With the development of drone technology and oblique photogrammetry technology, the acquisition of oblique photogrammetry models and basemap becomes more and more convenient and quickly. The increase in the number of ...With the development of drone technology and oblique photogrammetry technology, the acquisition of oblique photogrammetry models and basemap becomes more and more convenient and quickly. The increase in the number of basemap leads to excessively redundant basemap tiles requests in 3D GIS when loading oblique photogrammetry models, which slows down the system. Aiming at improving the speed of running system, this paper proposes a dynamic strategy for loading basemap tiles. Different from existing 3D GIS which loading oblique photogrammetry models and basemap tiles inde-pendently, this strategy dynamically loads basemap tiles depending on different height of view and the range of loaded oblique photogrammetry models. We achieve dynamic loading of basemap tiles by predetermining whether the basemap tiles will be covered by the oblique photogrammetry models. The experimental results show that this strategy can greatly reduce the num-ber of redundant requests from the client to the server while ensuring the user’s visual requirements for the oblique photogrammetric model.展开更多
In order to improve target localization precision,accuracy,execution efficiency,and application range of the unmanned aerial vehicle(UAV)based on scene matching,a ground target localization method for unmanned aerial ...In order to improve target localization precision,accuracy,execution efficiency,and application range of the unmanned aerial vehicle(UAV)based on scene matching,a ground target localization method for unmanned aerial vehicle based on scene matching(GTLUAVSM)is proposed.The sugges-ted approach entails completing scene matching through a feature matching algorithm.Then,multi-sensor registration is optimized by robust estimation based on homologous registration.Finally,basemap generation and model solution are utilized to improve basemap correspondence and accom-plish aerial image positioning.Theoretical evidence and experimental verification demonstrate that GTLUAVSM can improve localization accuracy,speed,and precision while minimizing reliance on task equipment.展开更多
文摘With the development of drone technology and oblique photogrammetry technology, the acquisition of oblique photogrammetry models and basemap becomes more and more convenient and quickly. The increase in the number of basemap leads to excessively redundant basemap tiles requests in 3D GIS when loading oblique photogrammetry models, which slows down the system. Aiming at improving the speed of running system, this paper proposes a dynamic strategy for loading basemap tiles. Different from existing 3D GIS which loading oblique photogrammetry models and basemap tiles inde-pendently, this strategy dynamically loads basemap tiles depending on different height of view and the range of loaded oblique photogrammetry models. We achieve dynamic loading of basemap tiles by predetermining whether the basemap tiles will be covered by the oblique photogrammetry models. The experimental results show that this strategy can greatly reduce the num-ber of redundant requests from the client to the server while ensuring the user’s visual requirements for the oblique photogrammetric model.
基金the National Key R&D Program of China(2022YFF0604502).
文摘In order to improve target localization precision,accuracy,execution efficiency,and application range of the unmanned aerial vehicle(UAV)based on scene matching,a ground target localization method for unmanned aerial vehicle based on scene matching(GTLUAVSM)is proposed.The sugges-ted approach entails completing scene matching through a feature matching algorithm.Then,multi-sensor registration is optimized by robust estimation based on homologous registration.Finally,basemap generation and model solution are utilized to improve basemap correspondence and accom-plish aerial image positioning.Theoretical evidence and experimental verification demonstrate that GTLUAVSM can improve localization accuracy,speed,and precision while minimizing reliance on task equipment.