In July,the General Council of China National Textile and Apparel Council (hereinafter referred to as CNTAC) was held in Beijing.The economic operation of China's textile industry in the first half of2024 was rele...In July,the General Council of China National Textile and Apparel Council (hereinafter referred to as CNTAC) was held in Beijing.The economic operation of China's textile industry in the first half of2024 was released at the meeting.展开更多
Through three-year’s efforts, a nationwide unitary certification and accreditation system has already been established in China, which has legalized and standardized China’s certification and accreditation work. App...Through three-year’s efforts, a nationwide unitary certification and accreditation system has already been established in China, which has legalized and standardized China’s certification and accreditation work. Apporved by the State Council, the Certification and Accreditation Administration of China (CNCA), which is in charge of supervising, administrating and coordinating certification and accreditation departments of the whole nation, has done a lot of work to achieve this goal.展开更多
The State Intellectual Poperty Office has announcedan amendment to Sec.5,Paragrph 4.2.of Chapter 7 ofExamination Guidelines.According to the newregulations,for making a respon to an office actionduring the prosecution...The State Intellectual Poperty Office has announcedan amendment to Sec.5,Paragrph 4.2.of Chapter 7 ofExamination Guidelines.According to the newregulations,for making a respon to an office actionduring the prosecution of a patent application,only a firstrequest for a two-month extension of time can be basicallyallowed upon payment of official fee of RMB300(aboutUSD36).For further extension after the first one,onlyanother request for one or two months,at most twomonths,would be possibly petitioned together with a copyof the client’s instructions of the further extension and展开更多
BEIJING-The Communist Party of China has raised a set of long-range objectives for China to basically achieve socialist modernization by 2035.The targets were unveiled in a communique released after the fifth plenary ...BEIJING-The Communist Party of China has raised a set of long-range objectives for China to basically achieve socialist modernization by 2035.The targets were unveiled in a communique released after the fifth plenary session of the 19th CPC Central Committee held in Beijing from Oct 26 to 29.--China′s economic and technological strength,and composite national strength will increase significantly.A new stride will be made in the growth of the economy and the per capita income of urban and rural residents.展开更多
Attempts have been made to use cell transplantation and biomaterials to promote cell proliferation,differentiation,migration,and survival,as well as angiogenesis,in the context of brain injury.However,whether bioactiv...Attempts have been made to use cell transplantation and biomaterials to promote cell proliferation,differentiation,migration,and survival,as well as angiogenesis,in the context of brain injury.However,whether bioactive materials can repair the damage caused by ischemic stroke by activating endogenous neurogenesis and angiogenesis is still unknown.In this study,we applied chitosan gel loaded with basic fibroblast growth factor to the stroke cavity 7 days after ischemic stroke in rats.The gel slowly released basic fibroblast growth factor,which improved the local microenvironment,activated endogenous neural stem/progenitor cells,and recruited these cells to migrate toward the penumbra and stroke cavity and subsequently differentiate into neurons,while enhancing angiogenesis in the penumbra and stroke cavity and ultimately leading to partial functional recovery.This study revealed the mechanism by which bioactive materials repair ischemic strokes,thus providing a new strategy for the clinical application of bioactive materials in the treatment of ischemic stroke.展开更多
Since 1990,China has made considerable progress in resolving the problem of“treatment difficulty”of cardiovascular diseases(CVD).The prevalent unhealthy lifestyle among Chinese residents has exposed a massive propor...Since 1990,China has made considerable progress in resolving the problem of“treatment difficulty”of cardiovascular diseases(CVD).The prevalent unhealthy lifestyle among Chinese residents has exposed a massive proportion of the population to CVD risk factors,and this situation is further worsened due to the accelerated aging population in China.CVD remains one of the greatest threats to the health of Chinese residents.In terms of the proportions of disease mortality among urban and rural residents in China,CVD has persistently ranked first.In 2021,CVD accounted for 48.98%and 47.35%of deaths in rural and urban areas,respectively.Two out of every five deaths can be attributed to CVD.To implement a national policy“focusing on the primary health institute and emphasizing prevention”and truly achieve a shift of CVD prevention and treatment from hospitals to communities,the National Center for Cardiovascular Diseases has organized experts from relevant fields across China to compile the“Report on Cardiovascular Health and Diseases in China”annually since 2005.The 2024 report is established based on representative,published,and high-quality big-data research results from cross-sectional and cohort population epidemiological surveys,randomized controlled clinical trials,large sample registry studies,and typical community prevention and treatment cases,along with data from some projects undertaken by the National Center for Cardiovascular Diseases.These firsthand data not only enrich the content of the current report but also provide a more timely and comprehensive reflection of the status of CVD prevention and treatment in China.展开更多
Developing suitable photocatalysts and understanding their intrinsic catalytic mechanism remain key challenges in the pursuit of highly active,good selective,and long-term stable photocatalytic CO_(2)reduction(PCO_(2)...Developing suitable photocatalysts and understanding their intrinsic catalytic mechanism remain key challenges in the pursuit of highly active,good selective,and long-term stable photocatalytic CO_(2)reduction(PCO_(2)R)systems.Herein,monoclinic Cu_(2)(OH)_(2)CO_(3)is firstly proven to be a new class of photocatalyst,which has excellent catalytic stability and selectivity for PCO_(2)R in the absence of any sacrificial agent and cocatalysts.Based on a Cu_(2)(OH)_(2)^(13)CO_(3)photocatalyst and 13CO_(2)two-sided^(13)C isotopic tracer strategy,and combined with in situ diffused reflectance infrared Fourier transform spectroscopy(DRIFTS)analysis and density functional theory(DFT)calculations,two main CO_(2)transformation routes,and the photo-decomposition and self-restructuring dynamic equilibrium mechanism of Cu_(2)(OH)_(2)CO_(3)are definitely revealed.The PCO_(2)R activity of Cu_(2)(OH)_(2)CO_(3)is comparable to some of state-of-the-art novel photocatalysts.Significantly,the PCO_(2)R properties can be further greatly enhanced by simply combining Cu_(2)(OH)_(2)CO_(3)with typical TiO_(2)to construct composites photocatalyst.The highest CO_(2)and CH_(4)production rates by 7.5 wt%Cu_(2)(OH)_(2)CO_(3)-TiO_(2)reach 16.4μmol g^(-1)h^(-1)and 116.0μmol g^(-1)h^(-1),respectively,which are even higher than that of some of PCO_(2)R systems containing sacrificial agents or precious metals modified photocatalysts.This work provides a better understanding for the PCO_(2)R mechanism at the atomic levels,and also indicates that basic carbonate photocatalysts have broad application potential in the future.展开更多
The amount of oxygen blown into the converter is one of the key parameters for the control of the converter blowing process,which directly affects the tap-to-tap time of converter. In this study, a hybrid model based ...The amount of oxygen blown into the converter is one of the key parameters for the control of the converter blowing process,which directly affects the tap-to-tap time of converter. In this study, a hybrid model based on oxygen balance mechanism (OBM) and deep neural network (DNN) was established for predicting oxygen blowing time in converter. A three-step method was utilized in the hybrid model. First, the oxygen consumption volume was predicted by the OBM model and DNN model, respectively. Second, a more accurate oxygen consumption volume was obtained by integrating the OBM model and DNN model. Finally, the converter oxygen blowing time was calculated according to the oxygen consumption volume and the oxygen supply intensity of each heat. The proposed hybrid model was verified using the actual data collected from an integrated steel plant in China, and compared with multiple linear regression model, OBM model, and neural network model including extreme learning machine, back propagation neural network, and DNN. The test results indicate that the hybrid model with a network structure of 3 hidden layer layers, 32-16-8 neurons per hidden layer, and 0.1 learning rate has the best prediction accuracy and stronger generalization ability compared with other models. The predicted hit ratio of oxygen consumption volume within the error±300 m^(3)is 96.67%;determination coefficient (R^(2)) and root mean square error (RMSE) are0.6984 and 150.03 m^(3), respectively. The oxygen blow time prediction hit ratio within the error±0.6 min is 89.50%;R2and RMSE are0.9486 and 0.3592 min, respectively. As a result, the proposed model can effectively predict the oxygen consumption volume and oxygen blowing time in the converter.展开更多
BACKGROUND China’s Behavioral Risk Factor Surveillance System(BRFSS)originated from the World Bankfunded HealthⅦLoan Project in the 1990s,which conducted behavioral risk factor surveillance in seven cities and one p...BACKGROUND China’s Behavioral Risk Factor Surveillance System(BRFSS)originated from the World Bankfunded HealthⅦLoan Project in the 1990s,which conducted behavioral risk factor surveillance in seven cities and one province^([1]).Drawing on the World Health Organization’s(WHO)STEPwise approach to surveillance(STEPs)and the U.S.Behavioral Risk Factor Surveillance System(BRFSS)^([2,3]).展开更多
1 Scope This document specifies the metadata attributes and data element attributes for the adult chronic disease behavior risk factor surveillance dataset.It is applicable to the collection of data for the surveillan...1 Scope This document specifies the metadata attributes and data element attributes for the adult chronic disease behavior risk factor surveillance dataset.It is applicable to the collection of data for the surveillance,survey,intervention and assessment of chronic disease behavior risk factors by health administrative departments,disease prevention and control institutions.展开更多
During the continuous casting process of high-Mn high-Al steels,various types of gases such as Ar need to escape through the top of the mold.In which,the behavior of bubbles traversing the liquid slag serves as a rest...During the continuous casting process of high-Mn high-Al steels,various types of gases such as Ar need to escape through the top of the mold.In which,the behavior of bubbles traversing the liquid slag serves as a restrictive link,closely associated with viscosity and the thickness of liquid slag.In contrast to two-dimensional surface observation,three-dimensional(3D)analysis method can offer a more intuitive,accurate,and comprehensive information.Therefore,this study employs a 3D X-ray microscope(3D-XRM)to obtained spatial distribution and 3D morphological characteristics of residual bubbles in mold flux under different basicity of liquid slag,different temperatures,and different holding times.The results indicate that as basicity of slag increases from 0.52 to 1.03,temperature increases from 1423 to 1573 K,the viscosity of slag decreases,the floating rate of bubbles increases.In addition,when holding time increases from 10 to 30 s,the bubbles floating distance increases,and the volume fraction and average equivalent sphere diameter of the bubbles solidified in the mold flux gradually decreases.In one word,increasing the basicity,temperature,and holding time leading to an increase in the removal rate of bubbles especially for the large.These findings of bubbles escape behavior provide valuable insights into optimizing low basicity mold flux for high-Mn high-Al steels.展开更多
Flocculation flotation is the most efficient method for recovering fine-grained minerals,and its essence lies in flotation and recovery of flocs.Fundamental physical characteristics of flocs are mainly determined by t...Flocculation flotation is the most efficient method for recovering fine-grained minerals,and its essence lies in flotation and recovery of flocs.Fundamental physical characteristics of flocs are mainly determined by their apparent particle size and structure(density and morphology).Substantial researches have been conducted regarding the effect of floc characteristics on particle settling and water treatment.However,the influence of floc characteristics on flotation has not been widely studied.Based on the floc formation and flocculation flotation,this study reviews the fundamental physical characteristics of flocs from the perspectives of floc particle size and structure,summarizing the interaction between floc particle size and structure.Moreover,it thoroughly discusses the effect of floc particle size and structure on floc floatability,further revealing the influence of floc characteristics on bubble collision and adhesion and elucidating the mechanisms of interaction between flocs and bubbles.Thus,it is observed that floc particle size is not the only factor influencing flocculation flotation.Within the appropriate apparent particle size range,flocs with a compact structure exhibit higher efficiency in bubble collision and adhesion during flotation,thereby resulting in enhanced flotation performance.This study aims to provide a reference for flocculation flotation,targeting the development of more efficient and refined flocculation flotation processes in the future.展开更多
With the continuous increase of mining in depth,the gas extraction faces the challenges of low permeability,great ground stress,high temperature and large gas pressure in coal seam.The controllable shock wave(CSW),as ...With the continuous increase of mining in depth,the gas extraction faces the challenges of low permeability,great ground stress,high temperature and large gas pressure in coal seam.The controllable shock wave(CSW),as a new method for enhancing permeability of coal seam to improve gas extraction,features in the advantages of high efficiency,eco-friendly,and low cost.In order to better utilize the CSW into gas extraction in coal mine,the mechanism and feasibility of CSW enhanced extraction need to be studied.In this paper,the basic principles,the experimental tests,the mathematical models,and the on-site tests of CSW fracturing coal seams are reviewed,thereby its future research directions are provided.Based on the different media between electrodes,the CSW can be divided into three categories:hydraulic effect,wire explosion and excitation of energetic materials by detonating wire.During the process of propagation and attenuation of the high-energy shock wave in coal,the shock wave and bubble pulsation work together to produce an enhanced permeability effect on the coal seam.The stronger the strength of the CSW is,the more cracks created in the coal is,and the greater the length,width and area of the cracks being.The repeated shock on the coal seam is conducive to the formation of complex network fracture system as well as the reduction of coal seam strength,but excessive shock frequency will also damage the coal structure,resulting in the limited effect of the enhanced gas extraction.Under the influence of ground stress,the crack propagation in coal seam will be restrained.The difference of horizontal principal stress has a significant impact on the shape,propagation direction and connectivity of the CSW induced cracks.The permeability enhancement effect of CSW is affected by the breakage degree of coal seam.The shock wave is absorbed by the broken coal,which may hinder the propagation of CSW,resulting in a poor effect of permeability enhancement.When arranging two adjacent boreholes for CSW permeability enhancement test,the spacing of boreholes should not be too close,which may lead to negative pressure mutual pulling in the early stage of drainage.At present,the accurate method for effectively predicting the CSW permeability enhanced range should be further investigated.展开更多
This paper first estimated the infectious capacity of COVID-19 based on the time series evolution data of confirmed cases in multiple countries. Then, a method to infer the cross-regional spread speed of COVID-19 was ...This paper first estimated the infectious capacity of COVID-19 based on the time series evolution data of confirmed cases in multiple countries. Then, a method to infer the cross-regional spread speed of COVID-19 was introduced in this paper, which took the gross domestic product(GDP) of each region as one of the factors that affect the spread speed of COVID-19 and studied the relationship between the GDP and the infection density of each region(China's Mainland, the United States, and EU countries). In addition, the geographic distance between regions was also considered in this method and the effect of geographic distance on the spread speed of COVID-19 was studied. Studies have shown that the probability of mutual infection of these two regions decreases with increasing geographic distance. Therefore, this paper proposed an epidemic disease spread index based on GDP and geographic distance to quantify the spread speed of COVID-19 in a region. The analysis results showed a strong correlation between the epidemic disease spread index in a region and the number of confirmed cases. This finding provides reasonable suggestions for the control of epidemics. Strengthening the control measures in regions with higher epidemic disease spread index can effectively control the spread of epidemics.展开更多
文摘In July,the General Council of China National Textile and Apparel Council (hereinafter referred to as CNTAC) was held in Beijing.The economic operation of China's textile industry in the first half of2024 was released at the meeting.
文摘Through three-year’s efforts, a nationwide unitary certification and accreditation system has already been established in China, which has legalized and standardized China’s certification and accreditation work. Apporved by the State Council, the Certification and Accreditation Administration of China (CNCA), which is in charge of supervising, administrating and coordinating certification and accreditation departments of the whole nation, has done a lot of work to achieve this goal.
文摘The State Intellectual Poperty Office has announcedan amendment to Sec.5,Paragrph 4.2.of Chapter 7 ofExamination Guidelines.According to the newregulations,for making a respon to an office actionduring the prosecution of a patent application,only a firstrequest for a two-month extension of time can be basicallyallowed upon payment of official fee of RMB300(aboutUSD36).For further extension after the first one,onlyanother request for one or two months,at most twomonths,would be possibly petitioned together with a copyof the client’s instructions of the further extension and
文摘BEIJING-The Communist Party of China has raised a set of long-range objectives for China to basically achieve socialist modernization by 2035.The targets were unveiled in a communique released after the fifth plenary session of the 19th CPC Central Committee held in Beijing from Oct 26 to 29.--China′s economic and technological strength,and composite national strength will increase significantly.A new stride will be made in the growth of the economy and the per capita income of urban and rural residents.
基金supported by the National Natural Science Foundation of China,Nos.81941011(to XL),31771053(to HD),31730030(to XL),31971279(to ZY),31900749(to PH),31650001(to XL),31320103903(to XL),31670988(to ZY)the Natural Science Foundation of Beijing,Nos.7222004(to HD)+1 种基金a grant from Ministry of Science and Technology of China,Nos.2017YFC1104002(to ZY),2017YFC1104001(to XL)a grant from Beihang University,No.JKF-YG-22-B001(to FH)。
文摘Attempts have been made to use cell transplantation and biomaterials to promote cell proliferation,differentiation,migration,and survival,as well as angiogenesis,in the context of brain injury.However,whether bioactive materials can repair the damage caused by ischemic stroke by activating endogenous neurogenesis and angiogenesis is still unknown.In this study,we applied chitosan gel loaded with basic fibroblast growth factor to the stroke cavity 7 days after ischemic stroke in rats.The gel slowly released basic fibroblast growth factor,which improved the local microenvironment,activated endogenous neural stem/progenitor cells,and recruited these cells to migrate toward the penumbra and stroke cavity and subsequently differentiate into neurons,while enhancing angiogenesis in the penumbra and stroke cavity and ultimately leading to partial functional recovery.This study revealed the mechanism by which bioactive materials repair ischemic strokes,thus providing a new strategy for the clinical application of bioactive materials in the treatment of ischemic stroke.
文摘Since 1990,China has made considerable progress in resolving the problem of“treatment difficulty”of cardiovascular diseases(CVD).The prevalent unhealthy lifestyle among Chinese residents has exposed a massive proportion of the population to CVD risk factors,and this situation is further worsened due to the accelerated aging population in China.CVD remains one of the greatest threats to the health of Chinese residents.In terms of the proportions of disease mortality among urban and rural residents in China,CVD has persistently ranked first.In 2021,CVD accounted for 48.98%and 47.35%of deaths in rural and urban areas,respectively.Two out of every five deaths can be attributed to CVD.To implement a national policy“focusing on the primary health institute and emphasizing prevention”and truly achieve a shift of CVD prevention and treatment from hospitals to communities,the National Center for Cardiovascular Diseases has organized experts from relevant fields across China to compile the“Report on Cardiovascular Health and Diseases in China”annually since 2005.The 2024 report is established based on representative,published,and high-quality big-data research results from cross-sectional and cohort population epidemiological surveys,randomized controlled clinical trials,large sample registry studies,and typical community prevention and treatment cases,along with data from some projects undertaken by the National Center for Cardiovascular Diseases.These firsthand data not only enrich the content of the current report but also provide a more timely and comprehensive reflection of the status of CVD prevention and treatment in China.
基金financial support from the National Natural Science Foundation of China(No.22272038)the Science and Technology Planning Project of Guangzhou City(No.2023A03J0026)。
文摘Developing suitable photocatalysts and understanding their intrinsic catalytic mechanism remain key challenges in the pursuit of highly active,good selective,and long-term stable photocatalytic CO_(2)reduction(PCO_(2)R)systems.Herein,monoclinic Cu_(2)(OH)_(2)CO_(3)is firstly proven to be a new class of photocatalyst,which has excellent catalytic stability and selectivity for PCO_(2)R in the absence of any sacrificial agent and cocatalysts.Based on a Cu_(2)(OH)_(2)^(13)CO_(3)photocatalyst and 13CO_(2)two-sided^(13)C isotopic tracer strategy,and combined with in situ diffused reflectance infrared Fourier transform spectroscopy(DRIFTS)analysis and density functional theory(DFT)calculations,two main CO_(2)transformation routes,and the photo-decomposition and self-restructuring dynamic equilibrium mechanism of Cu_(2)(OH)_(2)CO_(3)are definitely revealed.The PCO_(2)R activity of Cu_(2)(OH)_(2)CO_(3)is comparable to some of state-of-the-art novel photocatalysts.Significantly,the PCO_(2)R properties can be further greatly enhanced by simply combining Cu_(2)(OH)_(2)CO_(3)with typical TiO_(2)to construct composites photocatalyst.The highest CO_(2)and CH_(4)production rates by 7.5 wt%Cu_(2)(OH)_(2)CO_(3)-TiO_(2)reach 16.4μmol g^(-1)h^(-1)and 116.0μmol g^(-1)h^(-1),respectively,which are even higher than that of some of PCO_(2)R systems containing sacrificial agents or precious metals modified photocatalysts.This work provides a better understanding for the PCO_(2)R mechanism at the atomic levels,and also indicates that basic carbonate photocatalysts have broad application potential in the future.
基金financially supported by the National Natural Science Foundation of China (Nos.51974023 and52374321)the funding of State Key Laboratory of Advanced Metallurgy,University of Science and Technology Beijing,China (No.41620007)。
文摘The amount of oxygen blown into the converter is one of the key parameters for the control of the converter blowing process,which directly affects the tap-to-tap time of converter. In this study, a hybrid model based on oxygen balance mechanism (OBM) and deep neural network (DNN) was established for predicting oxygen blowing time in converter. A three-step method was utilized in the hybrid model. First, the oxygen consumption volume was predicted by the OBM model and DNN model, respectively. Second, a more accurate oxygen consumption volume was obtained by integrating the OBM model and DNN model. Finally, the converter oxygen blowing time was calculated according to the oxygen consumption volume and the oxygen supply intensity of each heat. The proposed hybrid model was verified using the actual data collected from an integrated steel plant in China, and compared with multiple linear regression model, OBM model, and neural network model including extreme learning machine, back propagation neural network, and DNN. The test results indicate that the hybrid model with a network structure of 3 hidden layer layers, 32-16-8 neurons per hidden layer, and 0.1 learning rate has the best prediction accuracy and stronger generalization ability compared with other models. The predicted hit ratio of oxygen consumption volume within the error±300 m^(3)is 96.67%;determination coefficient (R^(2)) and root mean square error (RMSE) are0.6984 and 150.03 m^(3), respectively. The oxygen blow time prediction hit ratio within the error±0.6 min is 89.50%;R2and RMSE are0.9486 and 0.3592 min, respectively. As a result, the proposed model can effectively predict the oxygen consumption volume and oxygen blowing time in the converter.
基金supported by the National Key R&D Program[2018YFC1311702,2018YFC1311706]。
文摘BACKGROUND China’s Behavioral Risk Factor Surveillance System(BRFSS)originated from the World Bankfunded HealthⅦLoan Project in the 1990s,which conducted behavioral risk factor surveillance in seven cities and one province^([1]).Drawing on the World Health Organization’s(WHO)STEPwise approach to surveillance(STEPs)and the U.S.Behavioral Risk Factor Surveillance System(BRFSS)^([2,3]).
文摘1 Scope This document specifies the metadata attributes and data element attributes for the adult chronic disease behavior risk factor surveillance dataset.It is applicable to the collection of data for the surveillance,survey,intervention and assessment of chronic disease behavior risk factors by health administrative departments,disease prevention and control institutions.
基金financially supported by the National Natural Science Foundation of China(Nos.52274315 and 52374320)the Fundamental Research Funds for the Central Universities(Nos.FRF-TP-22-011A1 and FRF-DF22-16)。
文摘During the continuous casting process of high-Mn high-Al steels,various types of gases such as Ar need to escape through the top of the mold.In which,the behavior of bubbles traversing the liquid slag serves as a restrictive link,closely associated with viscosity and the thickness of liquid slag.In contrast to two-dimensional surface observation,three-dimensional(3D)analysis method can offer a more intuitive,accurate,and comprehensive information.Therefore,this study employs a 3D X-ray microscope(3D-XRM)to obtained spatial distribution and 3D morphological characteristics of residual bubbles in mold flux under different basicity of liquid slag,different temperatures,and different holding times.The results indicate that as basicity of slag increases from 0.52 to 1.03,temperature increases from 1423 to 1573 K,the viscosity of slag decreases,the floating rate of bubbles increases.In addition,when holding time increases from 10 to 30 s,the bubbles floating distance increases,and the volume fraction and average equivalent sphere diameter of the bubbles solidified in the mold flux gradually decreases.In one word,increasing the basicity,temperature,and holding time leading to an increase in the removal rate of bubbles especially for the large.These findings of bubbles escape behavior provide valuable insights into optimizing low basicity mold flux for high-Mn high-Al steels.
基金financially supported by the National Natural Science Foundation of China(Nos.52174239 and 52204284)。
文摘Flocculation flotation is the most efficient method for recovering fine-grained minerals,and its essence lies in flotation and recovery of flocs.Fundamental physical characteristics of flocs are mainly determined by their apparent particle size and structure(density and morphology).Substantial researches have been conducted regarding the effect of floc characteristics on particle settling and water treatment.However,the influence of floc characteristics on flotation has not been widely studied.Based on the floc formation and flocculation flotation,this study reviews the fundamental physical characteristics of flocs from the perspectives of floc particle size and structure,summarizing the interaction between floc particle size and structure.Moreover,it thoroughly discusses the effect of floc particle size and structure on floc floatability,further revealing the influence of floc characteristics on bubble collision and adhesion and elucidating the mechanisms of interaction between flocs and bubbles.Thus,it is observed that floc particle size is not the only factor influencing flocculation flotation.Within the appropriate apparent particle size range,flocs with a compact structure exhibit higher efficiency in bubble collision and adhesion during flotation,thereby resulting in enhanced flotation performance.This study aims to provide a reference for flocculation flotation,targeting the development of more efficient and refined flocculation flotation processes in the future.
基金National Natural Science Foundation of China(52004117,52174117 and 52074146)Postdoctoral Science Foundation of China(2021T140290 and 2020M680975)Basic scientific research project of Liaoning Provincial Department of Education(JYTZD2023073).
文摘With the continuous increase of mining in depth,the gas extraction faces the challenges of low permeability,great ground stress,high temperature and large gas pressure in coal seam.The controllable shock wave(CSW),as a new method for enhancing permeability of coal seam to improve gas extraction,features in the advantages of high efficiency,eco-friendly,and low cost.In order to better utilize the CSW into gas extraction in coal mine,the mechanism and feasibility of CSW enhanced extraction need to be studied.In this paper,the basic principles,the experimental tests,the mathematical models,and the on-site tests of CSW fracturing coal seams are reviewed,thereby its future research directions are provided.Based on the different media between electrodes,the CSW can be divided into three categories:hydraulic effect,wire explosion and excitation of energetic materials by detonating wire.During the process of propagation and attenuation of the high-energy shock wave in coal,the shock wave and bubble pulsation work together to produce an enhanced permeability effect on the coal seam.The stronger the strength of the CSW is,the more cracks created in the coal is,and the greater the length,width and area of the cracks being.The repeated shock on the coal seam is conducive to the formation of complex network fracture system as well as the reduction of coal seam strength,but excessive shock frequency will also damage the coal structure,resulting in the limited effect of the enhanced gas extraction.Under the influence of ground stress,the crack propagation in coal seam will be restrained.The difference of horizontal principal stress has a significant impact on the shape,propagation direction and connectivity of the CSW induced cracks.The permeability enhancement effect of CSW is affected by the breakage degree of coal seam.The shock wave is absorbed by the broken coal,which may hinder the propagation of CSW,resulting in a poor effect of permeability enhancement.When arranging two adjacent boreholes for CSW permeability enhancement test,the spacing of boreholes should not be too close,which may lead to negative pressure mutual pulling in the early stage of drainage.At present,the accurate method for effectively predicting the CSW permeability enhanced range should be further investigated.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.62266030 and 61863025)International S & T Cooperation Projects of Gansu province (Grant No.144WCGA166)Longyuan Young Innovation Talents and the Doctoral Foundation of LUT。
文摘This paper first estimated the infectious capacity of COVID-19 based on the time series evolution data of confirmed cases in multiple countries. Then, a method to infer the cross-regional spread speed of COVID-19 was introduced in this paper, which took the gross domestic product(GDP) of each region as one of the factors that affect the spread speed of COVID-19 and studied the relationship between the GDP and the infection density of each region(China's Mainland, the United States, and EU countries). In addition, the geographic distance between regions was also considered in this method and the effect of geographic distance on the spread speed of COVID-19 was studied. Studies have shown that the probability of mutual infection of these two regions decreases with increasing geographic distance. Therefore, this paper proposed an epidemic disease spread index based on GDP and geographic distance to quantify the spread speed of COVID-19 in a region. The analysis results showed a strong correlation between the epidemic disease spread index in a region and the number of confirmed cases. This finding provides reasonable suggestions for the control of epidemics. Strengthening the control measures in regions with higher epidemic disease spread index can effectively control the spread of epidemics.