We show that the Wigner function (an ensemble average of the density operator ρ, Δ is the Wigner operator) can be expressed as a matrix element of ρ in the entangled pure states. In doing so, converting from quant...We show that the Wigner function (an ensemble average of the density operator ρ, Δ is the Wigner operator) can be expressed as a matrix element of ρ in the entangled pure states. In doing so, converting from quantum master equations to time-evolution equation of the Wigner functions seems direct and concise. The entangled states are defined in the enlarged Fock space with a fictitious freedom.展开更多
We show that the Wigner function W = Tr(△ρ) (an ensemble average of the density operator ρ, △ is theWigner operator) can be expressed as a matrix element of ρ in the entangled pure states. In doing so, converting...We show that the Wigner function W = Tr(△ρ) (an ensemble average of the density operator ρ, △ is theWigner operator) can be expressed as a matrix element of ρ in the entangled pure states. In doing so, converting fromquantum master equations to time-evolution equation of the Wigner functions seems direct and concise. The entangledstates are defined in the enlarged Fock space with a fictitious freedom.展开更多
In this paper, we discuss the average errors of function approximation by linear combinations of Bernstein operators. The strongly asymptotic orders for the average errors of the combinations of Bernstein operators se...In this paper, we discuss the average errors of function approximation by linear combinations of Bernstein operators. The strongly asymptotic orders for the average errors of the combinations of Bernstein operators sequence are determined on the Wiener space.展开更多
In the present paper, we discuss the solution of Euler-Darboux equation in terms of Dirichlet averages of boundary conditions on H?lder space and weighted H?lder spaces of continuous functions using Riemann-Liouville ...In the present paper, we discuss the solution of Euler-Darboux equation in terms of Dirichlet averages of boundary conditions on H?lder space and weighted H?lder spaces of continuous functions using Riemann-Liouville fractional integral operators. Moreover, the results are interpreted in alternative form.展开更多
This paper proposes a multi-criteria decision-making (MCGDM) method based on the improved single-valued neutrosophic Hamacher weighted averaging (ISNHWA) operator and grey relational analysis (GRA) to overcome the lim...This paper proposes a multi-criteria decision-making (MCGDM) method based on the improved single-valued neutrosophic Hamacher weighted averaging (ISNHWA) operator and grey relational analysis (GRA) to overcome the limitations of present methods based on aggregation operators. First, the limitations of several existing single-valued neutrosophic weighted averaging aggregation operators (i.e. , the single-valued neutrosophic weighted averaging, single-valued neutrosophic weighted algebraic averaging, single-valued neutrosophic weighted Einstein averaging, single-valued neutrosophic Frank weighted averaging, and single-valued neutrosophic Hamacher weighted averaging operators), which can produce some indeterminate terms in the aggregation process, are discussed. Second, an ISNHWA operator was developed to overcome the limitations of existing operators. Third, the properties of the proposed operator, including idempotency, boundedness, monotonicity, and commutativity, were analyzed. Application examples confirmed that the ISNHWA operator and the proposed MCGDM method are rational and effective. The proposed improved ISNHWA operator and MCGDM method can overcome the indeterminate results in some special cases in existing single-valued neutrosophic weighted averaging aggregation operators and MCGDM methods.展开更多
With the increase of science popularization, evaluation of science popularization has become an urgent demand. Considering science popularization bases as independent agents, a self-determined evaluation approach for ...With the increase of science popularization, evaluation of science popularization has become an urgent demand. Considering science popularization bases as independent agents, a self-determined evaluation approach for science popularization using induced ordered weighted averaging (IOWA) operator and particle swarm optimization (PSO) is proposed in this paper.Firstly, six factors including science popularization personnel, space, fund,media, activity and influence are selected to construct an index system for science popularization evaluation. On this basis, the absolute dominance and relative dominance of evaluation indexes are used as induced components, and the prior order of the evaluation indexes is determined. Besides, the optimization model of index weighted vectors is established by IOWA operator, index weighted vectors are calculated by particle swarm optimization algorithm, and index weighted vectors and evaluation value vectors are obtain. Finally, the optimal evaluation vectors and evaluation results are given according to the Perron-Frobenius decision eigenvalve theorem .展开更多
文摘We show that the Wigner function (an ensemble average of the density operator ρ, Δ is the Wigner operator) can be expressed as a matrix element of ρ in the entangled pure states. In doing so, converting from quantum master equations to time-evolution equation of the Wigner functions seems direct and concise. The entangled states are defined in the enlarged Fock space with a fictitious freedom.
文摘We show that the Wigner function W = Tr(△ρ) (an ensemble average of the density operator ρ, △ is theWigner operator) can be expressed as a matrix element of ρ in the entangled pure states. In doing so, converting fromquantum master equations to time-evolution equation of the Wigner functions seems direct and concise. The entangledstates are defined in the enlarged Fock space with a fictitious freedom.
文摘In this paper, we discuss the average errors of function approximation by linear combinations of Bernstein operators. The strongly asymptotic orders for the average errors of the combinations of Bernstein operators sequence are determined on the Wiener space.
文摘In the present paper, we discuss the solution of Euler-Darboux equation in terms of Dirichlet averages of boundary conditions on H?lder space and weighted H?lder spaces of continuous functions using Riemann-Liouville fractional integral operators. Moreover, the results are interpreted in alternative form.
文摘This paper proposes a multi-criteria decision-making (MCGDM) method based on the improved single-valued neutrosophic Hamacher weighted averaging (ISNHWA) operator and grey relational analysis (GRA) to overcome the limitations of present methods based on aggregation operators. First, the limitations of several existing single-valued neutrosophic weighted averaging aggregation operators (i.e. , the single-valued neutrosophic weighted averaging, single-valued neutrosophic weighted algebraic averaging, single-valued neutrosophic weighted Einstein averaging, single-valued neutrosophic Frank weighted averaging, and single-valued neutrosophic Hamacher weighted averaging operators), which can produce some indeterminate terms in the aggregation process, are discussed. Second, an ISNHWA operator was developed to overcome the limitations of existing operators. Third, the properties of the proposed operator, including idempotency, boundedness, monotonicity, and commutativity, were analyzed. Application examples confirmed that the ISNHWA operator and the proposed MCGDM method are rational and effective. The proposed improved ISNHWA operator and MCGDM method can overcome the indeterminate results in some special cases in existing single-valued neutrosophic weighted averaging aggregation operators and MCGDM methods.
文摘With the increase of science popularization, evaluation of science popularization has become an urgent demand. Considering science popularization bases as independent agents, a self-determined evaluation approach for science popularization using induced ordered weighted averaging (IOWA) operator and particle swarm optimization (PSO) is proposed in this paper.Firstly, six factors including science popularization personnel, space, fund,media, activity and influence are selected to construct an index system for science popularization evaluation. On this basis, the absolute dominance and relative dominance of evaluation indexes are used as induced components, and the prior order of the evaluation indexes is determined. Besides, the optimization model of index weighted vectors is established by IOWA operator, index weighted vectors are calculated by particle swarm optimization algorithm, and index weighted vectors and evaluation value vectors are obtain. Finally, the optimal evaluation vectors and evaluation results are given according to the Perron-Frobenius decision eigenvalve theorem .