The brain's extracellular matrix(ECM),which is comprised of protein and glycosaminoglycan(GAG)scaffolds,constitutes 20%-40% of the human brain and is considered one of the largest influencers on brain cell functio...The brain's extracellular matrix(ECM),which is comprised of protein and glycosaminoglycan(GAG)scaffolds,constitutes 20%-40% of the human brain and is considered one of the largest influencers on brain cell functioning(Soles et al.,2023).Synthesized by neural and glial cells,the brain's ECM regulates a myriad of homeostatic cellular processes,including neuronal plasticity and firing(Miyata et al.,2012),cation buffering(Moraws ki et al.,2015),and glia-neuron interactions(Anderson et al.,2016).Considering the diversity of functions,dynamic remodeling of the brain's ECM indicates that this understudied medium is an active participant in both normal physiology and neurological diseases.展开更多
Neuronal growth, extension, branching, and formation of neural networks are markedly influenced by the extracellular matrix—a complex network composed of proteins and carbohydrates secreted by cells. In addition to p...Neuronal growth, extension, branching, and formation of neural networks are markedly influenced by the extracellular matrix—a complex network composed of proteins and carbohydrates secreted by cells. In addition to providing physical support for cells, the extracellular matrix also conveys critical mechanical stiffness cues. During the development of the nervous system, extracellular matrix stiffness plays a central role in guiding neuronal growth, particularly in the context of axonal extension, which is crucial for the formation of neural networks. In neural tissue engineering, manipulation of biomaterial stiffness is a promising strategy to provide a permissive environment for the repair and regeneration of injured nervous tissue. Recent research has fine-tuned synthetic biomaterials to fabricate scaffolds that closely replicate the stiffness profiles observed in the nervous system. In this review, we highlight the molecular mechanisms by which extracellular matrix stiffness regulates axonal growth and regeneration. We highlight the progress made in the development of stiffness-tunable biomaterials to emulate in vivo extracellular matrix environments, with an emphasis on their application in neural repair and regeneration, along with a discussion of the current limitations and future prospects. The exploration and optimization of the stiffness-tunable biomaterials has the potential to markedly advance the development of neural tissue engineering.展开更多
Mixed matrix membranes(MMMs)have demonstrated significant promise in energy-intensive gas separations by amalgamating the unique properties of fillers with the facile processability of polymers.However,achieving a sim...Mixed matrix membranes(MMMs)have demonstrated significant promise in energy-intensive gas separations by amalgamating the unique properties of fillers with the facile processability of polymers.However,achieving a simultaneous enhancement of permeability and selectivity remains a formidable challenge,due to the difficulty of achieving an optimal match between polymers and fillers.In this study,we incorporate a porous carbon-based zinc oxide composite(C@ZnO)into high-permeability polymers of intrinsic microporosity(PIMs)to fabricate MMMs.The dipole–dipole interaction between C@ZnO and PIMs ensures their exceptional compatibility,mitigating the formation of non-selective voids in the resulting MMMs.Concurrently,C@ZnO with abundant interconnected pores can provide additional low-resistance pathways for gas transport in MMMs.As a result,the CO_(2) permeability of the optimized C@ZnO/PIM-1 MMMs is elevated to 13,215 barrer,while the CO_(2)/N_(2) and CO_(2)/CH_(4) selectivity reached 21.5 and 14.4,respectively,substantially surpassing the 2008 Robeson upper bound.Additionally,molecular simulation results further corroborate that the augmented membrane gas selectivity is attributed to the superior CO_(2) affinity of C@ZnO.In summary,we believe that this work not only expands the application of MMMs for gas separation but also heralds a paradigm shift in the application of porous carbon materials.展开更多
Vascular endothelial growth factor and its mimic peptide KLTWQELYQLKYKGI(QK)are widely used as the most potent angiogenic factors for the treatment of multiple ischemic diseases.However,conventional topical drug deliv...Vascular endothelial growth factor and its mimic peptide KLTWQELYQLKYKGI(QK)are widely used as the most potent angiogenic factors for the treatment of multiple ischemic diseases.However,conventional topical drug delivery often results in a burst release of the drug,leading to transient retention(inefficacy)and undesirable diffusion(toxicity)in vivo.Therefore,a drug delivery system that responds to changes in the microenvironment of tissue regeneration and controls vascular endothelial growth factor release is crucial to improve the treatment of ischemic stroke.Matrix metalloproteinase-2(MMP-2)is gradually upregulated after cerebral ischemia.Herein,vascular endothelial growth factor mimic peptide QK was self-assembled with MMP-2-cleaved peptide PLGLAG(TIMP)and customizable peptide amphiphilic(PA)molecules to construct nanofiber hydrogel PA-TIMP-QK.PA-TIMP-QK was found to control the delivery of QK by MMP-2 upregulation after cerebral ischemia/reperfusion and had a similar biological activity with vascular endothelial growth factor in vitro.The results indicated that PA-TIMP-QK promoted neuronal survival,restored local blood circulation,reduced blood-brain barrier permeability,and restored motor function.These findings suggest that the self-assembling nanofiber hydrogel PA-TIMP-QK may provide an intelligent drug delivery system that responds to the microenvironment and promotes regeneration and repair after cerebral ischemia/reperfusion injury.展开更多
Intestinal ischemia-reperfusion injury(IIRI)is a complex and severe pathophysiological process characterized by oxidative stress,inflammation,and apoptosis.In recent years,the critical roles of extracellular matrix(EC...Intestinal ischemia-reperfusion injury(IIRI)is a complex and severe pathophysiological process characterized by oxidative stress,inflammation,and apoptosis.In recent years,the critical roles of extracellular matrix(ECM)genes and microRNAs(miRNAs)in IIRI have garnered widespread attention.This review aims to systematically summarize the diagnostic and therapeutic potential of ECM gene sets and miRNA regulatory networks in IIRI.First,we review the molecular mechanisms of IIRI,focusing on the dual role of the ECM in tissue injury and repair processes.The expression changes and functions of ECM components such as collagen,elastin,and matrix metalloproteinases during IIRI progression are deeply analyzed.Second,we systematically summarize the regulatory roles of miRNAs in IIRI,particularly the mechanisms and functions of miRNAs such as miR-125b and miR-200a in regulating inflammation,apoptosis,and ECM remodeling.Additionally,this review discusses potential diagnostic biomarkers and treatment strategies based on ECM genes and miRNAs.We extensively evaluate the prospects of miRNA-targeted therapy and ECM component modulation in preventing and treating IIRI,emphasizing the clinical translational potential of these emerging therapies.In conclusion,the diagnostic and therapeutic potential of ECM gene sets and miRNA regulatory networks in IIRI provides new directions for further research,necessitating additional clinical and basic studies to validate and expand these findings for improving clinical outcomes in IIRI patients.展开更多
We ourselves recently reviewed our article published in Int J Ophthalmol entitled“Inhibition of RhoA/Rho-kinase pathway suppresses the expression of extracellular matrix induced by CTGF or TGF-βin ARPE-19”and would...We ourselves recently reviewed our article published in Int J Ophthalmol entitled“Inhibition of RhoA/Rho-kinase pathway suppresses the expression of extracellular matrix induced by CTGF or TGF-βin ARPE-19”and would like to submit a correction for the following figures.展开更多
BACKGROUND One of the main characteristics of oral squamous cell carcinoma(OSCC)is that it metastasizes to cervical lymph nodes frequently with a high degree of local invasiveness.A primary feature of malignant tumors...BACKGROUND One of the main characteristics of oral squamous cell carcinoma(OSCC)is that it metastasizes to cervical lymph nodes frequently with a high degree of local invasiveness.A primary feature of malignant tumors is their penetration of neighboring tissues,such as lymphatic and blood arteries,due to the tumor cells'capacity to break down the extracellular matrix(ECM).Matrix metalloproteinases(MMPs)constitute a family of proteolytic enzymes that facilitate tissue remodeling and the degradation of the ECM.MMP-9 and MMP-13 belong to the group of extracellular matrix degrading enzymes and their expression has been studied in OSCC because of their specific functions.MMP-13,a collagenase family member,is thought to play an essential role in the MMP activation cascade by breaking down the fibrillar collagens,whereas MMP-9 is thought to accelerate the growth of tumors.Elevated MMP-13 expression has been associated with tumor behavior and patient prognosis in a number of malignant cases.AIM To assess the immunohistochemical expression of MMP-9 and MMP-13 in OSCC.METHODS A total of 40 cases with histologically confirmed OSCC by incisional biopsy were included in this cross-sectional retrospective study.The protocols for both MMP-9 and MMP-13 immunohistochemical staining were performed according to the manufacturer’s recommendations along with the normal gingival epithelium as a positive control.All the observations were recorded and Pearson’sχ²test with Fisher exact test was used for statistical analysis.RESULTS Our study showed no significant correlation between MMP-9 and MMP-13 staining intensity and tumor size.The majority of the patients were in advanced TNM stages(III and IV),and showed intense expression of MMP-9 and MMP-13.CONCLUSION The present study suggests that both MMP-9 and MMP-13 play an important and independent role in OSCC progression and invasiveness.Intense expression of MMP-9 and MMP-13,irrespective of histological grade of OSCC,correlates well with TNM stage.Consequently,it is evident that MMP-9 and MMP-13 are important for the invasiveness and progression of tumors.The findings may facilitate the development of new approaches for evaluating lymph node metastases and interventional therapy techniques,hence enhancing the prognosis of patients diagnosed with OSCC.展开更多
Neurodegenerative diseases are a major public health challenge,mainly affecting the elderly population and compromising their cognitive,sensory,and motor functions.Currently,available therapies focus on alleviating sy...Neurodegenerative diseases are a major public health challenge,mainly affecting the elderly population and compromising their cognitive,sensory,and motor functions.Currently,available therapies focus on alleviating symptoms and slowing the progression of these conditions,but they do not yet offer a definitive cure.In this scenario,terpenes emerge as promising natural alternatives due to their neuroprotective properties.These compounds can reduce the formation of protein aggregates,neutralize free radicals,and inhibit pro-inflammatory enzymes,which are crucial factors in the development of neurodegenerative diseases.In addition,terpenes also play an important role in the regulation and remodeling of the extracellular matrix,a key target for improving neuronal functions.Substances such as linalool,pinene,and eugenol,among others,have potential therapeutic effects by modulating inflammatory and oxidative stress processes,the main factors that contribute to the progression of these diseases.Studies suggest that these compounds act on signaling pathways that regulate the extracellular matrix,improving neuronal integrity and,consequently,cognitive and motor function.This work aims to review the potential of terpenes in the treatment of neurodegenerative disorders,with emphasis on their ability to regulate oxidative stress and inflammation,as well as to remodel the extracellular matrix.The interaction between these mechanisms points to the promising use of terpenes as an innovative and natural therapeutic approach to combat these diseases.展开更多
This paper investigates the development and performance of a new higher-order geometric stiffness matrix that more closely approximates the theoretically derived stiffness coefficients.Factors that influence the accur...This paper investigates the development and performance of a new higher-order geometric stiffness matrix that more closely approximates the theoretically derived stiffness coefficients.Factors that influence the accuracy of the solution are studied using two columns,two braced frames,and one unbraced frame.Discussion is provided when the new geometric stiffness matrix can be used to improve the buckling load analysis results and when it may provide only nominal additional benefit.展开更多
B2-CuZr phase reinforced amorphous alloy matrix composites has become one of the research hotspots in the field of materials science due to the“transformation-induced plasticity”phenomenon,which makes the composites...B2-CuZr phase reinforced amorphous alloy matrix composites has become one of the research hotspots in the field of materials science due to the“transformation-induced plasticity”phenomenon,which makes the composites show better macroscopic plastic deformability and obvious work-hardening behavior compared to the conventional amorphous alloy matrix composites reinforced with ductile phases.However,the in-situ metastable B2-CuZr phase tends to undergo eutectoid decomposition during solidification,and the volume fraction,size,and distribution of B2-CuZr phase are difficult to control,which limits the development and application of these materials.To date,much efforts have been made to solve the above problems through composition optimization,casting parameter tailoring,and post-processing technique.In this study,a review was given based on relevant studies,focusing on the predictive approach,reinforcing mechanism,and microstructure tailoring methods of B2-CuZr phase reinforced amorphous alloy matrix composites.The research focus and future prospects were also given for the future development of the present composite system.展开更多
BACKGROUND Demineralized bone matrix(DBM)is a commonly utilized allogenic bone graft substitute to promote osseous union.However,little is known regarding outcomes following DBM utilization in foot and ankle surgical ...BACKGROUND Demineralized bone matrix(DBM)is a commonly utilized allogenic bone graft substitute to promote osseous union.However,little is known regarding outcomes following DBM utilization in foot and ankle surgical procedures.AIM To evaluate the clinical and radiographic outcomes following DBM as a biological adjunct in foot and ankle surgical procedures.METHODS During May 2023,the PubMed,EMBASE and Cochrane library databases were systematically reviewed to identify clinical studies examining outcomes following DBM for the management of various foot and ankle pathologies.Data regarding study characteristics,patient demographics,subjective clinical outcomes,radiological outcomes,complications,and failure rates were extracted and analyzed.In addition,the level of evidence(LOE)and quality of evidence(QOE)for each individual study was also assessed.Thirteen studies were included in this review.RESULTS In total,363 patients(397 ankles and feet)received DBM as part of their surgical procedure at a weighted mean follow-up time of 20.8±9.2 months.The most common procedure performed was ankle arthrodesis in 94 patients(25.9%).Other procedures performed included hindfoot fusion,1st metatarsophalangeal joint arthrodesis,5th metatarsal intramedullary screw fixation,hallux valgus correction,osteochondral lesion of the talus repair and unicameral talar cyst resection.The osseous union rate in the ankle and hindfoot arthrodesis cohort,base of the 5th metatarsal cohort,and calcaneal fracture cohort was 85.6%,100%,and 100%,respectively.The weighted mean visual analog scale in the osteochondral lesions of the talus cohort improved from a pre-operative score of 7.6±0.1 to a post-operative score of 0.4±0.1.The overall complication rate was 27.2%,the most common of which was non-union(8.8%).There were 43 failures(10.8%)all of which warranted a further surgical procedure.CONCLUSION This current systematic review demonstrated that the utilization of DBM in foot and ankle surgical procedures led to satisfactory osseous union rates with favorable wound complication rates.Excellent outcomes were observed in patients undergoing fracture fixation augmented with DBM,with mixed evidence supporting the routine use of DBM in fusion procedures of the ankle and hindfoot.However,the low LOE together with the low QOE and significant heterogeneity between the included studies reinforces the need for randomized control trials to be conducted to identify the optimal role of DBM in the setting of foot and ankle surgical procedures.展开更多
Orthomorphic permutations have good characteristics in cryptosystems. In this paper, by using of knowledge about relation between orthomorphic permutations and multi-output functions, and conceptions of the generalize...Orthomorphic permutations have good characteristics in cryptosystems. In this paper, by using of knowledge about relation between orthomorphic permutations and multi-output functions, and conceptions of the generalized Walsh spectrum of multi-output functions and the auto-correlation function of multi-output functions to investigate the Walsh spectral characteristics and the auto-correlation function characteristics of orthormophic permutations, several results are obtained.展开更多
Image texture feature extraction is a classical means for biometric recognition. To extract effective texture feature for matching, we utilize local fractal auto-correlation to construct an effective image texture des...Image texture feature extraction is a classical means for biometric recognition. To extract effective texture feature for matching, we utilize local fractal auto-correlation to construct an effective image texture descriptor. Three main steps are involved in the proposed scheme: (i) using two-dimensional Gabor filter to extract the texture features of biometric images; (ii) calculating the local fractal dimension of Gabor feature under different orientations and scales using fractal auto-correlation algorithm; and (iii) linking the local fractal dimension of Gabor feature under different orientations and scales into a big vector for matching. Experiments and analyses show our proposed scheme is an efficient biometric feature extraction approach.展开更多
Most noise suppression algorithms of single channel use the mean of noisy segments to estimate the characteristics of noise spectrum, ignoring the estimation of noise in speech segments. Therefore, when the energy lev...Most noise suppression algorithms of single channel use the mean of noisy segments to estimate the characteristics of noise spectrum, ignoring the estimation of noise in speech segments. Therefore, when the energy level of noise varies with the time, the performance of removing noise will be degraded. To solve this problem, a speech enhancement approach based on dynamic noise estimation within correlation domain was proposed. This method exploits the characteristics that noise energy mainly concentrates on 0 th order correlation coefficients, signal is auto correlated but signal and noise, noise and noise are uncorrelated, then estimates and decomposes the noise, thus helps to solve the above mentioned problem. The results of recognition experiments on speech signals of 15 Chinese cities’ names corrupted by noise of exhibition hall shows, this approach is better than SS (Spectral Subtraction) method, adapts better to the variances of energy levels of speech signal corrupted by noise, has some practicability to improve the robustness of recognition systems under noisy environment.展开更多
In this paper, a sufficient and necessary condition of quick trickle permutations is given from the point of inverse permutations. The bridge is built between quick trickle permutations and m-value logic functions. By...In this paper, a sufficient and necessary condition of quick trickle permutations is given from the point of inverse permutations. The bridge is built between quick trickle permutations and m-value logic functions. By the methods of the Chrestenson spectrum of m-value logic functions and the auto-correlation function of m-value logic functions to investigate the Chrestenson spectral characteristics and the auto-correlation function charac- teristics of inverse permutations of quick trickle permutations, a determinant arithmetic of quick trickle permutations is given. Using the results, it becomes easy to judge that a permutation is a quick trickle permutation or not by using computer. This gives a new pathway to study constructions and enumerations of quick trickle permutations.展开更多
In recent years,the time-frequency overlapping multi-carrier signal has been a novel and valuable topic in blind signal processing,especially in the non-cooperative receiving field.But there is little related research...In recent years,the time-frequency overlapping multi-carrier signal has been a novel and valuable topic in blind signal processing,especially in the non-cooperative receiving field.But there is little related research in public published papers.This paper proposes two timing estimation algorithms,which are non-data-aided and based on the cyclic auto-correlation function.In order to evaluate the performance of the proposed algorithms,the theoretical bound of the timing estimation is derived.According to the analyses and simulation results,the effectiveness of the proposed algorithms has been demonstrated.It shows that MethodⅠhas better performance than MethodⅡ.However,MethodⅡdoes not need prior information,so it has a wider range of applications.展开更多
BACKGROUND Frey syndrome,also known as ototemporal nerve syndrome or gustatory sweating syndrome,is one of the most common complications of parotid gland surgery.This condition is characterized by abnormal sensations ...BACKGROUND Frey syndrome,also known as ototemporal nerve syndrome or gustatory sweating syndrome,is one of the most common complications of parotid gland surgery.This condition is characterized by abnormal sensations in the facial skin accompanied by episodes of flushing and sweating triggered by cognitive processes,visual stimuli,or eating.AIM To investigate the preventive effect of acellular dermal matrix(ADM)on Frey syndrome after parotid tumor resection and analyzed the effects of Frey syndrome across various surgical methods and other factors involved in parotid tumor resection.METHODS Retrospective data from 82 patients were analyzed to assess the correlation between sex,age,resection sample size,operation time,operation mode,ADM usage,and occurrence of postoperative Frey syndrome.RESULTS Among the 82 patients,the incidence of Frey syndrome was 56.1%.There were no significant differences in sex,age,or operation time between the two groups(P>0.05).However,there was a significant difference between ADM implantation and occurrence of Frey syndrome(P<0.05).ADM application could reduce the variation in the incidence of Frey syndrome across different operation modes.CONCLUSION ADM can effectively prevent Frey syndrome and delay its onset.展开更多
For the reduction of bovine serum proteins from wastewater,a novel mixed matrix membrane was prepared by functionalizing the substrate material polyaryletherketone(PAEK),followed by carboxyl groups(C-SPAEKS),and then ...For the reduction of bovine serum proteins from wastewater,a novel mixed matrix membrane was prepared by functionalizing the substrate material polyaryletherketone(PAEK),followed by carboxyl groups(C-SPAEKS),and then adding amino-functionalized UiO-66-NH_(2)(Am-UiO-66-NH_(2)).Aminofunctionalization of UiO-66 was accomplished by melamine,followed by an amidation reaction to immobilize Am-UiO-66-NH_(2),which was immobilized on the surface of the membrane as well as in the pore channels,which enhanced the hydrophilicity of the membrane surface while increasing the negative potential of the membrane surface.This nanoparticle-loaded ultrafiltration membrane has good permeation performance,with a pure water flux of up to 482.3 L·m^(-2)·h^(-1) for C-SPAEKS/AmUiO-66-NH_(2) and a retention rate of up to 98.7%for bovine serum albumin(BSA)-contaminated solutions.Meanwhile,after several hydrophilic modifications,the flux recovery of BSA contaminants by this series of membranes increased from 56.2%to 80.55%of pure membranes.The results of ultra-filtration flux time tests performed at room temperature showed that the series of ultrafiltration membranes remained relatively stable over a test time of 300 min.Thus,the newly developed mixed matrix membrane showed potential for high efficiency and stability in wastewater treatment containing bovine serum proteins.展开更多
Bridges are omnipresent in every society and they affect its human, social, ecological, economical and cultural aspects. This is why a durable and safe usage of bridges is an imperative goal of structural management. ...Bridges are omnipresent in every society and they affect its human, social, ecological, economical and cultural aspects. This is why a durable and safe usage of bridges is an imperative goal of structural management. Measurement and monitoring have an essential role in structural management. The benefits of the information obtained by monitoring are apparent in several domains. In deformation analysis, the functional relationship between the acting forces and the resulting deformations should be established. If time depending observations are given, a regression could be used as a functional model. In case of stochastic model uncorrelated observations with identical variance are assumed. Due to the high sampling rate, a small time difference arises between two observations. Thus the assumed stochastic model is not suitable. The calculation has to be effected by means of auto-correlated observations. This paper investigates an integrated monitoring system for the estimation of the deformation (i.e., static, quasi-static) behavior of bridges from total station observations and studies the effect of autocorrelation technique on the accuracy of the estimated parameters and variances. The results have shown that autocorrelation technique is reduced the standard deviation of X&Y-direction about 6.7% to 29.4% and 6.5% to 15.5% of the original value, respectively, but the situation was differ in Z direction;the standard deviation in vertical component Z was increased.展开更多
基金supported by National Institute on Aging(NIH-NIA)R21 AG074152(to KMA)National Institute of Allergy and Infectious Diseases(NIAID)grant DP2 AI171150(to KMA)Department of Defense(DoD)grant AZ210089(to KMA)。
文摘The brain's extracellular matrix(ECM),which is comprised of protein and glycosaminoglycan(GAG)scaffolds,constitutes 20%-40% of the human brain and is considered one of the largest influencers on brain cell functioning(Soles et al.,2023).Synthesized by neural and glial cells,the brain's ECM regulates a myriad of homeostatic cellular processes,including neuronal plasticity and firing(Miyata et al.,2012),cation buffering(Moraws ki et al.,2015),and glia-neuron interactions(Anderson et al.,2016).Considering the diversity of functions,dynamic remodeling of the brain's ECM indicates that this understudied medium is an active participant in both normal physiology and neurological diseases.
基金supported by the Natio`nal Natural Science Foundation of China,No. 81801241a grant from Sichuan Science and Technology Program,No. 2023NSFSC1578Scientific Research Projects of Southwest Medical University,No. 2022ZD002 (all to JX)。
文摘Neuronal growth, extension, branching, and formation of neural networks are markedly influenced by the extracellular matrix—a complex network composed of proteins and carbohydrates secreted by cells. In addition to providing physical support for cells, the extracellular matrix also conveys critical mechanical stiffness cues. During the development of the nervous system, extracellular matrix stiffness plays a central role in guiding neuronal growth, particularly in the context of axonal extension, which is crucial for the formation of neural networks. In neural tissue engineering, manipulation of biomaterial stiffness is a promising strategy to provide a permissive environment for the repair and regeneration of injured nervous tissue. Recent research has fine-tuned synthetic biomaterials to fabricate scaffolds that closely replicate the stiffness profiles observed in the nervous system. In this review, we highlight the molecular mechanisms by which extracellular matrix stiffness regulates axonal growth and regeneration. We highlight the progress made in the development of stiffness-tunable biomaterials to emulate in vivo extracellular matrix environments, with an emphasis on their application in neural repair and regeneration, along with a discussion of the current limitations and future prospects. The exploration and optimization of the stiffness-tunable biomaterials has the potential to markedly advance the development of neural tissue engineering.
基金financial support from the National Natural Science Foundation of China(Nos.22108258 and 52003251)Program for Science&Technology Innovation Talents in Universities of Henan Province(24HASTIT004)+1 种基金Outstanding Youth Fund of Henan Scientific Committee(222300420085)Science and Technology Joint Project of Henan Province(222301420041)。
文摘Mixed matrix membranes(MMMs)have demonstrated significant promise in energy-intensive gas separations by amalgamating the unique properties of fillers with the facile processability of polymers.However,achieving a simultaneous enhancement of permeability and selectivity remains a formidable challenge,due to the difficulty of achieving an optimal match between polymers and fillers.In this study,we incorporate a porous carbon-based zinc oxide composite(C@ZnO)into high-permeability polymers of intrinsic microporosity(PIMs)to fabricate MMMs.The dipole–dipole interaction between C@ZnO and PIMs ensures their exceptional compatibility,mitigating the formation of non-selective voids in the resulting MMMs.Concurrently,C@ZnO with abundant interconnected pores can provide additional low-resistance pathways for gas transport in MMMs.As a result,the CO_(2) permeability of the optimized C@ZnO/PIM-1 MMMs is elevated to 13,215 barrer,while the CO_(2)/N_(2) and CO_(2)/CH_(4) selectivity reached 21.5 and 14.4,respectively,substantially surpassing the 2008 Robeson upper bound.Additionally,molecular simulation results further corroborate that the augmented membrane gas selectivity is attributed to the superior CO_(2) affinity of C@ZnO.In summary,we believe that this work not only expands the application of MMMs for gas separation but also heralds a paradigm shift in the application of porous carbon materials.
基金supported by the Natural Science Foundation of Shandong Province,No.ZR2023MC168the National Natural Science Foundation of China,No.31670989the Key R&D Program of Shandong Province,No.2019GSF107037(all to CS).
文摘Vascular endothelial growth factor and its mimic peptide KLTWQELYQLKYKGI(QK)are widely used as the most potent angiogenic factors for the treatment of multiple ischemic diseases.However,conventional topical drug delivery often results in a burst release of the drug,leading to transient retention(inefficacy)and undesirable diffusion(toxicity)in vivo.Therefore,a drug delivery system that responds to changes in the microenvironment of tissue regeneration and controls vascular endothelial growth factor release is crucial to improve the treatment of ischemic stroke.Matrix metalloproteinase-2(MMP-2)is gradually upregulated after cerebral ischemia.Herein,vascular endothelial growth factor mimic peptide QK was self-assembled with MMP-2-cleaved peptide PLGLAG(TIMP)and customizable peptide amphiphilic(PA)molecules to construct nanofiber hydrogel PA-TIMP-QK.PA-TIMP-QK was found to control the delivery of QK by MMP-2 upregulation after cerebral ischemia/reperfusion and had a similar biological activity with vascular endothelial growth factor in vitro.The results indicated that PA-TIMP-QK promoted neuronal survival,restored local blood circulation,reduced blood-brain barrier permeability,and restored motor function.These findings suggest that the self-assembling nanofiber hydrogel PA-TIMP-QK may provide an intelligent drug delivery system that responds to the microenvironment and promotes regeneration and repair after cerebral ischemia/reperfusion injury.
基金Supported by Health Science and Technology Programme of Zhejiang Province,No.2022KY1391.
文摘Intestinal ischemia-reperfusion injury(IIRI)is a complex and severe pathophysiological process characterized by oxidative stress,inflammation,and apoptosis.In recent years,the critical roles of extracellular matrix(ECM)genes and microRNAs(miRNAs)in IIRI have garnered widespread attention.This review aims to systematically summarize the diagnostic and therapeutic potential of ECM gene sets and miRNA regulatory networks in IIRI.First,we review the molecular mechanisms of IIRI,focusing on the dual role of the ECM in tissue injury and repair processes.The expression changes and functions of ECM components such as collagen,elastin,and matrix metalloproteinases during IIRI progression are deeply analyzed.Second,we systematically summarize the regulatory roles of miRNAs in IIRI,particularly the mechanisms and functions of miRNAs such as miR-125b and miR-200a in regulating inflammation,apoptosis,and ECM remodeling.Additionally,this review discusses potential diagnostic biomarkers and treatment strategies based on ECM genes and miRNAs.We extensively evaluate the prospects of miRNA-targeted therapy and ECM component modulation in preventing and treating IIRI,emphasizing the clinical translational potential of these emerging therapies.In conclusion,the diagnostic and therapeutic potential of ECM gene sets and miRNA regulatory networks in IIRI provides new directions for further research,necessitating additional clinical and basic studies to validate and expand these findings for improving clinical outcomes in IIRI patients.
文摘We ourselves recently reviewed our article published in Int J Ophthalmol entitled“Inhibition of RhoA/Rho-kinase pathway suppresses the expression of extracellular matrix induced by CTGF or TGF-βin ARPE-19”and would like to submit a correction for the following figures.
文摘BACKGROUND One of the main characteristics of oral squamous cell carcinoma(OSCC)is that it metastasizes to cervical lymph nodes frequently with a high degree of local invasiveness.A primary feature of malignant tumors is their penetration of neighboring tissues,such as lymphatic and blood arteries,due to the tumor cells'capacity to break down the extracellular matrix(ECM).Matrix metalloproteinases(MMPs)constitute a family of proteolytic enzymes that facilitate tissue remodeling and the degradation of the ECM.MMP-9 and MMP-13 belong to the group of extracellular matrix degrading enzymes and their expression has been studied in OSCC because of their specific functions.MMP-13,a collagenase family member,is thought to play an essential role in the MMP activation cascade by breaking down the fibrillar collagens,whereas MMP-9 is thought to accelerate the growth of tumors.Elevated MMP-13 expression has been associated with tumor behavior and patient prognosis in a number of malignant cases.AIM To assess the immunohistochemical expression of MMP-9 and MMP-13 in OSCC.METHODS A total of 40 cases with histologically confirmed OSCC by incisional biopsy were included in this cross-sectional retrospective study.The protocols for both MMP-9 and MMP-13 immunohistochemical staining were performed according to the manufacturer’s recommendations along with the normal gingival epithelium as a positive control.All the observations were recorded and Pearson’sχ²test with Fisher exact test was used for statistical analysis.RESULTS Our study showed no significant correlation between MMP-9 and MMP-13 staining intensity and tumor size.The majority of the patients were in advanced TNM stages(III and IV),and showed intense expression of MMP-9 and MMP-13.CONCLUSION The present study suggests that both MMP-9 and MMP-13 play an important and independent role in OSCC progression and invasiveness.Intense expression of MMP-9 and MMP-13,irrespective of histological grade of OSCC,correlates well with TNM stage.Consequently,it is evident that MMP-9 and MMP-13 are important for the invasiveness and progression of tumors.The findings may facilitate the development of new approaches for evaluating lymph node metastases and interventional therapy techniques,hence enhancing the prognosis of patients diagnosed with OSCC.
基金Anderson Nogueira Mendes(#302704/2023-0)is grateful to the public Brazilian agency“Conselho Nacional de Desenvolvimento Científico e Tecnológico”(CNPq)for their personal scholarships.
文摘Neurodegenerative diseases are a major public health challenge,mainly affecting the elderly population and compromising their cognitive,sensory,and motor functions.Currently,available therapies focus on alleviating symptoms and slowing the progression of these conditions,but they do not yet offer a definitive cure.In this scenario,terpenes emerge as promising natural alternatives due to their neuroprotective properties.These compounds can reduce the formation of protein aggregates,neutralize free radicals,and inhibit pro-inflammatory enzymes,which are crucial factors in the development of neurodegenerative diseases.In addition,terpenes also play an important role in the regulation and remodeling of the extracellular matrix,a key target for improving neuronal functions.Substances such as linalool,pinene,and eugenol,among others,have potential therapeutic effects by modulating inflammatory and oxidative stress processes,the main factors that contribute to the progression of these diseases.Studies suggest that these compounds act on signaling pathways that regulate the extracellular matrix,improving neuronal integrity and,consequently,cognitive and motor function.This work aims to review the potential of terpenes in the treatment of neurodegenerative disorders,with emphasis on their ability to regulate oxidative stress and inflammation,as well as to remodel the extracellular matrix.The interaction between these mechanisms points to the promising use of terpenes as an innovative and natural therapeutic approach to combat these diseases.
文摘This paper investigates the development and performance of a new higher-order geometric stiffness matrix that more closely approximates the theoretically derived stiffness coefficients.Factors that influence the accuracy of the solution are studied using two columns,two braced frames,and one unbraced frame.Discussion is provided when the new geometric stiffness matrix can be used to improve the buckling load analysis results and when it may provide only nominal additional benefit.
基金supported by the National Natural Science Foundation of China(No.52101138,No.52201075)the Natural Science Foundation of Hubei Province(No.2023AFB798,No.2022CFB614)+3 种基金the Shenzhen Science and Technology Program(No.JCYJ20220530160813032)the State Key Laboratory of Solidification Processing in NWPU(No.SKLSP202309,No.SKLSP202308)the Guangdong Basic and Applied Basic Research Foundation(No.2022A1515011227)the State Key Laboratory of Powder Metallurgy of Central South University(No.SklpmKF-05)。
文摘B2-CuZr phase reinforced amorphous alloy matrix composites has become one of the research hotspots in the field of materials science due to the“transformation-induced plasticity”phenomenon,which makes the composites show better macroscopic plastic deformability and obvious work-hardening behavior compared to the conventional amorphous alloy matrix composites reinforced with ductile phases.However,the in-situ metastable B2-CuZr phase tends to undergo eutectoid decomposition during solidification,and the volume fraction,size,and distribution of B2-CuZr phase are difficult to control,which limits the development and application of these materials.To date,much efforts have been made to solve the above problems through composition optimization,casting parameter tailoring,and post-processing technique.In this study,a review was given based on relevant studies,focusing on the predictive approach,reinforcing mechanism,and microstructure tailoring methods of B2-CuZr phase reinforced amorphous alloy matrix composites.The research focus and future prospects were also given for the future development of the present composite system.
文摘BACKGROUND Demineralized bone matrix(DBM)is a commonly utilized allogenic bone graft substitute to promote osseous union.However,little is known regarding outcomes following DBM utilization in foot and ankle surgical procedures.AIM To evaluate the clinical and radiographic outcomes following DBM as a biological adjunct in foot and ankle surgical procedures.METHODS During May 2023,the PubMed,EMBASE and Cochrane library databases were systematically reviewed to identify clinical studies examining outcomes following DBM for the management of various foot and ankle pathologies.Data regarding study characteristics,patient demographics,subjective clinical outcomes,radiological outcomes,complications,and failure rates were extracted and analyzed.In addition,the level of evidence(LOE)and quality of evidence(QOE)for each individual study was also assessed.Thirteen studies were included in this review.RESULTS In total,363 patients(397 ankles and feet)received DBM as part of their surgical procedure at a weighted mean follow-up time of 20.8±9.2 months.The most common procedure performed was ankle arthrodesis in 94 patients(25.9%).Other procedures performed included hindfoot fusion,1st metatarsophalangeal joint arthrodesis,5th metatarsal intramedullary screw fixation,hallux valgus correction,osteochondral lesion of the talus repair and unicameral talar cyst resection.The osseous union rate in the ankle and hindfoot arthrodesis cohort,base of the 5th metatarsal cohort,and calcaneal fracture cohort was 85.6%,100%,and 100%,respectively.The weighted mean visual analog scale in the osteochondral lesions of the talus cohort improved from a pre-operative score of 7.6±0.1 to a post-operative score of 0.4±0.1.The overall complication rate was 27.2%,the most common of which was non-union(8.8%).There were 43 failures(10.8%)all of which warranted a further surgical procedure.CONCLUSION This current systematic review demonstrated that the utilization of DBM in foot and ankle surgical procedures led to satisfactory osseous union rates with favorable wound complication rates.Excellent outcomes were observed in patients undergoing fracture fixation augmented with DBM,with mixed evidence supporting the routine use of DBM in fusion procedures of the ankle and hindfoot.However,the low LOE together with the low QOE and significant heterogeneity between the included studies reinforces the need for randomized control trials to be conducted to identify the optimal role of DBM in the setting of foot and ankle surgical procedures.
基金Supported by State Key Laboratory of InformationSecurity Opening Foundation(01-02) .
文摘Orthomorphic permutations have good characteristics in cryptosystems. In this paper, by using of knowledge about relation between orthomorphic permutations and multi-output functions, and conceptions of the generalized Walsh spectrum of multi-output functions and the auto-correlation function of multi-output functions to investigate the Walsh spectral characteristics and the auto-correlation function characteristics of orthormophic permutations, several results are obtained.
基金supported by the National Natural Science Foundation of China(Grant Nos.61262040,61271341,81360230,and 61271007)the Applied Basic Research Projects of Yunnan Province,China(Grant No.KKSY201203062)
文摘Image texture feature extraction is a classical means for biometric recognition. To extract effective texture feature for matching, we utilize local fractal auto-correlation to construct an effective image texture descriptor. Three main steps are involved in the proposed scheme: (i) using two-dimensional Gabor filter to extract the texture features of biometric images; (ii) calculating the local fractal dimension of Gabor feature under different orientations and scales using fractal auto-correlation algorithm; and (iii) linking the local fractal dimension of Gabor feature under different orientations and scales into a big vector for matching. Experiments and analyses show our proposed scheme is an efficient biometric feature extraction approach.
文摘Most noise suppression algorithms of single channel use the mean of noisy segments to estimate the characteristics of noise spectrum, ignoring the estimation of noise in speech segments. Therefore, when the energy level of noise varies with the time, the performance of removing noise will be degraded. To solve this problem, a speech enhancement approach based on dynamic noise estimation within correlation domain was proposed. This method exploits the characteristics that noise energy mainly concentrates on 0 th order correlation coefficients, signal is auto correlated but signal and noise, noise and noise are uncorrelated, then estimates and decomposes the noise, thus helps to solve the above mentioned problem. The results of recognition experiments on speech signals of 15 Chinese cities’ names corrupted by noise of exhibition hall shows, this approach is better than SS (Spectral Subtraction) method, adapts better to the variances of energy levels of speech signal corrupted by noise, has some practicability to improve the robustness of recognition systems under noisy environment.
基金the Opening Foundation of State Key Labo-ratory of Information Security (20050102)
文摘In this paper, a sufficient and necessary condition of quick trickle permutations is given from the point of inverse permutations. The bridge is built between quick trickle permutations and m-value logic functions. By the methods of the Chrestenson spectrum of m-value logic functions and the auto-correlation function of m-value logic functions to investigate the Chrestenson spectral characteristics and the auto-correlation function charac- teristics of inverse permutations of quick trickle permutations, a determinant arithmetic of quick trickle permutations is given. Using the results, it becomes easy to judge that a permutation is a quick trickle permutation or not by using computer. This gives a new pathway to study constructions and enumerations of quick trickle permutations.
基金supported by the National Natural Science Foundation of China under Grant No. 61501084。
文摘In recent years,the time-frequency overlapping multi-carrier signal has been a novel and valuable topic in blind signal processing,especially in the non-cooperative receiving field.But there is little related research in public published papers.This paper proposes two timing estimation algorithms,which are non-data-aided and based on the cyclic auto-correlation function.In order to evaluate the performance of the proposed algorithms,the theoretical bound of the timing estimation is derived.According to the analyses and simulation results,the effectiveness of the proposed algorithms has been demonstrated.It shows that MethodⅠhas better performance than MethodⅡ.However,MethodⅡdoes not need prior information,so it has a wider range of applications.
文摘BACKGROUND Frey syndrome,also known as ototemporal nerve syndrome or gustatory sweating syndrome,is one of the most common complications of parotid gland surgery.This condition is characterized by abnormal sensations in the facial skin accompanied by episodes of flushing and sweating triggered by cognitive processes,visual stimuli,or eating.AIM To investigate the preventive effect of acellular dermal matrix(ADM)on Frey syndrome after parotid tumor resection and analyzed the effects of Frey syndrome across various surgical methods and other factors involved in parotid tumor resection.METHODS Retrospective data from 82 patients were analyzed to assess the correlation between sex,age,resection sample size,operation time,operation mode,ADM usage,and occurrence of postoperative Frey syndrome.RESULTS Among the 82 patients,the incidence of Frey syndrome was 56.1%.There were no significant differences in sex,age,or operation time between the two groups(P>0.05).However,there was a significant difference between ADM implantation and occurrence of Frey syndrome(P<0.05).ADM application could reduce the variation in the incidence of Frey syndrome across different operation modes.CONCLUSION ADM can effectively prevent Frey syndrome and delay its onset.
基金financial support of this work by Natural Science Foundation of China(22075031,51673030,51603017 and 51803011)Jilin Provincial Science&Technology Department(20220201105GX)Chang Bai Mountain Scholars Program of Jilin Province.
文摘For the reduction of bovine serum proteins from wastewater,a novel mixed matrix membrane was prepared by functionalizing the substrate material polyaryletherketone(PAEK),followed by carboxyl groups(C-SPAEKS),and then adding amino-functionalized UiO-66-NH_(2)(Am-UiO-66-NH_(2)).Aminofunctionalization of UiO-66 was accomplished by melamine,followed by an amidation reaction to immobilize Am-UiO-66-NH_(2),which was immobilized on the surface of the membrane as well as in the pore channels,which enhanced the hydrophilicity of the membrane surface while increasing the negative potential of the membrane surface.This nanoparticle-loaded ultrafiltration membrane has good permeation performance,with a pure water flux of up to 482.3 L·m^(-2)·h^(-1) for C-SPAEKS/AmUiO-66-NH_(2) and a retention rate of up to 98.7%for bovine serum albumin(BSA)-contaminated solutions.Meanwhile,after several hydrophilic modifications,the flux recovery of BSA contaminants by this series of membranes increased from 56.2%to 80.55%of pure membranes.The results of ultra-filtration flux time tests performed at room temperature showed that the series of ultrafiltration membranes remained relatively stable over a test time of 300 min.Thus,the newly developed mixed matrix membrane showed potential for high efficiency and stability in wastewater treatment containing bovine serum proteins.
文摘Bridges are omnipresent in every society and they affect its human, social, ecological, economical and cultural aspects. This is why a durable and safe usage of bridges is an imperative goal of structural management. Measurement and monitoring have an essential role in structural management. The benefits of the information obtained by monitoring are apparent in several domains. In deformation analysis, the functional relationship between the acting forces and the resulting deformations should be established. If time depending observations are given, a regression could be used as a functional model. In case of stochastic model uncorrelated observations with identical variance are assumed. Due to the high sampling rate, a small time difference arises between two observations. Thus the assumed stochastic model is not suitable. The calculation has to be effected by means of auto-correlated observations. This paper investigates an integrated monitoring system for the estimation of the deformation (i.e., static, quasi-static) behavior of bridges from total station observations and studies the effect of autocorrelation technique on the accuracy of the estimated parameters and variances. The results have shown that autocorrelation technique is reduced the standard deviation of X&Y-direction about 6.7% to 29.4% and 6.5% to 15.5% of the original value, respectively, but the situation was differ in Z direction;the standard deviation in vertical component Z was increased.