help of density functional(DFT) calculations and a novel topological approach, atomic ordering and surface segregation effects in Pd-Rh particles with compositions 1:3, 1:1 and 3:1 containing up to 201 atoms(ca. 1.7 nm). The obtained data are used to reliably optimise energetically preferred atomic orderings in inaccessible by DFT Pd-Rh particles containing thousands of atoms and exhibiting sizes exceeding 5 nm, which are typical for catalytic metal particles. It is outlined, how segregation effects on the surface arrangement of Pd-Rh nanoalloy catalysts induced by adsorbates can be evaluated in a simple way within the present modelling setup.展开更多
The following article has been retracted due to the investigation of complaints received against it. The Editorial Board found that substantial portions of the text came from other published papers. The scientific com...The following article has been retracted due to the investigation of complaints received against it. The Editorial Board found that substantial portions of the text came from other published papers. The scientific community takes a very strong view on this matter, and the Health treats all unethical behavior such as plagiarism seriously. This paper published in Vol.3 No. 4, 334-339, 2012, has been removed from this site.展开更多
文摘The electronic modulation characteristics of efficient metal phosphide electrocatalysts can be utilized to tune the performance of oxygen evolution reaction(OER).However,improving the overall water splitting performance remains a challenging task.By building metal organic framework(MOF)on MOF heterostructures,an efficient strategy for controlling the electrical structure of MOFs was presented in this study.ZIF-67 was in-situ synthesized on MIL-88(Fe)using a two-step self-assembly method,followed by low-temperature phosphorization to ultimately synthesize FeP-CoP_(3)bimetallic phosphides.By combining atomic orbital theory and theoretical calculations(density functional theory),the results reveal the successful modulation of electronic orbitals in FeP-CoP_(3)bimetallic phosphides,which are synthesized from MOF on MOF structure.The synergistic impact of the metal center Co species and the phase conjugation of both kinds of MOFs are responsible for this regulatory phenomenon.Therefore,the catalyst demonstrates excellent properties,demonstrating HER 81 mV(η10)in a 1.0 mol L^(−1)KOH solution and OER 239 mV(η50)low overpotentials.The FeP-CoP_(3)linked dual electrode alkaline batteries,which are bifunctional electrocatalysts,have a good electrocatalytic ability and may last for 50 h.They require just 1.49 V(η50)for total water breakdown.Through this technique,the electrical structure of electrocatalysts may be altered to increase catalytic activity.
基金supported through Project KK.01.1.1.02.0027a project co-financed by the Croatian Government and the European Union through the European Regional Development Fund-the Competitiveness and Cohesion Operational Programme.
文摘The purpose of this paper is to present the class of atomic basis functions(ABFs)which are of exponential type and are denoted by EFupn(x,ω).While ABFs of the algebraic type are already represented in the numerical modeling of various problems inmathematical physics and computationalmechanics,ABFs of the exponential type have not yet been sufficiently researched.These functions,unlike the ABFs of the algebraic type Fupn(x),contain the tension parameterω,which gives them additional approximation properties.Exponential monomials up to the nth degree can be described exactly by the linear combination of the functions EFupn(x,ω).The function EFupn for n=0 is called the“mother”ABF of the exponential type,i.e.,EFup0(x,ω)≡Eup(x,ω).In other words,the functions EFupn(x,ω)are elements of the linear vector space EUPn and retain all the properties of their“mother”function Eup(x,ω).Thus,this paper,in terms of its content and purpose,can be understood as a sequel of the article by Brajcic Kurbasa et al.,which shows the basic properties and application of the basis function Eup(x,ω).This paper presents,in an analogous way,the development and application of the exponential basis functions EFupn(x,ω).Here,for the first time,expressions for calculating the values of the functions EFupn(x,ω)and their derivatives are given in a form suitable for application in numerical analyses,which is shown in the verification examples of the approximations of known functions.
基金National Research Foundation of Korea,Grant/Award Numbers:NRF‐2019M3D1A1079303,NRF‐2021R1A2C1011415,NRF‐2021R1A2C3004019。
文摘Atomically‐dispersed copper sites coordinated with nitrogen‐doped carbon(Cu–N–C)can provide novel possibilities to enable highly selective and active electrochemical CO_(2) reduction reactions.However,the construction of optimal local electronic structures for nitrogen‐coordinated Cu sites(Cu–N_(4))on carbon remains challenging.Here,we synthesized the Cu–N–C catalysts with atomically‐dispersed edge‐hosted Cu–N_(4) sites(Cu–N_(4)C_(8))located in a micropore between two graphitic sheets via a facile method to control the concentration of metal precursor.Edge‐hosted Cu–N_(4)C_(8) catalysts outperformed the previously reported M–N–C catalysts for CO_(2)‐to‐CO conversion,achieving a maximum CO Faradaic efficiency(FECO)of 96%,a CO current density of–8.97 mA cm^(–2) at–0.8 V versus reversible hydrogen electrode(RHE),and over FECO of 90%from–0.6 to–1.0 V versus RHE.Computational studies revealed that the micropore of the graphitic layer in edge‐hosted Cu–N_(4)C_(8) sites causes the d‐orbital energy level of the Cu atom to shift upward,which in return decreases the occupancy of antibonding states in the*COOH binding.This research suggests new insights into tailoring the locally coordinated structure of the electrocatalyst at the atomic scale to achieve highly selective electrocatalytic reactions.
文摘Following A. Einsteins aspirations for an atomic theory, a novel theory of spacetime quantization/atomization based on finite Atomic AString Functions evolving since the 1970s is offered. Atomization Theorems allow representing polynomials, analytic functions, and solutions of General Relativity via the superposition of solitonic atoms which can be associated with flexible spacetime quanta, metriants, or elementary distortions. With multiple interpretations discussed, discrete-continuous spacetime is conceptualized as a lattice network of flexible solitonic atoms adjusting locations to reproduce different metrics. The theory may offer some variants of unified field theory under research based on Atomic AString Function where, like in string theory, fields become interconnected having a common mathematical ancestor.
文摘A novel model of spacetime and fields atomization based on Atomic Series over finite Atomic AString Functions is offered. Formulated Atomization Theorems allow representing polynomials, analytic functions, and solutions of field equations including General Relativity via superposition of solitonic atoms which can be associated with flexible spacetime quantum, metriants, or elementary distortions. Spacetime is conceptualized as a lattice of flexible Atomic Solitons adjusting locations to reproduce different metrics and other physical fields. It may offer the variants of unified field theory based on Atomic Solitons where, like in string theory, fields become interconnected having a common mathematical ancestor.
基金Russian Foundation for Basic Research(No.130212065)
文摘In present article a number of results are described in a systematic way concerning both signal and image processing problems with respect to atomic functions theory and Prouhet-Tbue-Morse sequence.
文摘The possibility of using finite atomic functions of Kravchenko-Rvachev for description of the laws of distribution of the refractive index of the troposphere,the intensity of the scattering from the sea,seasonal behavior unit radar cross section(RCS)of land areas with vegetation covering,as well as the spectrum of electromagnetic spikes of lithospheric origin is considered.
基金Yunnan Expert Workstation,Grant/Award Number:202005AF150028Program for the Outstanding Young Talents of Hebei Province,China,Grant/Award Number:YGZ+6 种基金Guangdong Innovative and Entrepreneurial Team Program,Grant/Award Number:2016ZT06C517Guangdong Science and Technology Department,Grant/Award Number:2020B0909030004National Natural Science Foundation of China,Grant/Award Numbers:21601136,22075211,52071125Outstanding Youth Project of Guangdong Natural Science Foundation,Grant/Award Number:2021B1515020051Natural Science Foundation of Hebei Province,China,Grant/Award Numbers:B2020202052,B2021202028,E2020202071Chunhui Project of Ministry of Education of the People's Republic of China,Grant/Award Number:Z2017010Science and Technology Program of Guangzhou,Grant/Award Number:2019050001。
文摘Due to low cost,high capacity,and high energy density,lithium–sulfur(Li–S)batteries have attracted much attention;however,their cycling performance was largely limited by the poor redox kinetics and low sulfur utilization.Herein,predicted by density functional theory calculations,single‐atomic Co‐B2N2 site‐imbedded boron and nitrogen co‐doped carbon nanotubes(SA‐Co/BNC)were designed to accomplish high sulfur loading,fast kinetic,and long service period Li–S batteries.Experiments proved that Co‐B2N2 atomic sites can effectively catalyze lithium polysulfide conversion.Therefore,the electrodes delivered a specific capacity of 1106 mAh g−1 at 0.2 C after 100 cycles and exhibited an outstanding cycle performance over 1000 cycles at 1 C with a decay rate of 0.032%per cycle.Our study offers a new strategy to couple the combined effect of nanocarriers and single‐atomic catalysts in novel coordination environments for high‐performance Li–S batteries.
基金the China Scholarship Council for financial supportthe funding by the Leverhulme Trust(RPG2019-122)+4 种基金the ACT program(Accelerating CCS Technologies,Horizon2020 Project No.294766),which funded the FUNMIN projectFinancial contributions were made from Department for Business,Energy&Industrial Strategy(BEIS)together with extra funding from NERC and EPSRC research councils,United Kingdom,ADEME(FR),MINECO-AEI(ES)partially funded by EPSRC(EP/P020194/1)funded by EPSRC(EP/L000202)supported by QMUL Research-IT。
文摘Diatomic catalysts(DACs)with two adjacent metal atoms supported on graphene can offer diverse functionalities,overcoming the inherent limitations of single atom catalysts(SACs).In this study,density functional theory calculations were conducted to investigate the reactivity of the carbon dioxide(CO_(2))reduction reaction(CO_(2)RR)on metal sites of both DACs and SACs,as well as their synergistic effects on activity and selectivity.Calculation of the Gibbs free energies of CO_(2)RR and associated values of the limiting potentials to generate C_(1) products showed that Cu acts as a promoter rather than an active catalytic centre in the catalytic CO_(2)conversion on heteronuclear DACs(CuN_(4)-MN_(4)),improving the catalytic activity on the other metal compared to the related SAC MN_(4).Cu enhances the initial reduction of CO_(2)by promoting orbital hybridization between the key intermediate*COOH 2p-orbitals and the metals 3d-orbitals around the Fermi level.This degree of hybridization in the DACs CuN_(4)-MN_(4) decreases from Fe to Co,Ni,and Zn.Our work demonstrates how Cu regulates the CO_(2)RR performance of heteronuclear DACs,offering an effective approach to designing practical,stable,and high-performing diatomic catalysts for CO_(2)electroreduction.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12174106 and 11474094)the Science and Technology Commission of Shanghai Municipality(Grant No.18ZR1412800)。
文摘Strongly-interacting Rydberg atomic ensembles have shown intense collective excitation effects due to the inclusion of single Rydberg excitation shared by multiple atoms in the ensemble.In this paper we investigate a counter-intuitive Rydberg excitation facilitation with a strongly-interacting atomic ensemble in the strong probe-field regime,which is enabled by the role of a control atom nearby.Differing from the case of a single ensemble,we show that,the control atom's excitation adds to a second two-photon transition onto the doubly-excited Rydberg state,arising an excitation facilitation for the ensemble atoms.Our numerical studies depending on the method of quantum Monte Carlo wave function,exhibit the observation constraints of this excitation facilitation effect under practical experimental conditions.The results obtained can provide a flexible control for the excitation of Rydberg atomic ensembles and participate further uses in developing mesoscopic Rydberg gates for multiqubit quantum computation.
基金Project supported by the National Natural Science Foundation of China(Grant No.U1232112)the National Key Basic Research Program of China(Grant No.2012CB825700)
文摘The atomic pair distribution function(PDF) reveals the interatomic distance in a material directly in real-space. It is a very powerful method to characterize the local structure of materials. With the help of the third generation synchrotron facility and spallation neutron source worldwide, the PDF method has developed quickly both experimentally and theoretically in recent years. Recently this method was successfully implemented at the Shanghai Synchrotron Radiation Facility(SSRF). The data quality is very high and this ensures the applicability of the method to study the subtle structural changes in complex materials. In this article, we introduce in detail this new method and show some experimental data we collected.
基金Project supported by the Natural Science Foundation of Shandong Province, China (Grant No. Y2008A23)
文摘Based on the Einstein, Podolsky, and Rosen (EPR) entangled state representation, this paper introduces the wave function for the squeezed atomic coherent state (SACS), which turns out to be just proportional to a single-variable ordinary Hermite polynomial of order 2j. As important applications of the wave function, the Wigner function of the SACS and its marginal distribution are obtained and the eigenproblems of some Hamiltonians for the generalized angular momentum system are solved.
文摘The polarization switching plays a crucial role in controlling the final products in the catalytic pro-cess.The effect of polarization orientation on nitrogen reduction was investigated by anchoring transition metal atoms to form active centers on ferroelectric material In_(2)Se_(3).During the polariza-tion switching process,the difference in surface electrostatic potential leads to a redistribution of electronic states.This affects the interaction strength between the adsorbed small molecules and the catalyst substrate,thereby altering the reaction barrier.In addition,the surface states must be considered to prevent the adsorption of other small molecules(such as *O,*OH,and *H).Further-more,the V@↓-In_(2)Se_(3) possesses excellent catalytic properties,high electrochemical and thermody-namic stability,which facilitates the catalytic process.Machine learning also helps us further ex-plore the underlying mechanisms.The systematic investigation provides novel insights into the design and application of two-dimensional switchable ferroelectric catalysts for various chemical processes.
基金国家自然科学基金,Science Research Foundation ofEducation Office of Fujian Province of China,福州大学校科研和教改项目
文摘We propose a scheme for the reconstruction of a cavity field state. In the scheme the cavity field is first displaced by a microwave source, and then is placed in front of one slit of the two-slit apparatus. Ground state atoms pass through the apparatus, hitting upon the screen far away from the two-slit apparatus. The atom-field interaction is dispersive. The contrast of interference fringes is directly related to the Wigner function for the field state. The scheme can be easily generalized to measure the Wigner function of an entangled state of two spatially separated single-mode cavities.
文摘Three novel branched polyamines N,N,N’,N’-tetrakis-[3((pyridine-2-methyl)-amine) propyl]-1,4- butanediamine (1), N,N,N’,N’-tetrakis-[N-((2-methylpyridine)ethyl)propanamide]ethylenediamine (2) and N,N,N’,N’-tetrakis-[3((2-hidroxibenziliden)-amine)propyl]-1,4-butanediamine (3), were synthesized starting from 2-pyridinecarboxaldeyde with DAB-Am-4 for 1, PAMAM G0 for 2 and from salicylaldehyde with DAB-Am-4 for 3. The pathway reactions have been proposed by 1H-NMR, IR and Atomic Absorption Spectroscopy. The optimal reaction time was set by IR spectroscopy following aldehyde? peak modification. 1 and 2 were obtained as both hydrochlorides and as free amines and 3 only as free imine. These polyamines were characterized by UV-Vis, IR, 1H-NMR and 13C-NMR and Mass Spectrometry.
文摘This paper presents exponential Atomic Basis Functions(ABF),which are called Eup(x;w).These functions are infinitely differentiable finite functions that unlike algebraic up(x)basis functions,have an unspecified parameter-frequency w.Numerical experiments show that this class of atomic functions has good approximation properties,especially in the case of large gradients(Gibbs phenomenon).In this work,for the first time,the properties of exponential ABF are thoroughly investigated and the expression for calculating the value of the basis function at an arbitrary point of the domain is given in a form suitable for implementation in numerical analysis.Application of these basis functions is shown in the function approximation example.The procedure for determining the best frequencies,which gives the smallest approximation error in terms of the least squares method,is presented.
基金financed by the Generalitat de Catalunya via a pre-doctoral grant 2018FI-B-00384the Operational program“Science and Education for Smart Growth”,project BG05M2OP001-2.009-0028 for funding his research stay in the University of Barcelona+2 种基金financial support by the Bulgarian Ministry of Education and Science under the National Research Programme“Low-carbon Energy for the Transportsupport by the Spanish grants PGC2018-093863-B-C22,CTQ2015-64618-RMDM-2017-0767 as well as by the grant 2017SGR13 of the Generalitat de Catalunya
文摘Pd-Rh nanoparticles are known to easily undergo surface restructuring in reactive environment. This study quantifies, with the help of density functional(DFT) calculations and a novel topological approach, atomic ordering and surface segregation effects in Pd-Rh particles with compositions 1:3, 1:1 and 3:1 containing up to 201 atoms(ca. 1.7 nm). The obtained data are used to reliably optimise energetically preferred atomic orderings in inaccessible by DFT Pd-Rh particles containing thousands of atoms and exhibiting sizes exceeding 5 nm, which are typical for catalytic metal particles. It is outlined, how segregation effects on the surface arrangement of Pd-Rh nanoalloy catalysts induced by adsorbates can be evaluated in a simple way within the present modelling setup.
文摘The following article has been retracted due to the investigation of complaints received against it. The Editorial Board found that substantial portions of the text came from other published papers. The scientific community takes a very strong view on this matter, and the Health treats all unethical behavior such as plagiarism seriously. This paper published in Vol.3 No. 4, 334-339, 2012, has been removed from this site.