Internet of Things(IoT)applications can be found in various industry areas,including critical infrastructure and healthcare,and IoT is one of several technological developments.As a result,tens of billions or possibly...Internet of Things(IoT)applications can be found in various industry areas,including critical infrastructure and healthcare,and IoT is one of several technological developments.As a result,tens of billions or possibly hundreds of billions of devices will be linked together.These smart devices will be able to gather data,process it,and even come to decisions on their own.Security is the most essential thing in these situations.In IoT infrastructure,authenticated key exchange systems are crucial for preserving client and data privacy and guaranteeing the security of data-in-transit(e.g.,via client identification and provision of secure communication).It is still challenging to create secure,authenticated key exchange techniques.The majority of the early authenticated key agreement procedure depended on computationally expensive and resource-intensive pairing,hashing,or modular exponentiation processes.The focus of this paper is to propose an efficient three-party authenticated key exchange procedure(AKEP)using Chebyshev chaotic maps with client anonymity that solves all the problems mentioned above.The proposed three-party AKEP is protected from several attacks.The proposed three-party AKEP can be used in practice for mobile communications and pervasive computing applications,according to statistical experiments and low processing costs.To protect client identification when transferring data over an insecure public network,our three-party AKEP may also offer client anonymity.Finally,the presented procedure offers better security features than the procedures currently available in the literature.展开更多
Because cross-realm C2C-PAKE (client-to-client password authenticated key exchange) protocols can not resist some attacks, this paper writes up new attacks on two representative protocols, then designs a new cross-r...Because cross-realm C2C-PAKE (client-to-client password authenticated key exchange) protocols can not resist some attacks, this paper writes up new attacks on two representative protocols, then designs a new cross-realm C2C-PAKE protocol with signature and optimal number of rounds for a client (only 2-rounds between a client and a server). Finally, it is proved that the new protocol can be resistant to all known attacks through heuristic analysis and that it brings more security through the comparisons of security properties with other protocols.展开更多
In three-party password authenticated key exchange (AKE) protocol, since two users use their passwords to establish a secure session key over an insecure communication channel with the help of the trusted server, su...In three-party password authenticated key exchange (AKE) protocol, since two users use their passwords to establish a secure session key over an insecure communication channel with the help of the trusted server, such a protocol may suffer the password guessing attacks and the server has to maintain the password table. To eliminate the shortages of password- based AKE protocol, very recently, according to chaotic maps, Lee et al. [2015 Nonlinear Dyn. 79 2485] proposed a first three-party-authenticated key exchange scheme without using passwords, and claimed its security by providing a well- organized BAN logic test. Unfortunately, their protocol cannot resist impersonation attack, which is demonstrated in the present paper. To overcome their security weakness, by using chaotic maps, we propose a biometrics-based anonymous three-party AKE protocol with the same advantages. Further, we use the pi calculus-based formal verification tool ProVerif to show that our AKE protocol achieves authentication, security and anonymity, and an acceptable efficiency.展开更多
Multi-factor authentication(MFA)was proposed by Pointcheval et al.[Pointcheval and Zimmer(2008)]to improve the security of single-factor(and two-factor)authentication.As the backbone of multi-factor authentication,bio...Multi-factor authentication(MFA)was proposed by Pointcheval et al.[Pointcheval and Zimmer(2008)]to improve the security of single-factor(and two-factor)authentication.As the backbone of multi-factor authentication,biometric data are widely observed.Especially,how to keep the privacy of biometric at the password database without impairing efficiency is still an open question.Using the vulnerability of encryption(or hash)algorithms,the attacker can still launch offline brute-force attacks on encrypted(or hashed)biometric data.To address the potential risk of biometric disclosure at the password database,in this paper,we propose a novel efficient and secure MFA key exchange(later denoted as MFAKE)protocol leveraging the Pythia PRF service and password-to-random(or PTR)protocol.Armed with the PTR protocol,a master password pwd can be translated by the user into independent pseudorandom passwords(or rwd)for each user account with the help of device(e.g.,smart phone).Meanwhile,using the Pythia PRF service,the password database can avoid leakage of the local user’s password and biometric data.This is the first paper to achieve the password and biometric harden service simultaneously using the PTR protocol and Pythia PRF.展开更多
Cross-domain password-based authenticated key exchange (PAKE) protocols have been studied for many years. However, these protocols are mainly focusing on multi-participant within a single domain in an open network e...Cross-domain password-based authenticated key exchange (PAKE) protocols have been studied for many years. However, these protocols are mainly focusing on multi-participant within a single domain in an open network environment. This paper proposes a novel approach for designing a cross-domain group PAKE protocol, that primarily handles with the setting of multi-participant in the multi- domain. Moreover, our protocol is proved secure against active adversary in the Real-or-Random (ROR) model. In our protocol, no interaction occurs between any two domain authentication servers. They are regarded as ephemeral certificate authorities (CAs) to certify key materials that participants might subsequently use to exchange and agree on group session key. We further justify the computational complexity and measure the average computation time of our protocol. To the best of our knowledge, this is the first work to analyze and discuss a provably secure multi-participant cross-domain group PAKE protocol.展开更多
Three-party password authenticated key exchange (3PAKE) protocol plays a significant role in the history of secure communication area in which two clients agree a robust session key in an authentic manner based on pas...Three-party password authenticated key exchange (3PAKE) protocol plays a significant role in the history of secure communication area in which two clients agree a robust session key in an authentic manner based on passwords. In recent years, researchers focused on developing simple 3PAKE (S-3PAKE) protocol to gain system e?ciency while preserving security robustness for the system. In this study, we first demonstrate how an undetectable on-line dictionary attack can be successfully applied over three existing S-3PAKE schemes. An error correction code (ECC) based S-3PAKE protocol is then introduced to eliminate the identified authentication weakness.展开更多
Combined public key (CPK) cryptography does not need certificates to guarantee the authenticity of public keys and avoids the inherent key escrow problem of identity-based cryptography. Based on the efficient CPK sc...Combined public key (CPK) cryptography does not need certificates to guarantee the authenticity of public keys and avoids the inherent key escrow problem of identity-based cryptography. Based on the efficient CPK scheme, we present an efficient three-round two-party authenticated key exchange protocol with strong security, which is provably secure in the standard model under the decisional Diffie-Hellman (DDH) assumption. The protocol can keep the session key secret from the adversary except that one party's ephemeral private key and static private key are all revealed to the adversary. Compared to the existing protocols, this protocol not only assures strong security but also is more efficient.展开更多
文摘Internet of Things(IoT)applications can be found in various industry areas,including critical infrastructure and healthcare,and IoT is one of several technological developments.As a result,tens of billions or possibly hundreds of billions of devices will be linked together.These smart devices will be able to gather data,process it,and even come to decisions on their own.Security is the most essential thing in these situations.In IoT infrastructure,authenticated key exchange systems are crucial for preserving client and data privacy and guaranteeing the security of data-in-transit(e.g.,via client identification and provision of secure communication).It is still challenging to create secure,authenticated key exchange techniques.The majority of the early authenticated key agreement procedure depended on computationally expensive and resource-intensive pairing,hashing,or modular exponentiation processes.The focus of this paper is to propose an efficient three-party authenticated key exchange procedure(AKEP)using Chebyshev chaotic maps with client anonymity that solves all the problems mentioned above.The proposed three-party AKEP is protected from several attacks.The proposed three-party AKEP can be used in practice for mobile communications and pervasive computing applications,according to statistical experiments and low processing costs.To protect client identification when transferring data over an insecure public network,our three-party AKEP may also offer client anonymity.Finally,the presented procedure offers better security features than the procedures currently available in the literature.
基金the National Natural Science Foundation of China (2007AA01Z431)
文摘Because cross-realm C2C-PAKE (client-to-client password authenticated key exchange) protocols can not resist some attacks, this paper writes up new attacks on two representative protocols, then designs a new cross-realm C2C-PAKE protocol with signature and optimal number of rounds for a client (only 2-rounds between a client and a server). Finally, it is proved that the new protocol can be resistant to all known attacks through heuristic analysis and that it brings more security through the comparisons of security properties with other protocols.
基金supported by the Natural Science Foundation of Zhejiang Province,China(Grant No.LZ12F02005)the Major State Basic Research Development Program of China(Grant No.2013CB834205)the National Natural Science Foundation of China(Grant No.61070153)
文摘In three-party password authenticated key exchange (AKE) protocol, since two users use their passwords to establish a secure session key over an insecure communication channel with the help of the trusted server, such a protocol may suffer the password guessing attacks and the server has to maintain the password table. To eliminate the shortages of password- based AKE protocol, very recently, according to chaotic maps, Lee et al. [2015 Nonlinear Dyn. 79 2485] proposed a first three-party-authenticated key exchange scheme without using passwords, and claimed its security by providing a well- organized BAN logic test. Unfortunately, their protocol cannot resist impersonation attack, which is demonstrated in the present paper. To overcome their security weakness, by using chaotic maps, we propose a biometrics-based anonymous three-party AKE protocol with the same advantages. Further, we use the pi calculus-based formal verification tool ProVerif to show that our AKE protocol achieves authentication, security and anonymity, and an acceptable efficiency.
基金This work was supported by the National Natural Science Foundation of China(No.61802214)the Natural Science Foundation of Shandong Province(Nos.ZR2019BF009,ZR2018LF007,ZR2017MF0,ZR2016YL011)+2 种基金the Shandong Provincial Key Research and Development Program of China(2018GGX1010052017,CXGC07012016,GGX109001)the Project of Shandong Province Higher Educational Science and Technology Program(No.J17KA049)the Global Infrastructure Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science and ICT(NRF-2018K1A3A1A20026485).
文摘Multi-factor authentication(MFA)was proposed by Pointcheval et al.[Pointcheval and Zimmer(2008)]to improve the security of single-factor(and two-factor)authentication.As the backbone of multi-factor authentication,biometric data are widely observed.Especially,how to keep the privacy of biometric at the password database without impairing efficiency is still an open question.Using the vulnerability of encryption(or hash)algorithms,the attacker can still launch offline brute-force attacks on encrypted(or hashed)biometric data.To address the potential risk of biometric disclosure at the password database,in this paper,we propose a novel efficient and secure MFA key exchange(later denoted as MFAKE)protocol leveraging the Pythia PRF service and password-to-random(or PTR)protocol.Armed with the PTR protocol,a master password pwd can be translated by the user into independent pseudorandom passwords(or rwd)for each user account with the help of device(e.g.,smart phone).Meanwhile,using the Pythia PRF service,the password database can avoid leakage of the local user’s password and biometric data.This is the first paper to achieve the password and biometric harden service simultaneously using the PTR protocol and Pythia PRF.
基金This paper was supported by National 863 Program (2013AA01A212), the National Natural Science Foundation of China (Grant Nos. 61370063, 61272512 and 61300177). Beijing Municipal Natural Science Foundation (4121001), Basic Research Foundation of Beijing Institute of Technology (20120742010 and 2013074200).
文摘Cross-domain password-based authenticated key exchange (PAKE) protocols have been studied for many years. However, these protocols are mainly focusing on multi-participant within a single domain in an open network environment. This paper proposes a novel approach for designing a cross-domain group PAKE protocol, that primarily handles with the setting of multi-participant in the multi- domain. Moreover, our protocol is proved secure against active adversary in the Real-or-Random (ROR) model. In our protocol, no interaction occurs between any two domain authentication servers. They are regarded as ephemeral certificate authorities (CAs) to certify key materials that participants might subsequently use to exchange and agree on group session key. We further justify the computational complexity and measure the average computation time of our protocol. To the best of our knowledge, this is the first work to analyze and discuss a provably secure multi-participant cross-domain group PAKE protocol.
基金the National Science Council (Nos. NSC 99-2218-E-011-014 and NSC 100-2219-E-011-002)
文摘Three-party password authenticated key exchange (3PAKE) protocol plays a significant role in the history of secure communication area in which two clients agree a robust session key in an authentic manner based on passwords. In recent years, researchers focused on developing simple 3PAKE (S-3PAKE) protocol to gain system e?ciency while preserving security robustness for the system. In this study, we first demonstrate how an undetectable on-line dictionary attack can be successfully applied over three existing S-3PAKE schemes. An error correction code (ECC) based S-3PAKE protocol is then introduced to eliminate the identified authentication weakness.
基金Supported by the Key Laboratory Foundation of Communication Technology of China (9140C1103040902)
文摘Combined public key (CPK) cryptography does not need certificates to guarantee the authenticity of public keys and avoids the inherent key escrow problem of identity-based cryptography. Based on the efficient CPK scheme, we present an efficient three-round two-party authenticated key exchange protocol with strong security, which is provably secure in the standard model under the decisional Diffie-Hellman (DDH) assumption. The protocol can keep the session key secret from the adversary except that one party's ephemeral private key and static private key are all revealed to the adversary. Compared to the existing protocols, this protocol not only assures strong security but also is more efficient.