Compared with the one-dimensional trajectory correction technology which adjusts longitudinal range, not only does the two-dimensional trajectory correction technology adjust the force in velocity direction, but also ...Compared with the one-dimensional trajectory correction technology which adjusts longitudinal range, not only does the two-dimensional trajectory correction technology adjust the force in velocity direction, but also need to modulate the lateral force or trajectory (perpendicular to the vertical plane of fire direction). Therefore, the structure of control cabin of two-dimensional trajectory correction projectile (TDTCP) is more complicated than that of one-dimensional trajectory correction projectile (ODTCP). To simplify the structure of control cabin of TDTCP and reduce the cost, a scheme of adding a damping disk to the control cabin of ODTCP has been developed recently. The damping disk is unfolded at the right moment during its flight to change the ballistic drift of spin stabilized projectile. For this technical scheme of TDTCP, a fast and accurate impact point prediction method based on extended Kalman filter is presented. An approximate formula for predicting the ballistic drift and trajectory correction quantity is deduced. And the lateral correction capability for different fire angles and its influencing factors are analyzed. All the work is valuable for further research.展开更多
The two-dimensional trajectory correction needs to adjust not only the force in velocity direction,but also the lateral force or lateral trajectory (normal to the perpendicular plane of fire direction) . Therefore,its...The two-dimensional trajectory correction needs to adjust not only the force in velocity direction,but also the lateral force or lateral trajectory (normal to the perpendicular plane of fire direction) . Therefore,its structure of control cabin is more complicated than that of one-dimensional trajectory correction projectiles (ODTCP). In order to simplify the structure and reduce the cost,a scheme of adding a damping disc to the control cabin of ODTCP has been developed recently. The damping disc will unfold at the right moment during its flight to change the ballistic drift of rotary projectiles. Aimed at this technical scheme,a mathematical model of two-dimensional trajectory corrections was discussed according to the theory of exterior ballistics. An approximate formula for predicting the ballistic drift and trajectory correction was deduced. The capability of lateral trajectory correction and the flight stability of TDTCP were also analyzed. All the work is valuable for further research.展开更多
文摘Compared with the one-dimensional trajectory correction technology which adjusts longitudinal range, not only does the two-dimensional trajectory correction technology adjust the force in velocity direction, but also need to modulate the lateral force or trajectory (perpendicular to the vertical plane of fire direction). Therefore, the structure of control cabin of two-dimensional trajectory correction projectile (TDTCP) is more complicated than that of one-dimensional trajectory correction projectile (ODTCP). To simplify the structure of control cabin of TDTCP and reduce the cost, a scheme of adding a damping disk to the control cabin of ODTCP has been developed recently. The damping disk is unfolded at the right moment during its flight to change the ballistic drift of spin stabilized projectile. For this technical scheme of TDTCP, a fast and accurate impact point prediction method based on extended Kalman filter is presented. An approximate formula for predicting the ballistic drift and trajectory correction quantity is deduced. And the lateral correction capability for different fire angles and its influencing factors are analyzed. All the work is valuable for further research.
文摘The two-dimensional trajectory correction needs to adjust not only the force in velocity direction,but also the lateral force or lateral trajectory (normal to the perpendicular plane of fire direction) . Therefore,its structure of control cabin is more complicated than that of one-dimensional trajectory correction projectiles (ODTCP). In order to simplify the structure and reduce the cost,a scheme of adding a damping disc to the control cabin of ODTCP has been developed recently. The damping disc will unfold at the right moment during its flight to change the ballistic drift of rotary projectiles. Aimed at this technical scheme,a mathematical model of two-dimensional trajectory corrections was discussed according to the theory of exterior ballistics. An approximate formula for predicting the ballistic drift and trajectory correction was deduced. The capability of lateral trajectory correction and the flight stability of TDTCP were also analyzed. All the work is valuable for further research.