期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
Internal Short Circuit Detection for Parallel-Connected Battery Cells Using Convolutional Neural Network
1
作者 Niankai Yang Ziyou Song +1 位作者 Mohammad Reza Amini Heath Hofmann 《Automotive Innovation》 EI CSCD 2022年第2期107-120,共14页
Reliable and timely detection of an internal short circuit(ISC)in lithium-ion batteries is important to ensure safe and efficient operation.This paper investigates ISC detection of parallel-connected battery cells by ... Reliable and timely detection of an internal short circuit(ISC)in lithium-ion batteries is important to ensure safe and efficient operation.This paper investigates ISC detection of parallel-connected battery cells by considering cell non-uniformity and sensor limitation(i.e.,no independent current sensors for individual cells in a parallel string).To characterize ISC-related signatures in battery string responses,an electro-thermal model of parallel-connected battery cells is first established that explicitly captures ISC.By analyzing the data generated from the electro-thermal model,the distribution of surface tem-perature among individual cells within the battery string is identified as an indicator for ISC detection under the constraints of sensor limitations.A convolutional neural network(CNN)is then designed to estimate the ISC resistance by using the cell surface temperature and the total capacity of the string as inputs.Based on the estimated ISC resistance from CNN,the strings are classified as faulty or non-faulty to guide the examination or replacement of the battery.The algorithm is evaluated in the presence of signal noises in terms of accuracy,false alarm rate,and missed detection rate,verifying the effectiveness and robustness of the proposed approach. 展开更多
关键词 Internal short circuit Parallel-connected battery cells Convolutional neural network cell temperature distribution
原文传递
A Cell Screening Algorithm Integrating Genetic and Numerical Differentiation
2
作者 Zhen Wu Feijing Fu +2 位作者 Yirga Eyasu Tenawerk Weize Quan Wanwen Wu 《Journal of Electronic Research and Application》 2024年第4期121-132,共12页
The consistency of the cell has a significant impact on battery capacity,endurance,overall performance,safety,and service life extension.However,it is challenging to identify cells with high consistency and no loss of... The consistency of the cell has a significant impact on battery capacity,endurance,overall performance,safety,and service life extension.However,it is challenging to identify cells with high consistency and no loss of battery energy.This paper presents a cell screening algorithm that integrates genetic and numerical differentiation techniques.Initially,a mathematical model for battery consistency is established,and a multi-step charging strategy is proposed to satisfy the demands of fast charging technology.Subsequently,the genetic algorithm simulates biological evolution to efficiently search for superior cell combinations within a short time while evaluating capacity,voltage consistency,and charge/discharge efficiency.Finally,through experimental validation and comparative analysis with similar algorithms,our proposed method demonstrates notable advantages in terms of both search efficiency and performance. 展开更多
关键词 Genetic differentiation method battery consistency Voltage fluctuation Fast charging technology battery cell screening
下载PDF
Model reduction of fractional impedance spectra for time–frequency analysis of batteries, fuel cells, and supercapacitors 被引量:1
3
作者 Weiheng Li Qiu-An Huang +6 位作者 Yuxuan Bai Jia Wang Linlin Wang Yuyu Liu Yufeng Zhao Xifei Li Jiujun Zhang 《Carbon Energy》 SCIE EI CAS CSCD 2024年第1期108-141,共34页
Joint time–frequency analysis is an emerging method for interpreting the underlying physics in fuel cells,batteries,and supercapacitors.To increase the reliability of time–frequency analysis,a theoretical correlatio... Joint time–frequency analysis is an emerging method for interpreting the underlying physics in fuel cells,batteries,and supercapacitors.To increase the reliability of time–frequency analysis,a theoretical correlation between frequency-domain stationary analysis and time-domain transient analysis is urgently required.The present work formularizes a thorough model reduction of fractional impedance spectra for electrochemical energy devices involving not only the model reduction from fractional-order models to integer-order models and from high-to low-order RC circuits but also insight into the evolution of the characteristic time constants during the whole reduction process.The following work has been carried out:(i)the model-reduction theory is addressed for typical Warburg elements and RC circuits based on the continued fraction expansion theory and the response error minimization technique,respectively;(ii)the order effect on the model reduction of typical Warburg elements is quantitatively evaluated by time–frequency analysis;(iii)the results of time–frequency analysis are confirmed to be useful to determine the reduction order in terms of the kinetic information needed to be captured;and(iv)the results of time–frequency analysis are validated for the model reduction of fractional impedance spectra for lithium-ion batteries,supercapacitors,and solid oxide fuel cells.In turn,the numerical validation has demonstrated the powerful function of the joint time–frequency analysis.The thorough model reduction of fractional impedance spectra addressed in the present work not only clarifies the relationship between time-domain transient analysis and frequency-domain stationary analysis but also enhances the reliability of the joint time–frequency analysis for electrochemical energy devices. 展开更多
关键词 battery fuel cell supercapacitor fractional impedance spectroscopy model reduction time-frequency analysis
下载PDF
Materials Research Advances towards High-Capacity Battery/Fuel Cell Devices(Invited paper)
4
作者 wei-dong he lu-han ye +4 位作者 ke-chun wen ya-chun liang wei-qiang lv gao-long zhu kelvin h.l.zhang 《Journal of Electronic Science and Technology》 CAS CSCD 2016年第1期12-20,共9页
The world has entered an era featured with fast transportations,instant communications,and prompt technological revolutions,the further advancement of which all relies fundamentally,yet,on the development of cost-effe... The world has entered an era featured with fast transportations,instant communications,and prompt technological revolutions,the further advancement of which all relies fundamentally,yet,on the development of cost-effective energy resources allowing for durable and high-rate energy supply.Current battery and fuel cell systems are challenged by a few issues characterized either by insufficient energy capacity or by operation instability and,thus,are not ideal for such highly-demanded applications as electrical vehicles and portable electronic devices.In this mini-review,we present,from materials perspectives,a few selected important breakthroughs in energy resources employed in these applications.Prospectives are then given to look towards future research activities for seeking viable materials solutions for addressing the capacity,durability,and cost shortcomings associated with current battery/fuel cell devices. 展开更多
关键词 Batteries energy materials fuel cell lithium-air lithium ion batteries
下载PDF
In-situ design and construction of lithium-ion battery electrodes on metal substrates with enhanced performances:A brief review 被引量:2
5
作者 Weixin Zhang Yingmeng Zhang +3 位作者 Zeheng Yang Gongde Chen Guo Ma Qiang Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2016年第1期48-52,共5页
For the ever-growing demand of advanced lithium-ion batteries, it is highly desirable to grow self-supported micro-/nanostructured arrays on metal substrates as electrodes directly. The in-situ growth of electrode mat... For the ever-growing demand of advanced lithium-ion batteries, it is highly desirable to grow self-supported micro-/nanostructured arrays on metal substrates as electrodes directly. The in-situ growth of electrode materials on the conducting substrates greatly simplifies the electrode fabrication process without using any binders or conductive additives. Moreover, the well-ordered arrays closely connected to the current collectors can provide direct electron transport pathways and enhanced accommodation of strains arisen from lithium ion lithiation/delithiation. This article summarizes our recent work on design and construction of lithium-ion battery electrodes on metal substrates. An aqueous solution-based process and a microemulsion-mediated process have been respectively presented to control the kinetic and thermodynamic processes for the micro-/nanostructured array growth on metal substrates, with particular attention to CuO nanorod arrays and microcog arrays successfully prepared on Cu foil substrates. They can be directly used as binder-free electrodes to build advanced lithium-ion batteries with high energy, high safety and high stability. 展开更多
关键词 Micro-/nanostructured arrays Metal substrates Lithium-ion batteries Full cells Electrodes
下载PDF
Entropy and heat generation of lithium cells/batteries
6
作者 王松蕊 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第1期2-7,共6页
The methods and techniques commonly used in investigating the change of entropy and heat generation in Li cells/batteries are introduced, as are the measurements, calculations and purposes. The changes of entropy and ... The methods and techniques commonly used in investigating the change of entropy and heat generation in Li cells/batteries are introduced, as are the measurements, calculations and purposes. The changes of entropy and heat generation are concomitant with the use of Li ceUs/batteries. In order to improve the management and the application of Li cells/batteries, especially for large scale power batteries, the quantitative investigations of the change of entropy and heat generating are necessary. 展开更多
关键词 change of entropy heat generation lithium cells/batteries
下载PDF
A novel scrape-applied method for the manufacture of the membrane-electrode assembly of the fuel-cell system
7
作者 S. D. Wu C. P. Chou +2 位作者 R. G. Peng C. H. Lee Y. Z. Wang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2009年第6期831-837,共7页
This study investigates the transfer of the scrape-applied method from the electrodes of a lithium battery to the membrane-electrode assembly of fuel cells, including Proton Exchange Membrane Fuel Cells and Direct Met... This study investigates the transfer of the scrape-applied method from the electrodes of a lithium battery to the membrane-electrode assembly of fuel cells, including Proton Exchange Membrane Fuel Cells and Direct Methanol Fuel Cell. Three methods are commonly used to manufacture lithium battery electrodes: the roller-applied method, the spraying-applied method, and the scrape-applied method. This study develops novel scrape-applied equip- ment for lithium battery electrodes. This method is novel and suitable for producing fuel cell, better than other tradi- tional methods. In this study, the stability of coating process was tested by measuring the weight and thickness of a dry electrode. The stability and reproducibility of electrode fab- rication were examined by systematic data analysis. Finally, the study used a specially designed single cell composed of 16 conductive segments, which are insulated locally. The current passing through each segment was measured using Hall Effect sensors connected to the segment compartments. Based on the measured distribution of the local current in a segmented single cell, the influence of flooding and stoi- chiometry variation of feed gas was discussed in terms of electrochemical reaction rate. The experimental results serve as an important basis for future research in this field, which hold potential benefits to the academia and the industry. 展开更多
关键词 Fuel cells . Scraper . Electrode. Lithium battery - Reliability
下载PDF
Process engineering in electrochemical energy devices innovation 被引量:5
8
作者 Yingying Xie Weimin Zhang +2 位作者 Shuang Gu Yushan Yan Zi-Feng Ma 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2016年第1期39-47,共9页
This review focuses on the application of process engineering in electrochemical energy conversion and storage devices innovation. For polymer electrolyte based devices, it highlights that a strategic simple switch fr... This review focuses on the application of process engineering in electrochemical energy conversion and storage devices innovation. For polymer electrolyte based devices, it highlights that a strategic simple switch from proton exchange membranes(PEMs) to hydroxide exchange membranes(HEMs) may lead to a new-generation of affordable electrochemical energy devices including fuel cells, electrolyzers, and solar hydrogen generators. For lithium-ion batteries, a series of advancements in design and chemistry are required for electric vehicle and energy storage applications. Manufacturing process development and optimization of the LiF eP O_4/C cathode materials and several emerging novel anode materials are also discussed using the authors' work as examples.Design and manufacturing process of lithium-ion battery electrodes are introduced in detail, and modeling and optimization of large-scale lithium-ion batteries are also presented. Electrochemical energy materials and device innovations can be further prompted by better understanding of the fundamental transport phenomena involved in unit operations. 展开更多
关键词 Electrochemical energy engineering Fuel cells Lithium-ion batteries Process innovation
下载PDF
Variable Universe Fuzzy Control for Battery Equalization 被引量:10
9
作者 ZHENG Jian CHEN Jian OUYANG Quan 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2018年第1期325-342,共18页
In order to avoid the overcharge and overdischarge damages, and to improve the lifetime of the lithium-ion batteries, it is essential to keep the cell voltages in a battery pack at the same level,i.e., battery equaliz... In order to avoid the overcharge and overdischarge damages, and to improve the lifetime of the lithium-ion batteries, it is essential to keep the cell voltages in a battery pack at the same level,i.e., battery equalization. Based on the bi-directional modified Cuk converter, variable universe fuzzy controllers are proposed to adaptively maintain equalizing currents between cells of a serially connected battery pack in varying conditions. The inputs to the fuzzy controller are the voltage differences and the average voltages of adjacent cell pairs. A large voltage difference requires large equalizing current while adjacent cells both with low/high voltages can only stand small discharge/charge currents. Compared with the conventional fuzzy control method, the proposed method differs in that the universe can shrink or expand as the effects of the input changes. This is important as the input may change in a small range. Simulation results demonstrate that the proposed variable universe fuzzy control method has fast equalization speed and good adaptiveness for varying conditions. 展开更多
关键词 cell equalization lithium-ion battery variable universe fuzzy control
原文传递
A non-aqueous Li/organosulfur semi-solid flow battery 被引量:2
10
作者 Chenhui Wang Qinzhi Lai +2 位作者 Pengcheng Xu Xianfeng Li Huamin Zhang 《Chinese Chemical Letters》 SCIE CAS CSCD 2018年第5期716-718,共3页
Non-aqueous flow batteries have attracted extensive attention due to the advantages of wide voltagewindow, high energy density and wide operating temperature and so on. Herein, tetramethylthiuramdisulfide (TMTD) wit... Non-aqueous flow batteries have attracted extensive attention due to the advantages of wide voltagewindow, high energy density and wide operating temperature and so on. Herein, tetramethylthiuramdisulfide (TMTD) with high intrinsic capacity (223 mAh/g) and high solubility (-1 mol/L in chloroform) isinvestigated as the positive active material of the non-aqueous LiJdisulfide semi-solid flow battery. Theelectrochemical activity and reversibility are investigated by cyclic voltammetry and linear scanvoltammetry. This Li/TMTD battery with a high cell voltage of 3.36 V achieves coulombic efficiency of 99%,voltage efficiency of 73% and energy efficiency of 72% at the current density of 5 mA/cm2 with activematerial concentration of 0.1 mol/L. Moreover, the LiJTMTD battery can operate for 100 cycles withoutobvious efficiency decay, indicating good stability. 展开更多
关键词 Energy storage Batteries Organosulfur High energy density High cell voltage
原文传递
Natural nitrogen-doped multiporous carbon from biological cells as sulfur stabilizers for lithium-sulfur batteries 被引量:1
11
作者 Yan-Ping Xie Hong-Wei Cheng +5 位作者 Wei Chai Hong Yue Xuan Zhang Jian-Hui Fang Hong-Bin Zhao Jia-Qiang Xu 《Chinese Chemical Letters》 SCIE CAS CSCD 2017年第4期738-742,共5页
In this context,we firstly synthesized a novel nitrogen-doped multiporous carbon material from renewable biological cells through a facile chemical activation with K;CO;.After sulfur impregnation,the carbon/sulfur com... In this context,we firstly synthesized a novel nitrogen-doped multiporous carbon material from renewable biological cells through a facile chemical activation with K;CO;.After sulfur impregnation,the carbon/sulfur composite achieved a sulfur content of about 67 wt%.The C/S composite as the cathode of lithium-sulfur batteries exhibited a discharge capacity of 1410 mAh/g and good capacity retention of912 mAh/g at 0.1C.These outstanding results were attributed to the synergy effect of microporous carbon and natural doping nitrogen atoms.We believe that the facile approach for the synthesis of nitrogen-doped multiporous carbon from the low-cost and sustainable biological resources will not only be applied in lithium-sulfur batteries,but also in other electrode materials. 展开更多
关键词 Biological cell Multiporous carbon Nitrogen-doped Lithium-sulfur batteries
原文传递
Metal/nanocarbon layer current collectors enhanced energy efficiency in lithium-sulfur batteries 被引量:9
12
作者 Jia-Qi Huang Pei-Yan Zhai +2 位作者 Hong-Jie Peng Wan-Cheng Zhu Qiang Zhang 《Science Bulletin》 SCIE EI CAS CSCD 2017年第18期1267-1274,共8页
Lithium-sulfur (Li-S) batteries with intrinsic merits in high theoretical energy density are the most promising candidate as the next-generation power sources. The strategy to achieve a high utilization of active ma... Lithium-sulfur (Li-S) batteries with intrinsic merits in high theoretical energy density are the most promising candidate as the next-generation power sources. The strategy to achieve a high utilization of active materials with high energy efficiency is strongly requested for practical applications with less energy loss during repeated cycling. In this contribution, a metal/nanocarbon layer current collector is proposed to enhance the redox reactions of polysulfides in a working Li-S cell. Such a concept is demon- strated by coating graphene-carbon nanotube hybrids (GNHs) on routine aluminum (AI) foil current collectors. The interracial conductivity and adhesion between the current collector and active material are significantly enhanced. Such novel cell configuration with metal/nanocarbon layer current collectors affords abundant Li ions for rapid redox reactions with small overpotential. Consequently, the Li-S cells with nanostructured current collectors exhibit an initial discharge capacity of 1,113 mAh g-1 at 0.5 C, which is -300 mAh g-1 higher than those without a GNH coating layer. The capacity retention is 73% for cells with GNH after 300 cycles. A reduced voltage hysteresis and a high energy efficiency of ca. 90% are therefore achieved. Moreover, the AI/GNH layer current collectors are easily implanted into current cell assembly process for energy storage devices based on complex multi-electron redox reactions (e.g., Li-S batteries, Li-O2 batteries, fuel cells, and flow batteries). 展开更多
关键词 Lithium-sulfur battery Nanostructured current collectors Polysulfides Energy efficiency Pouch cell
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部