The limitations of several existing classical rock damage models were critically appraised. Thereafter, a description of a new model to estimate the response of rock was provided. The results of an investigation lead ...The limitations of several existing classical rock damage models were critically appraised. Thereafter, a description of a new model to estimate the response of rock was provided. The results of an investigation lead to the development and confirmation of a new index parabola damage model. The new model is divided into two parts, fictitious damage and real damage and bordered by the critical damage point. In fictitious damage, the damage variable follows the index distribution, while in the real damage a parabolic distribution is used. Thus, the so called index parabola damage model is derived. The proposed damage model is applied to simulate the damage procedure of marble under uni axial loading. The results of the tests show that the proposed model is in excellent agreement with experimental data, in particular the nonlinear characteristic of rock deformation is adequately represented. [展开更多
The seismic ductility of reinforced very-high-strength-concrete (VHSC) short columns was studied by combinatively applying axial load and low cyclic lateral load on specimens to simulate seismic impact. Twelve speci...The seismic ductility of reinforced very-high-strength-concrete (VHSC) short columns was studied by combinatively applying axial load and low cyclic lateral load on specimens to simulate seismic impact. Twelve specimens with concrete compressive strength ranging from 95.6 MPa to 118.6 MPa and a shear-span ratio of 2.0 were tested for shear failure pattern and fear force-displacement hysteretic responses. Combinative application of axial load and low cyclic lateral load to VHSC short columns incurs shear failure. The displacement ductility is much smaller when the axial load ratio is larger; whereas a larger stirrup ratio is accompanied with a better displacement ductility. The relationship of displacement ductility factor,μ△, with stirrup characteristic value, λv, and test axial load ratio, nt, is μ△=(1+8λv)/(0.33+nt). By this relationship and relevant codes for aseismatic design, the axial load ratio limits for aseismatic design of reinforced VHSC (C95 to C100) short columns for frame construction are respectively 0.5, 0.6, and 0.7 for seismic classes Ⅰ, Ⅱ, and Ⅲ; corresponding minimum characteristic values of stirrups are calculated according to the required characteristic values of at least 1.273 times of experimental results. These data are very useful to aseismatic engineering.展开更多
A total of 540 nonlinear steady-state finite element analyses were performed to study the influence of temperature and dimensionless geometrical parameters(β,γ,θ,andτ)on the ultimate strength,failure modes,and ini...A total of 540 nonlinear steady-state finite element analyses were performed to study the influence of temperature and dimensionless geometrical parameters(β,γ,θ,andτ)on the ultimate strength,failure modes,and initial stiffness of two-planar tubular KT-joints.The joints were analyzed under two types of axial loading and five different temperatures(20℃,200℃,400℃,550℃,and 700℃).So far,there has not been any equation available for calculating the ultimate strength of two-planar tubular KT-joints at elevated temperatures.Hence,after parametric study,a set of design formulas were developed through nonlinear regression analyses,to calculate the ultimate strength of two-planar tubular KT-joints subjected to axial loading at elevated temperatures.展开更多
In order to improve the design level of partially embedded single piles under simultaneous axial and lateral loads, the differential solutions were deduced, in which the soil was treated as an ideal, elastic, homogene...In order to improve the design level of partially embedded single piles under simultaneous axial and lateral loads, the differential solutions were deduced, in which the soil was treated as an ideal, elastic, homogeneous, semi-infinite isotropic medium. A comparison was made between model test results and the obtained solutions to show their validity. The calculation results indicate that the horizontal displacement and bending moment of the pile increase with increases of the axial and lateral loads. The maximum horizontal displacement and bending moment decrease by 37.9% and 13.9%, respectively, when the elastic modulus of soil increases from 4 MPa to 20 MPa. The Poisson ratio of soil plays a marginal role in pile responses. There is a critical pile length under the ground, beyond which the pile behaves as though it was infinitely long. The presented solutions can make allowance for the continuous nature of soil, and if condition permits, they can approach exact ones.展开更多
The Initial Imperfection Amplified Criterion is applied toinvestigate the geometric nonlinear dynamic buckling of staticallypreloaded ring-stiffened cylindrical shells under axial fluid-solidimpact. Tak- ing account o...The Initial Imperfection Amplified Criterion is applied toinvestigate the geometric nonlinear dynamic buckling of staticallypreloaded ring-stiffened cylindrical shells under axial fluid-solidimpact. Tak- ing account of the effects of large deformation andinitial geometric imperfection, the governing equations are obtainedby the Galerkin method and solved by the Runge-Kutta method. Theeffects of static preloading (uniform external radial pressure) onthe buckling features and the load-carrying ability of ring-stiffenedcy- lindrical shells against axial impact are discussed.展开更多
Granite is usually composed of quartz,biotite,feldspar,and cracks,and the variation characteristics of these components could reflect the deformation and failure process of rock well.Taking granite as an example,the v...Granite is usually composed of quartz,biotite,feldspar,and cracks,and the variation characteristics of these components could reflect the deformation and failure process of rock well.Taking granite as an example,the video camera was used to record the deformation and failure process of rock.The distribution of meso-components in video images was then identified.The meso-components of rock failure precursors were also discussed.Moreover,a modified LSTM(long short-term memory method)based on SSA(sparrow search algorithm)was proposed to estimate the change of meso-components of rock failure precursor.It shows that the initiation and expansion of cracks are mainly caused by feldspar and quartz fracture,and when the quartz and feldspar exit the stress framework,rock failure occurs;the second large increase of crack area and the second large decrease of quartz or feldspar area may be used as a precursor of rock failure;the precursor time of rock failure based on meso-scopic components is about 4 s earlier than that observed by the naked eye;the modified LSTM network has the strongest estimation ability for quartz area change,followed by feldspar and biotite,and has the worst estimation ability for cracks;when using the modified LSTM network to predict the precursors of rock instability and failure,quartz and feldspar could be given priority.The results presented herein may provide reference in the investigation of rock failure mechanism.展开更多
Background:The Taylor Spatial Frame(TSF)has gained popularity among orthopedic surgeons for treating open fractures.However,a key challenge is the timely and safe removal of the frame.This study assessed the efficacy ...Background:The Taylor Spatial Frame(TSF)has gained popularity among orthopedic surgeons for treating open fractures.However,a key challenge is the timely and safe removal of the frame.This study assessed the efficacy and safety of axial load-share ratio(ALSR)testing to evaluate callus healing strength after TSF treatment of open tibial fractures.Methods:A retrospective case-control study was conducted,analyzing 180 adult patients with open tibial fractures treated at Tianjin Hospital’s Orthopedic Limb Correction Unit between August 2019 and August 2022.All patients underwent TSF external fixation surgery,and were divided into two groups based on ALSR testing.Group I(92 patients)underwent ALSR testing,with frame removal if the test value fell below 5%.Traditional methods were used for fixator removal guidance in Group II(88 patients).Clinical outcomes,including fixation duration,complications after fixator removal,and Johner-Wruhs functional scores,were compared between the two groups.Results:The groups showed no statistically significant differences(P>0.05)in sex,age,injury side,body mass index,surgery timing,or fracture type.Group I had a significantly shorter fixation duration(25.85±5.57 weeks)compared to Group II(31.82±6.98 weeks)(P<0.05).Following fixator removal,Group I demonstrated superior Johner-Wruhs scores compared to Group II,indicating better outcomes(P<0.05).Complication rates did not differ significantly between the groups at the last follow-up(P>0.05).Conclusion:Regular postoperative ALSR testing could safely and effectively guide TSF removal following open tibial fracture treatment.This method significantly reduced fixation duration compared to traditional guidance methods while maintaining efficacy and safety.展开更多
Build-up panels for the commercial aircraft fuselage subjected to the axial compression load are studied by both experimental and theoretical methods.An integral panel is designed with the same overall size and weight...Build-up panels for the commercial aircraft fuselage subjected to the axial compression load are studied by both experimental and theoretical methods.An integral panel is designed with the same overall size and weight as the build-up structure,and finite element models(FEMs)of these two panels are established.Experimental results of build-up panels agree well with the FEM results with the nonliearity and the large deformation,so FEMs are validated.FEM calculation results of these two panels indicate that the failure mode of the integral panel is different from that of the build-up panel,and the failure load increases by 18.4% up to post-buckling.Furthermore,the integral structure is optimized by using the multi-island genetic algorithm and the sequential quadratic programming.Compared with the initial design,the optimal mass is reduced by 8.7% and the strength is unchanged.展开更多
BACKGROUND The response to axial physiological pressure due to load transfer to the lumbar spine structures is among the various back pain mechanisms.Understanding the spine adaptation to cumulative compressive forces...BACKGROUND The response to axial physiological pressure due to load transfer to the lumbar spine structures is among the various back pain mechanisms.Understanding the spine adaptation to cumulative compressive forces can influence the choice of personalized treatment strategies.AIM To analyze the impact of axial load on the spinal canal’s size,intervertebral foramina,ligamenta flava and lumbosacral alignment.METHODS We assessed 90 patients using three-dimensional isotropic magnetic resonance imaging acquisition in a supine position with or without applying an axial compression load.Anatomical structures were measured in the lumbosacral region from L1 to S1 in lying and axially-loaded magnetic resonance images.A paired t test atα=0.05 was used to calculate the observed differences.RESULTS After axial loading,the dural sac area decreased significantly,by 5.2%on average(4.1%,6.2%,P<0.001).The intervertebral foramina decreased by 3.4%(2.7%,4.1%,P<0.001),except for L5-S1.Ligamenta flava increased by 3.8%(2.5%,5.2%,P<0.001),and the lumbosacral angle increased.CONCLUSION Axial load exacerbates the narrowing of the spinal canal and intervertebral foramina from L1-L2 to L4-L5.Cumulative compressive forces thicken ligamenta flava and exaggerate lumbar lordosis.展开更多
An experimental study on the compressive behavior of steel fiber reinforced concrete-filled steel tube columns is presented. Specimens were tested to investigate the effects of the concrete strength, the thickness of ...An experimental study on the compressive behavior of steel fiber reinforced concrete-filled steel tube columns is presented. Specimens were tested to investigate the effects of the concrete strength, the thickness of steel tube and the steel fiber volume fraction on the ultimate strength and the ductility. The experimental results indicate that the addition of steel fibers in concrete can significantly improve the ductility and the energy dissipation capacity of the concrete-filled steel tube columns and delay the local buckling of the steel tube, but has no obvious effect on the failure mode. It has also been found that the addition of steel fibers is a more effective method than using thicker steel tube in enhancing the ductility, and more advantageous in the case of higher strength concrete. An analytical model to estimate the load capacity is proposed for steel tube columns filled with both plain concrete and steel fiber reinforced concrete. The predicted results are in good agreement with the experimental ones obtained in this work and literatures.展开更多
To investigate the seismic behavior of I-section columns made of 460 MPa high strength steel (HSS), six specimens were tested under constant axial load and cyclic horizontal load. The specimens were designed with di...To investigate the seismic behavior of I-section columns made of 460 MPa high strength steel (HSS), six specimens were tested under constant axial load and cyclic horizontal load. The specimens were designed with different width-to-thickness ratios and loaded under different axial load ratios. For each specimen, the failure mode was observed and hysteretic curve was measured. Comparison of different specimens on hysteretic characteristic, energy dissipation capacity and deformation capacity were further investigated. Test results showed that the degradation of bearing capacity was due to local buckling of flange and web. Under the same axial load ratio, as width-to-thickness ratio increased, the deformation area of local buckling became smaller. And also, displacement level at both peak load and failure load became smaller. In addition, the full extent of hysteretic curve, energy dissipation capacity, ultimate story drift angle decreased, and capacity degradation occurred more rapidly with the increase of width-to-thickness ratio or axial load ratio. Based on the capacity of story drift angle, limiting values which shall not be exceeded are suggested respectively for flange and web plate of 460 MPa HSS I-section columns when used in SMFs and in IMFs in the case of axial load ratio no more than 0.2. Such values should be smaller when the axial load ratio increases.展开更多
In order to find out the bearing behavior of super-long piles located in deep soft clay over stiff layers around Dongting Lake, China, a test pile was first designed with the field loading test finished afterward. Bas...In order to find out the bearing behavior of super-long piles located in deep soft clay over stiff layers around Dongting Lake, China, a test pile was first designed with the field loading test finished afterward. Based on the measured test results, load transfer mechanism and bearing behavior of the pile shaft were discussed in detail. Then, by introducing a bi-linear model for shaft friction and the tri-linear model for pile tip resistance, respectively, the governing differential equation of pile soil system was set up by the load transfer method with the analytical solutions derived as well, taking into account the effect by stratified feature and various bearing conditions of subsoil, material nonlinearity, and the sediment under pile tip. Furthermore, formulas to determine the axial capacity of super-long piles by the pile top settlement were advised and applied to analyze the test pile. Good agreement between the predicted load settlement variations and the measured data is obtained to verify the validity of the present method. The results also show that, the axial bearing capacity of super-long piles should be controlled by the allowable pile top settlement, and buckling stability of the pile shaft should be paid attention as well.展开更多
The Local Joint Flexibility(_(LJF))of steel K-joints reinforced with external plates under axial loads is investigated in this paper.For this aim,firstly,a finite element(FE)model was produced and verified with the re...The Local Joint Flexibility(_(LJF))of steel K-joints reinforced with external plates under axial loads is investigated in this paper.For this aim,firstly,a finite element(FE)model was produced and verified with the results of several experimental tests.In the next step,a set of 150 FE models was generated to assess the effect of the brace angle(θ),the stiffener plate size(ηandλ),and the joint geometry(γ,τ,ξ,andβ)on the_(LJF)factor(f_(LJF)).The results showed that using the external plates can decrease 81%of the f_(LJF).Moreover,the reinforcing effect of the reinforcing plate on the f_(LJF)is more remarkable in the joints with smallerβ.Also,the effect of theγon the f_(LJF)ratio can be ignored.Despite the important effect of the f_(LJF)on the behavior of tubular joints,there is not available any study or equation on the f_(LJF)in any reinforced K-joints under axial load.Consequently,using the present FE results,a design parametric equation is proposed.The equation can reasonably predict the f_(LJF)in the reinforced K-joints under axial load.展开更多
In this paper,the influence of geometric parameters on the stress concentration factors due to three different types of axial loading on 81 TY tubular structures is studied.Our results reveal that,geometric parameters...In this paper,the influence of geometric parameters on the stress concentration factors due to three different types of axial loading on 81 TY tubular structures is studied.Our results reveal that,geometric parameters have a considerable impact on the variation of stress concentration factors on tubular TY-joints under axial loads.Thus,the highest stress concentration factor values are observed on the vertical brace than on the inclined one.The finite element results of the tubular structures were verified by parametric equations and experimental data.A parametric study was carried out by analyses using the nonlinear regression method to obtain parametric equations.These equations are used to calculate stress concentration factors and to analyse the fatigue resistance of TY-joints due to axial loads.展开更多
The behavior of square-tubed reinforced concrete (STRC) short columns subjected to axial compression was studied in detail with an accurate nonlinear finite element model (FEM) . Different width to thickness ratios (D...The behavior of square-tubed reinforced concrete (STRC) short columns subjected to axial compression was studied in detail with an accurate nonlinear finite element model (FEM) . Different width to thickness ratios (D/t = 50 150) of the steel tube and the compressive strength of concrete (C80 and C50) were adopted in this research. The axial load strength,steel tube strain and load-shortening response were determined from FEM and the analysis results from FEM were compared with those from experiment. The analysis and test results indicate that the concrete strength little affectes the confinement of the steel tube on the concrete. The transverse stress of the tube at the axial load point increases with the increment in the width to thickness ratio. Based on the results from FEM and experiment,a formula for the prediction of the axial load strength was proposed in this paper.展开更多
A theoretical description of instability of saturated soil under axial load is presented with a set of equations describing the deformation based on the two phase continuous media theory. It is shown that all parame...A theoretical description of instability of saturated soil under axial load is presented with a set of equations describing the deformation based on the two phase continuous media theory. It is shown that all parameters of water and soil influence the instability and two types of instability may exist. One of them is dominated by pore pressure softening, while the other by strain softening. Finally, a practical application is discussed.展开更多
Thin-walled tubes are increasingly used in automobile industries to improve structural safety.The present work deals with the collapse behavior of double-cell conical tubes subjected to dynamic axial and oblique loads...Thin-walled tubes are increasingly used in automobile industries to improve structural safety.The present work deals with the collapse behavior of double-cell conical tubes subjected to dynamic axial and oblique loads.Crashworthiness of these tubes having different sections(e.g.,circular,square,hexagonal,octagonal,decagonal)was numerically investigated by using an experimentally validated finite element model generated in LS-DYNA.Geometry of these tubes was then optimized by decreasing the cross section dimensions at the distal end while the weight remained unchanged.Octagonal conical tube was finally found to be more preferable to the others as a collision energy absorber.In addition,square and circular tubes showed diamond deformation mode,while the other tubes collapsed in concertina mode.A decision making method called TOPSIS was finally implemented on the numerical results to select the most efficient energy absorber.展开更多
A nonlinear numerical model was developed to analyze reinforced concrete columns under combined axial load and bending up to failure. Results of reinforced concrete columns under eccentric compression tested to failur...A nonlinear numerical model was developed to analyze reinforced concrete columns under combined axial load and bending up to failure. Results of reinforced concrete columns under eccentric compression tested to failure are presented and compared to results from a numerical nonlinear model. The tests involved 10 columns with cross-section of 250 mm × 120 mm, geometrical reinforcement ratio of 1.57% and concrete with compression strength around 40 MPa, with 3,000 mm in length. The main variable was the load eccentricity in the direction of the smaller dimension of cross-section. Experimental results of ultimate load and of the evolution of transverse displacements and concrete strains are compared with the numerical results. The estimated results obtained by the numerical model are close to the experimental ones, being suitable for use in verification of elements under combined axial load and bending.展开更多
In order to investigate the energy absorption characteristics of multi-cell polygonal tubes with different cross-sectional configurations,firstly,the theoretical formulae of the mean crushing force under axial load fo...In order to investigate the energy absorption characteristics of multi-cell polygonal tubes with different cross-sectional configurations,firstly,the theoretical formulae of the mean crushing force under axial load for four multi-cell polygonal tubes were derived by combining the Super Folding Element theory with Zhang’s research results.These formulae can be used to validate the numerical model and quickly evaluate the energy absorption ability of multi-cell polygonal tubes.Furthermore,a comparative study on the energy absorption performance of eight multi-cell polygonal tubes under axial and oblique loads was conducted.The results show that all tubes have a stable mixed deformation mode under axial load.The multi-cell decagon tube has better energy-absorption ability compared with other tubes.Whenθis less than 10°,all the tubes maintain a stable deformation mode,and the multi-cell decagon tube also has the biggest crushing force efficiency and specific energy absorption among these eight tubes;meanwhile compared with the results atθ=0°,the specific energy absorption of all tubes decreases by about 8%-21%,while the crushing force efficiency increases by 20%-56%.However,at large angles 20°and 30°,all of the tubes collapse in bending modes and lose their effectiveness at energy absorption.展开更多
The couple effect of soil displacement and axial load on the single inclined pile in cases of surcharge load and uniform soil movement is discussed in detail with the methods of full-scale field tests and finite eleme...The couple effect of soil displacement and axial load on the single inclined pile in cases of surcharge load and uniform soil movement is discussed in detail with the methods of full-scale field tests and finite element method. Parametric analyses including the degree of inclination and the distance between soil and pile are carried out herein. When the displacement of soil on the left side and right side of a pile is identical, deformation of a vertical pile and an inclined pile is highly close in both cases of surcharge load and uniform soil movement. When the couple effect of soil displacement and axial load occurs, settlement of an inclined pile is greater than that of a vertical pile under the same axial load, and bearing capacity of an inclined pile is smaller than that of a vertical pile. This is quite different from the case when the inclined pile is not affected by soil displacement. For inclined piles, P-Δ effect of axial load would lead to a large increase in bending moment, however, for the vertical pile, P-Δ effect of axial load can be neglected. Although the direction of inclination of piles is reverse, deformation of piles caused by uniform soil movement is totally the same. For the inclined piles discussed herein, bending moment(-8 m to-17 m under the ground) relies heavily on uniform soil movement and does not change during the process of applying axial load. When the thickness of soil is less than the pile length, the greater the thickness of soil, the larger the bending moment at lower part of the inclined pile. When the thickness of soil is larger than the pile length, bending moment at lower part of the inclined pile is zero.展开更多
文摘The limitations of several existing classical rock damage models were critically appraised. Thereafter, a description of a new model to estimate the response of rock was provided. The results of an investigation lead to the development and confirmation of a new index parabola damage model. The new model is divided into two parts, fictitious damage and real damage and bordered by the critical damage point. In fictitious damage, the damage variable follows the index distribution, while in the real damage a parabolic distribution is used. Thus, the so called index parabola damage model is derived. The proposed damage model is applied to simulate the damage procedure of marble under uni axial loading. The results of the tests show that the proposed model is in excellent agreement with experimental data, in particular the nonlinear characteristic of rock deformation is adequately represented. [
基金the key project of the National Natural Science Foundation of China (No.50438010)
文摘The seismic ductility of reinforced very-high-strength-concrete (VHSC) short columns was studied by combinatively applying axial load and low cyclic lateral load on specimens to simulate seismic impact. Twelve specimens with concrete compressive strength ranging from 95.6 MPa to 118.6 MPa and a shear-span ratio of 2.0 were tested for shear failure pattern and fear force-displacement hysteretic responses. Combinative application of axial load and low cyclic lateral load to VHSC short columns incurs shear failure. The displacement ductility is much smaller when the axial load ratio is larger; whereas a larger stirrup ratio is accompanied with a better displacement ductility. The relationship of displacement ductility factor,μ△, with stirrup characteristic value, λv, and test axial load ratio, nt, is μ△=(1+8λv)/(0.33+nt). By this relationship and relevant codes for aseismatic design, the axial load ratio limits for aseismatic design of reinforced VHSC (C95 to C100) short columns for frame construction are respectively 0.5, 0.6, and 0.7 for seismic classes Ⅰ, Ⅱ, and Ⅲ; corresponding minimum characteristic values of stirrups are calculated according to the required characteristic values of at least 1.273 times of experimental results. These data are very useful to aseismatic engineering.
文摘A total of 540 nonlinear steady-state finite element analyses were performed to study the influence of temperature and dimensionless geometrical parameters(β,γ,θ,andτ)on the ultimate strength,failure modes,and initial stiffness of two-planar tubular KT-joints.The joints were analyzed under two types of axial loading and five different temperatures(20℃,200℃,400℃,550℃,and 700℃).So far,there has not been any equation available for calculating the ultimate strength of two-planar tubular KT-joints at elevated temperatures.Hence,after parametric study,a set of design formulas were developed through nonlinear regression analyses,to calculate the ultimate strength of two-planar tubular KT-joints subjected to axial loading at elevated temperatures.
基金Projects(50708093,51208409)supported by the National Natural Science Foundation of ChinaProject(DB01129)supported by the Talent Foundation of Xi’an University of Architecture and Technology,China
文摘In order to improve the design level of partially embedded single piles under simultaneous axial and lateral loads, the differential solutions were deduced, in which the soil was treated as an ideal, elastic, homogeneous, semi-infinite isotropic medium. A comparison was made between model test results and the obtained solutions to show their validity. The calculation results indicate that the horizontal displacement and bending moment of the pile increase with increases of the axial and lateral loads. The maximum horizontal displacement and bending moment decrease by 37.9% and 13.9%, respectively, when the elastic modulus of soil increases from 4 MPa to 20 MPa. The Poisson ratio of soil plays a marginal role in pile responses. There is a critical pile length under the ground, beyond which the pile behaves as though it was infinitely long. The presented solutions can make allowance for the continuous nature of soil, and if condition permits, they can approach exact ones.
基金the National Natural Sciences Foundation of China(No.19802017)
文摘The Initial Imperfection Amplified Criterion is applied toinvestigate the geometric nonlinear dynamic buckling of staticallypreloaded ring-stiffened cylindrical shells under axial fluid-solidimpact. Tak- ing account of the effects of large deformation andinitial geometric imperfection, the governing equations are obtainedby the Galerkin method and solved by the Runge-Kutta method. Theeffects of static preloading (uniform external radial pressure) onthe buckling features and the load-carrying ability of ring-stiffenedcy- lindrical shells against axial impact are discussed.
基金Project(41472254)supported by the National Natural Science Foundation of China。
文摘Granite is usually composed of quartz,biotite,feldspar,and cracks,and the variation characteristics of these components could reflect the deformation and failure process of rock well.Taking granite as an example,the video camera was used to record the deformation and failure process of rock.The distribution of meso-components in video images was then identified.The meso-components of rock failure precursors were also discussed.Moreover,a modified LSTM(long short-term memory method)based on SSA(sparrow search algorithm)was proposed to estimate the change of meso-components of rock failure precursor.It shows that the initiation and expansion of cracks are mainly caused by feldspar and quartz fracture,and when the quartz and feldspar exit the stress framework,rock failure occurs;the second large increase of crack area and the second large decrease of quartz or feldspar area may be used as a precursor of rock failure;the precursor time of rock failure based on meso-scopic components is about 4 s earlier than that observed by the naked eye;the modified LSTM network has the strongest estimation ability for quartz area change,followed by feldspar and biotite,and has the worst estimation ability for cracks;when using the modified LSTM network to predict the precursors of rock instability and failure,quartz and feldspar could be given priority.The results presented herein may provide reference in the investigation of rock failure mechanism.
基金funding support from Natural Science Foundation Key Project of Tianjin(20JCZDJC00600)Tianjin Health Research Project(TJWJ2023QN050)+2 种基金Applied Basic Research Foundation of Tianjin(22JCQNJC00230,22JCQNJC00360)Beijing-Tianjin-Hebei Basic Research Cooperation Project(J230007/23JCZXJC00050)Tianjin Municipal Health Commission Key Discipline Specialization(TJWJ2024XK015).
文摘Background:The Taylor Spatial Frame(TSF)has gained popularity among orthopedic surgeons for treating open fractures.However,a key challenge is the timely and safe removal of the frame.This study assessed the efficacy and safety of axial load-share ratio(ALSR)testing to evaluate callus healing strength after TSF treatment of open tibial fractures.Methods:A retrospective case-control study was conducted,analyzing 180 adult patients with open tibial fractures treated at Tianjin Hospital’s Orthopedic Limb Correction Unit between August 2019 and August 2022.All patients underwent TSF external fixation surgery,and were divided into two groups based on ALSR testing.Group I(92 patients)underwent ALSR testing,with frame removal if the test value fell below 5%.Traditional methods were used for fixator removal guidance in Group II(88 patients).Clinical outcomes,including fixation duration,complications after fixator removal,and Johner-Wruhs functional scores,were compared between the two groups.Results:The groups showed no statistically significant differences(P>0.05)in sex,age,injury side,body mass index,surgery timing,or fracture type.Group I had a significantly shorter fixation duration(25.85±5.57 weeks)compared to Group II(31.82±6.98 weeks)(P<0.05).Following fixator removal,Group I demonstrated superior Johner-Wruhs scores compared to Group II,indicating better outcomes(P<0.05).Complication rates did not differ significantly between the groups at the last follow-up(P>0.05).Conclusion:Regular postoperative ALSR testing could safely and effectively guide TSF removal following open tibial fracture treatment.This method significantly reduced fixation duration compared to traditional guidance methods while maintaining efficacy and safety.
文摘Build-up panels for the commercial aircraft fuselage subjected to the axial compression load are studied by both experimental and theoretical methods.An integral panel is designed with the same overall size and weight as the build-up structure,and finite element models(FEMs)of these two panels are established.Experimental results of build-up panels agree well with the FEM results with the nonliearity and the large deformation,so FEMs are validated.FEM calculation results of these two panels indicate that the failure mode of the integral panel is different from that of the build-up panel,and the failure load increases by 18.4% up to post-buckling.Furthermore,the integral structure is optimized by using the multi-island genetic algorithm and the sequential quadratic programming.Compared with the initial design,the optimal mass is reduced by 8.7% and the strength is unchanged.
文摘BACKGROUND The response to axial physiological pressure due to load transfer to the lumbar spine structures is among the various back pain mechanisms.Understanding the spine adaptation to cumulative compressive forces can influence the choice of personalized treatment strategies.AIM To analyze the impact of axial load on the spinal canal’s size,intervertebral foramina,ligamenta flava and lumbosacral alignment.METHODS We assessed 90 patients using three-dimensional isotropic magnetic resonance imaging acquisition in a supine position with or without applying an axial compression load.Anatomical structures were measured in the lumbosacral region from L1 to S1 in lying and axially-loaded magnetic resonance images.A paired t test atα=0.05 was used to calculate the observed differences.RESULTS After axial loading,the dural sac area decreased significantly,by 5.2%on average(4.1%,6.2%,P<0.001).The intervertebral foramina decreased by 3.4%(2.7%,4.1%,P<0.001),except for L5-S1.Ligamenta flava increased by 3.8%(2.5%,5.2%,P<0.001),and the lumbosacral angle increased.CONCLUSION Axial load exacerbates the narrowing of the spinal canal and intervertebral foramina from L1-L2 to L4-L5.Cumulative compressive forces thicken ligamenta flava and exaggerate lumbar lordosis.
基金Project(51078294)supported by the National Natural Science Foundation of ChinaProject(201101411100025)supported by the Doctoral Fund of Ministry of Education of China
文摘An experimental study on the compressive behavior of steel fiber reinforced concrete-filled steel tube columns is presented. Specimens were tested to investigate the effects of the concrete strength, the thickness of steel tube and the steel fiber volume fraction on the ultimate strength and the ductility. The experimental results indicate that the addition of steel fibers in concrete can significantly improve the ductility and the energy dissipation capacity of the concrete-filled steel tube columns and delay the local buckling of the steel tube, but has no obvious effect on the failure mode. It has also been found that the addition of steel fibers is a more effective method than using thicker steel tube in enhancing the ductility, and more advantageous in the case of higher strength concrete. An analytical model to estimate the load capacity is proposed for steel tube columns filled with both plain concrete and steel fiber reinforced concrete. The predicted results are in good agreement with the experimental ones obtained in this work and literatures.
基金the National Natural Science Foundation of China under Grant No.51478244
文摘To investigate the seismic behavior of I-section columns made of 460 MPa high strength steel (HSS), six specimens were tested under constant axial load and cyclic horizontal load. The specimens were designed with different width-to-thickness ratios and loaded under different axial load ratios. For each specimen, the failure mode was observed and hysteretic curve was measured. Comparison of different specimens on hysteretic characteristic, energy dissipation capacity and deformation capacity were further investigated. Test results showed that the degradation of bearing capacity was due to local buckling of flange and web. Under the same axial load ratio, as width-to-thickness ratio increased, the deformation area of local buckling became smaller. And also, displacement level at both peak load and failure load became smaller. In addition, the full extent of hysteretic curve, energy dissipation capacity, ultimate story drift angle decreased, and capacity degradation occurred more rapidly with the increase of width-to-thickness ratio or axial load ratio. Based on the capacity of story drift angle, limiting values which shall not be exceeded are suggested respectively for flange and web plate of 460 MPa HSS I-section columns when used in SMFs and in IMFs in the case of axial load ratio no more than 0.2. Such values should be smaller when the axial load ratio increases.
基金Project(50908084)supported by the National Natural Science Foundation of ChinaProject(200815)supported by the Transportation Science and Technology Program of Hunan Province,ChinaProject(531107040620)supported by the Growth Plan for Young Teachers of Hunan University,China
文摘In order to find out the bearing behavior of super-long piles located in deep soft clay over stiff layers around Dongting Lake, China, a test pile was first designed with the field loading test finished afterward. Based on the measured test results, load transfer mechanism and bearing behavior of the pile shaft were discussed in detail. Then, by introducing a bi-linear model for shaft friction and the tri-linear model for pile tip resistance, respectively, the governing differential equation of pile soil system was set up by the load transfer method with the analytical solutions derived as well, taking into account the effect by stratified feature and various bearing conditions of subsoil, material nonlinearity, and the sediment under pile tip. Furthermore, formulas to determine the axial capacity of super-long piles by the pile top settlement were advised and applied to analyze the test pile. Good agreement between the predicted load settlement variations and the measured data is obtained to verify the validity of the present method. The results also show that, the axial bearing capacity of super-long piles should be controlled by the allowable pile top settlement, and buckling stability of the pile shaft should be paid attention as well.
文摘The Local Joint Flexibility(_(LJF))of steel K-joints reinforced with external plates under axial loads is investigated in this paper.For this aim,firstly,a finite element(FE)model was produced and verified with the results of several experimental tests.In the next step,a set of 150 FE models was generated to assess the effect of the brace angle(θ),the stiffener plate size(ηandλ),and the joint geometry(γ,τ,ξ,andβ)on the_(LJF)factor(f_(LJF)).The results showed that using the external plates can decrease 81%of the f_(LJF).Moreover,the reinforcing effect of the reinforcing plate on the f_(LJF)is more remarkable in the joints with smallerβ.Also,the effect of theγon the f_(LJF)ratio can be ignored.Despite the important effect of the f_(LJF)on the behavior of tubular joints,there is not available any study or equation on the f_(LJF)in any reinforced K-joints under axial load.Consequently,using the present FE results,a design parametric equation is proposed.The equation can reasonably predict the f_(LJF)in the reinforced K-joints under axial load.
文摘In this paper,the influence of geometric parameters on the stress concentration factors due to three different types of axial loading on 81 TY tubular structures is studied.Our results reveal that,geometric parameters have a considerable impact on the variation of stress concentration factors on tubular TY-joints under axial loads.Thus,the highest stress concentration factor values are observed on the vertical brace than on the inclined one.The finite element results of the tubular structures were verified by parametric equations and experimental data.A parametric study was carried out by analyses using the nonlinear regression method to obtain parametric equations.These equations are used to calculate stress concentration factors and to analyse the fatigue resistance of TY-joints due to axial loads.
基金Sponsored by the National Natural Science Foundation of China (Grant No. 50708027)the National Key Technology Research and Development Program of China (Grant No.2006BAJ01B02)
文摘The behavior of square-tubed reinforced concrete (STRC) short columns subjected to axial compression was studied in detail with an accurate nonlinear finite element model (FEM) . Different width to thickness ratios (D/t = 50 150) of the steel tube and the compressive strength of concrete (C80 and C50) were adopted in this research. The axial load strength,steel tube strain and load-shortening response were determined from FEM and the analysis results from FEM were compared with those from experiment. The analysis and test results indicate that the concrete strength little affectes the confinement of the steel tube on the concrete. The transverse stress of the tube at the axial load point increases with the increment in the width to thickness ratio. Based on the results from FEM and experiment,a formula for the prediction of the axial load strength was proposed in this paper.
文摘A theoretical description of instability of saturated soil under axial load is presented with a set of equations describing the deformation based on the two phase continuous media theory. It is shown that all parameters of water and soil influence the instability and two types of instability may exist. One of them is dominated by pore pressure softening, while the other by strain softening. Finally, a practical application is discussed.
基金Project(660)supported by University of Mohaghegh Ardabili,Iran
文摘Thin-walled tubes are increasingly used in automobile industries to improve structural safety.The present work deals with the collapse behavior of double-cell conical tubes subjected to dynamic axial and oblique loads.Crashworthiness of these tubes having different sections(e.g.,circular,square,hexagonal,octagonal,decagonal)was numerically investigated by using an experimentally validated finite element model generated in LS-DYNA.Geometry of these tubes was then optimized by decreasing the cross section dimensions at the distal end while the weight remained unchanged.Octagonal conical tube was finally found to be more preferable to the others as a collision energy absorber.In addition,square and circular tubes showed diamond deformation mode,while the other tubes collapsed in concertina mode.A decision making method called TOPSIS was finally implemented on the numerical results to select the most efficient energy absorber.
文摘A nonlinear numerical model was developed to analyze reinforced concrete columns under combined axial load and bending up to failure. Results of reinforced concrete columns under eccentric compression tested to failure are presented and compared to results from a numerical nonlinear model. The tests involved 10 columns with cross-section of 250 mm × 120 mm, geometrical reinforcement ratio of 1.57% and concrete with compression strength around 40 MPa, with 3,000 mm in length. The main variable was the load eccentricity in the direction of the smaller dimension of cross-section. Experimental results of ultimate load and of the evolution of transverse displacements and concrete strains are compared with the numerical results. The estimated results obtained by the numerical model are close to the experimental ones, being suitable for use in verification of elements under combined axial load and bending.
基金Projects(U1334208,51405516,51275532)supported by the National Natural Science Foundation of ChinaProjects(2015zzts210,2016zzts331)supported by the Fundamental Research Funds for the Central Universities,China
文摘In order to investigate the energy absorption characteristics of multi-cell polygonal tubes with different cross-sectional configurations,firstly,the theoretical formulae of the mean crushing force under axial load for four multi-cell polygonal tubes were derived by combining the Super Folding Element theory with Zhang’s research results.These formulae can be used to validate the numerical model and quickly evaluate the energy absorption ability of multi-cell polygonal tubes.Furthermore,a comparative study on the energy absorption performance of eight multi-cell polygonal tubes under axial and oblique loads was conducted.The results show that all tubes have a stable mixed deformation mode under axial load.The multi-cell decagon tube has better energy-absorption ability compared with other tubes.Whenθis less than 10°,all the tubes maintain a stable deformation mode,and the multi-cell decagon tube also has the biggest crushing force efficiency and specific energy absorption among these eight tubes;meanwhile compared with the results atθ=0°,the specific energy absorption of all tubes decreases by about 8%-21%,while the crushing force efficiency increases by 20%-56%.However,at large angles 20°and 30°,all of the tubes collapse in bending modes and lose their effectiveness at energy absorption.
基金Project(51208071)supported by the National Natural Science Foundation of ChinaProject(2010CB732106)supported by the National Basic Research Program of China
文摘The couple effect of soil displacement and axial load on the single inclined pile in cases of surcharge load and uniform soil movement is discussed in detail with the methods of full-scale field tests and finite element method. Parametric analyses including the degree of inclination and the distance between soil and pile are carried out herein. When the displacement of soil on the left side and right side of a pile is identical, deformation of a vertical pile and an inclined pile is highly close in both cases of surcharge load and uniform soil movement. When the couple effect of soil displacement and axial load occurs, settlement of an inclined pile is greater than that of a vertical pile under the same axial load, and bearing capacity of an inclined pile is smaller than that of a vertical pile. This is quite different from the case when the inclined pile is not affected by soil displacement. For inclined piles, P-Δ effect of axial load would lead to a large increase in bending moment, however, for the vertical pile, P-Δ effect of axial load can be neglected. Although the direction of inclination of piles is reverse, deformation of piles caused by uniform soil movement is totally the same. For the inclined piles discussed herein, bending moment(-8 m to-17 m under the ground) relies heavily on uniform soil movement and does not change during the process of applying axial load. When the thickness of soil is less than the pile length, the greater the thickness of soil, the larger the bending moment at lower part of the inclined pile. When the thickness of soil is larger than the pile length, bending moment at lower part of the inclined pile is zero.