Coding sequences (CDS) are commonly used for transient gene expression, in yeast two-hybrid screening, to verify protein interactions and in prokaryotic gene expression studies. CDS are most commonly obtained using co...Coding sequences (CDS) are commonly used for transient gene expression, in yeast two-hybrid screening, to verify protein interactions and in prokaryotic gene expression studies. CDS are most commonly obtained using complementary DNA (cDNA) derived from messenger RNA (mRNA) extracted from plant tissues and generated by reverse transcription. However, some CDS are difficult to acquire through this process as they are expressed at extremely low levels or have specific spatial and/or temporal expression patterns in vivo. These challenges require the development of alternative CDS cloning technologies. In this study, we found that the genomic intron-containing gene coding sequences (gDNA) from Arabidopsis thaliana, Oryza sativa, Brassica napus, and Glycine max can be correctly transcribed and spliced into mRNA in Nicotiana benthamiana. In contrast, gDNAs from Triticum aestivum and Sorghum bicolor did not function correctly. In transient expression experiments, the target DNA sequence is driven by a constitutive promoter. Theoretically, a sufficient amount of mRNA can be extracted from the N. benthamiana leaves, making it conducive to the cloning of CDS target genes. Our data demonstrate that N. benthamiana can be used as an effective host for the cloning CDS of plant genes.展开更多
Nucleotide-binding site leucine-rich repeat receptors (NBS-LRR/NLRs) are crucial intracellular immune proteins in plants. Previous article reported a novel NLR protein SUT1 (SUPPRESSORS OF TOPP4-1, 1), which is involv...Nucleotide-binding site leucine-rich repeat receptors (NBS-LRR/NLRs) are crucial intracellular immune proteins in plants. Previous article reported a novel NLR protein SUT1 (SUPPRESSORS OF TOPP4-1, 1), which is involved in autoimmunity initiated by type one protein phosphatase 4 mutation (topp4-1) in Arabidopsis, however, its role in planta is still unclear. This study employed Nicotiana benthamiana, a model platform, to conduct an overall structural and functional analysis of SUT1 protein. The transient expression results revealed that SUT1 is a typical CNL (CC-NBS-LRR) receptor, both fluorescence data and biochemical results showed the protein is mainly anchored on the plasma membrane due to its N-terminal acylation site. Further truncation experiments announced that its CC (coiled-coil) domain possessed cell-death-inducing activity. The outcomes of point mutations analysis revealed that not only the CC domain, but also the full-length SUT1 protein, whose function and subcellular localization are influenced by highly conserved hydrophobic residues. These research outcomes provided favorable clues for elucidating the activation mechanism of SUT1.展开更多
[Objective]The aim of this study was to identify transient expression of movement protein (MP) gene in Nicotinana benthaminana rapidly and further investigate the function of this exogenous gene. [Method]The movemen...[Objective]The aim of this study was to identify transient expression of movement protein (MP) gene in Nicotinana benthaminana rapidly and further investigate the function of this exogenous gene. [Method]The movement protein gene of barley yellow dwarf virus (BYDV) was cloned into potato virus X (PVX) viral vector of pGR107,and PVX-recombinant vector was obtained. After electroporation of Agrobacterium tumefaciens,PVX was inoculated into the lower leaves of tobacco by Agrobacterium infiltration assay to observe the infection of virus on tobacco. [Result]After infection for 7 days,upper non-inoculated leaves of tobacco infected by the PVX-recombinant vector showed the virus infection symptoms,while the control group had no viral infection phenomenon. Daily follow-up observations for two groups revealed that tobacco infected by PVX-recombinant vector had severe symptoms of virus infection and curling leaves,or even led to necrosis both in infiltrated and systemic leaves in late period. However,tobacco infected by PVX vector had only slight symptoms of virus infection and could recover from infection. RT-PCR of the infected tobacco indicated that exogenous gene BYDV-MP had a normal transcription and expression in tobacco. [Conclusion]As a determinant factor for viral disease,BYDV-MP promotes the systemic infection rate of PVX and its symptom. In addition,it is feasible to express exogenous MP gene in Nicotiana benthaminan via PVX expression vector.展开更多
[Objective] The aim was to clone NbDAD1 gene from Nicotiana benthami- ana and study its genetic transformation. [Method] NbDAD1 gene was isolated from N. benthamiana by using RT-PCR technology and over-expression vect...[Objective] The aim was to clone NbDAD1 gene from Nicotiana benthami- ana and study its genetic transformation. [Method] NbDAD1 gene was isolated from N. benthamiana by using RT-PCR technology and over-expression vectors were con- structed to obtain NbDADl-overexpression resistant plants and NbDADl-overexpres- sion resistant plants carrying HA tag. [Result] The 351 bp long NbDAD1 gene was cloned from N. benthamiana; recombinant plasmids pCAMBIA1301-NbDAD1 and pCAMBIA1301-NbDAD1HAtag were constructed successfully; 50T0-generation N. ben- thamiana Hyg-resistant transgenic lines of three genotypes were obtained, including 23 positive transgenic plants. [Conclusion] This study laid the foundation for investi- gating the specific functions of NbDAD1 gene in N. benthamiana and exploring the possible functional mechanism of DAD1 protein in programmed cell death of plants.展开更多
Sugarcane mosaic virus (SCMV;genus Potyvirus, family Potyviridae) is a causal pathogen of sugarcane mosaic disease, and it is widespread in regions where sugarcane (Saccharum spp. hybrids) is grown. It is difficult to...Sugarcane mosaic virus (SCMV;genus Potyvirus, family Potyviridae) is a causal pathogen of sugarcane mosaic disease, and it is widespread in regions where sugarcane (Saccharum spp. hybrids) is grown. It is difficult to investigate the molecular mechanism of pathogen infection in sugarcane because of limited genomic information. Here, we demonstrated that SCMV strain FZ1 can systemically infect Brachypodium distachyon inbred line Bd21 and Nicotiana benthamiana through inoculation, double antibody sandwich enzyme-linked immunosorbent, transmission electron microscopy, and reverse transcription PCR assays. The leaves of Bd21 developed mosaic symptoms, while the leaves of N. benthamiana showed no obvious symptoms under the challenge of SCMV-FZ1. We concluded that B. distachyon inbred line Bd21 is a promising experimental model plant compared with N. benthamiana for study on the infectivity of SCMV. This is the first report on the SCMV infection of model plants B. distachyon inbred line Bd21 and N. benthamiana, which will shed light on the mechanism of SCMV infection of sugarcane and benefit sugarcane breeding against sugarcane mosaic disease.展开更多
The AtTOM1 gene of Arabidopsis thaliana had been shown to be essential for the efficient multiplication of Tobacco mosaic virus(TMV) in A.thaliana.In this study,we cloned an AtTOM1-like gene from Nicotiana benthamiana...The AtTOM1 gene of Arabidopsis thaliana had been shown to be essential for the efficient multiplication of Tobacco mosaic virus(TMV) in A.thaliana.In this study,we cloned an AtTOM1-like gene from Nicotiana benthamiana named as NbTOM1.Sequence alignment showed that NbTOM1 is closely related to AtTOM1 homologues of N.tabacum and Lycopersicon esculentum with 97.2% and 92.6% nucleotide sequence identities,respectively.Silencing of NbTOM1 by a modified viral satellite DNA-based vector resulted in complete inhibition of the multiplication of TMV in N.benthamiana.The result suggests that inhibition of NbTOM1 via RNA silencing is a potentially useful method for generating TMV-resistant plants.展开更多
Nicotiana tabacum and Nicotiana benthamiana are widely used models in plant biology research.However,genomic studies of these species have lagged.Here we report the chromosome-level reference genome assemblies for N.b...Nicotiana tabacum and Nicotiana benthamiana are widely used models in plant biology research.However,genomic studies of these species have lagged.Here we report the chromosome-level reference genome assemblies for N.benthamiana and N.tabacum with an estimated 99.5%and 99.8%completeness,respec-tively.Sensitive transcription start and termination site sequencing methods were developed and used for accurate gene annotation in N.tabacum.Comparative analyses revealed evidence for the parental origins and chromosome structural changes,leading to hybrid genome formation of each species.Interestingly,theantiviral silencinggenesRDR1,RDR6,DCL2,DCL3,andAGO2were lost from one or both subgenomes in N.benthamiana,while both homeologs were kept in N.tabacum.Furthermore,the N.benthamiana genome encodes fewer immune receptors and signaling components than that of N.tabacum.These find-ings uncover possible reasons underlying the hypersusceptible nature of N.benthamiana.We developed the user-friendly Nicomics(http:/lifenglab.hzau.edu.cn/Nicomics/)web server to facilitate better use of Nicotiana genomic resources as well as gene structure and expression analyses.展开更多
Vicinal oxygen chelate(VOC)proteins are members of an enzyme superfamily with dioxygenase or non-dioxygenase activities.However,the biological functions of VOC proteins in plants are poorly understood.Here,we show tha...Vicinal oxygen chelate(VOC)proteins are members of an enzyme superfamily with dioxygenase or non-dioxygenase activities.However,the biological functions of VOC proteins in plants are poorly understood.Here,we show that a VOC in Nicotiana benthamiana(NbVOC1)facilitates viral infection.NbVOC1 was significantly induced by infection by beet necrotic yellow vein virus(BNYVV).Transient overexpression of NbVOC1 or its homolog from Beta vulgaris(BvVOC1)enhanced BNYVV infection in N.benthamiana,which required the nuclear localization of VOC1.Consistent with this result,overexpressing NbVOC1 facilitated BNYVV infection,whereas,knockdown and knockout of NbVOC1 inhibited BNYVV infection in transgenic N.benthamiana plants.NbVOC1 interacts with the basic leucine zipper transcription factors bZIP17/28,which enhances their self-interaction and DNA binding to the promoters of unfolded protein response(UPR)-related genes.We propose that bZIP17/28 directly binds to the NbVOC1 promoter and induces its transcription,forming a positive feedback loop to induce the UPR and facilitating BNYVV infection.Collectively,our results demonstrate that NbVOC1 positively regulates the UPR that enhances viral infection in plants.展开更多
Plants produce numerous terpenes and much effort has been dedicated to the identification and charac- terization of the terpene biosynthetic genes. However, little is known about how terpenes are transported within th...Plants produce numerous terpenes and much effort has been dedicated to the identification and charac- terization of the terpene biosynthetic genes. However, little is known about how terpenes are transported within the cell and from the cell into the apoplast. To investigate a putative role of vesicle fusion in this pro- cess, we used Agrobacterium tumefaciens-mediated transient coexpression in Nicotiana benthamiana of an MtVAMP721e-RNAi construct (Vi) with either a caryophyllene synthase or a linalool synthase, respec- tively. Headspace analysis of the leaves showed that caryophyllene or linalool emission increased about five-fold when N. benthamiana VAMP72 function was blocked. RNA sequencing and protein ubiquitination analysis of the agroinflltrated N. benthamiana leaf extracts suggested that increased terpene emissions may be attributed to proteasome malfunction based on three observations: leaves with TPS+Vi showed (1) a higher level of a DsRed marker protein, (2) a higher level of ubiquitinated proteins, and (3) coordinated induced expression of multiple proteasome genes, presumably caused by the lack of proteasome- mediated feedback regulation. However, caryophyllene or linalool did not inhibit proteasome-related pro- tease activity in the in vitro assays. While the results are not conclusive for a role of vesicle fusion in terpene transport, they do show a strong interaction between inhibition of vesicle fusion and ectopic expression of certain terpenes. The results have potential applications in metabolic engineering.展开更多
Verticillium wilt diseases caused by the soil-borne fungus Verticillium dahliae result in devastating yield losses in many economically important crops annually. Here, we identified a novel ethyleneinducing xylanase(E...Verticillium wilt diseases caused by the soil-borne fungus Verticillium dahliae result in devastating yield losses in many economically important crops annually. Here, we identified a novel ethyleneinducing xylanase(EIX)-like protein, VdEIX3, from V. dahliae, which exhibits immunity-inducing activity in Nicotiana benthamiana. In vitro-purified VdEIX3 can induce strong oxidative burst, activate the expression of defense-related genes, and increase resistance against oomycete and fungal pathogens in N. benthamiana. VdEIX3 orthologs of other Verticillium pathogens also induce cell death in N. benthamiana, which form a new type of EIX protein family that is distinct from the known EIX proteins. A leucine-rich repeat receptor-like protein, NbEIX2, regulates the perception of VdEIX3 in N. benthamiana. Our results demonstrate that VdEIX3 is a novel EIX-like protein that can be recognized by N. benthamiana NbEIX2, and also suggest that NbEIX2 is a promising receptor-like protein that is potentially applicable to transgenic breeding for improving resistance to Verticillium wilt diseases.展开更多
Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) is a bacterial pathogen of tomato and of the model plants Arabidopsis and Nicotiana benthamiana (N. benthamiana). Like numerous Gram-negative bacterial pathogens of ...Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) is a bacterial pathogen of tomato and of the model plants Arabidopsis and Nicotiana benthamiana (N. benthamiana). Like numerous Gram-negative bacterial pathogens of animals and plants, Pst DC3000 exploits the conserved type III secretion system (TTSS) to deliver multiple virulence effectors directly into the host cells. Type III effectors (T3Es) collectively participate in causing disease, by mechanisms that are not well clarity. Elucidating the virulence function of individual effector is fundamental for understanding bacterial infection of plants. Here, we focused on studying one of these effectors, HopAA1-1, and analyzed its potential function and subcellular localization in N. benthamiana. Using an Agrobacterium-mediated transient expression system, we found that HopAA1-1 can trigger domain-dependent cell death in N. benthamiana. The observation using confocal microscopy showed that the YFP-tagged HopAA1-1 localizes to diverse cellular components containing nucleus, cytoplasm and cell membrane, which was demonstrated through immunoblot analysis of membrane fractionation and nuclear separation. Enforced HopAA1-1 subcellular localization, by tagging with a nuclear localization sequence (NLS) or a nuclear export sequence (NES), shows that HopAA1-1-induced cell death in N. benthamiana is suppressed in the nucleus but enhanced in the cytoplasm. Our research is lay a foundation for revealed the molecular pathogenesis of Pseudomonas syringae pv. tomato.展开更多
Research background: The Arabidopsis-resistance protein L5 (AT1G12290) can trigger cell death in Nicotiana benthamiana, which is a characteristic function of an NBS-LRR (Nucleotide-Binding Sites and Leucine-Rich Repea...Research background: The Arabidopsis-resistance protein L5 (AT1G12290) can trigger cell death in Nicotiana benthamiana, which is a characteristic function of an NBS-LRR (Nucleotide-Binding Sites and Leucine-Rich Repeat) protein activation. Purpose: To explore the function and molecular regulatory network of L5. Method: We employed yeast two-hybrid technology to search for interacting proteins of L5, combined with laser confocal microscopy to observe the subcellular localization of these candidate proteins, and analyzed the impact of these proteins on L5 function using an Agrobacterium mediated transient expression system. Results: Seven candidate interacting proteins were identified from the Arabidopsis cDNA library, including PPA1 (AT1G01050), RIN4 (AT3G25070), LSU1 (AT3G49580), BZIP24 (AT3G51960), BOI (AT4G19700), RING/U (AT4G22250) and PPA3 (AT2G46860). Functional analysis of these candidate interacting proteins showed that they participated in multiple pathways, including biological and abiotic stress, programmed cell death, protein degradation, material metabolism and transcriptional regulation. The results of laser confocal microscopy manifested that RIN4 was only localized on the plasma membrane (PM), and RING/U was mainly associated with the PM. PPA1, PPA3, LSU1, BZIP24, and BOI all emerged nuclear and cytoplasmic localization. The results of the transient assay proclaimed that both BOI and RING/U can inhibit cell death caused by L5. Conclusions: These results indicate that L5 immune receptors may participate in various pathways, and their protein levels and activities are strictly regulated at multiple levels, providing a basis for elucidating the mechanism of L5 immune receptors in Arabidopsis resistance.展开更多
文摘Coding sequences (CDS) are commonly used for transient gene expression, in yeast two-hybrid screening, to verify protein interactions and in prokaryotic gene expression studies. CDS are most commonly obtained using complementary DNA (cDNA) derived from messenger RNA (mRNA) extracted from plant tissues and generated by reverse transcription. However, some CDS are difficult to acquire through this process as they are expressed at extremely low levels or have specific spatial and/or temporal expression patterns in vivo. These challenges require the development of alternative CDS cloning technologies. In this study, we found that the genomic intron-containing gene coding sequences (gDNA) from Arabidopsis thaliana, Oryza sativa, Brassica napus, and Glycine max can be correctly transcribed and spliced into mRNA in Nicotiana benthamiana. In contrast, gDNAs from Triticum aestivum and Sorghum bicolor did not function correctly. In transient expression experiments, the target DNA sequence is driven by a constitutive promoter. Theoretically, a sufficient amount of mRNA can be extracted from the N. benthamiana leaves, making it conducive to the cloning of CDS target genes. Our data demonstrate that N. benthamiana can be used as an effective host for the cloning CDS of plant genes.
文摘Nucleotide-binding site leucine-rich repeat receptors (NBS-LRR/NLRs) are crucial intracellular immune proteins in plants. Previous article reported a novel NLR protein SUT1 (SUPPRESSORS OF TOPP4-1, 1), which is involved in autoimmunity initiated by type one protein phosphatase 4 mutation (topp4-1) in Arabidopsis, however, its role in planta is still unclear. This study employed Nicotiana benthamiana, a model platform, to conduct an overall structural and functional analysis of SUT1 protein. The transient expression results revealed that SUT1 is a typical CNL (CC-NBS-LRR) receptor, both fluorescence data and biochemical results showed the protein is mainly anchored on the plasma membrane due to its N-terminal acylation site. Further truncation experiments announced that its CC (coiled-coil) domain possessed cell-death-inducing activity. The outcomes of point mutations analysis revealed that not only the CC domain, but also the full-length SUT1 protein, whose function and subcellular localization are influenced by highly conserved hydrophobic residues. These research outcomes provided favorable clues for elucidating the activation mechanism of SUT1.
基金Supported by National Natural Science Foundation of China(30870109)~~
文摘[Objective]The aim of this study was to identify transient expression of movement protein (MP) gene in Nicotinana benthaminana rapidly and further investigate the function of this exogenous gene. [Method]The movement protein gene of barley yellow dwarf virus (BYDV) was cloned into potato virus X (PVX) viral vector of pGR107,and PVX-recombinant vector was obtained. After electroporation of Agrobacterium tumefaciens,PVX was inoculated into the lower leaves of tobacco by Agrobacterium infiltration assay to observe the infection of virus on tobacco. [Result]After infection for 7 days,upper non-inoculated leaves of tobacco infected by the PVX-recombinant vector showed the virus infection symptoms,while the control group had no viral infection phenomenon. Daily follow-up observations for two groups revealed that tobacco infected by PVX-recombinant vector had severe symptoms of virus infection and curling leaves,or even led to necrosis both in infiltrated and systemic leaves in late period. However,tobacco infected by PVX vector had only slight symptoms of virus infection and could recover from infection. RT-PCR of the infected tobacco indicated that exogenous gene BYDV-MP had a normal transcription and expression in tobacco. [Conclusion]As a determinant factor for viral disease,BYDV-MP promotes the systemic infection rate of PVX and its symptom. In addition,it is feasible to express exogenous MP gene in Nicotiana benthaminan via PVX expression vector.
基金Supported by Zhejiang Provincial Natural Science Foundation (Y3110409)~~
文摘[Objective] The aim was to clone NbDAD1 gene from Nicotiana benthami- ana and study its genetic transformation. [Method] NbDAD1 gene was isolated from N. benthamiana by using RT-PCR technology and over-expression vectors were con- structed to obtain NbDADl-overexpression resistant plants and NbDADl-overexpres- sion resistant plants carrying HA tag. [Result] The 351 bp long NbDAD1 gene was cloned from N. benthamiana; recombinant plasmids pCAMBIA1301-NbDAD1 and pCAMBIA1301-NbDAD1HAtag were constructed successfully; 50T0-generation N. ben- thamiana Hyg-resistant transgenic lines of three genotypes were obtained, including 23 positive transgenic plants. [Conclusion] This study laid the foundation for investi- gating the specific functions of NbDAD1 gene in N. benthamiana and exploring the possible functional mechanism of DAD1 protein in programmed cell death of plants.
基金Financial support was provided by the National Natural Science Foundation of China (31371688)
文摘Sugarcane mosaic virus (SCMV;genus Potyvirus, family Potyviridae) is a causal pathogen of sugarcane mosaic disease, and it is widespread in regions where sugarcane (Saccharum spp. hybrids) is grown. It is difficult to investigate the molecular mechanism of pathogen infection in sugarcane because of limited genomic information. Here, we demonstrated that SCMV strain FZ1 can systemically infect Brachypodium distachyon inbred line Bd21 and Nicotiana benthamiana through inoculation, double antibody sandwich enzyme-linked immunosorbent, transmission electron microscopy, and reverse transcription PCR assays. The leaves of Bd21 developed mosaic symptoms, while the leaves of N. benthamiana showed no obvious symptoms under the challenge of SCMV-FZ1. We concluded that B. distachyon inbred line Bd21 is a promising experimental model plant compared with N. benthamiana for study on the infectivity of SCMV. This is the first report on the SCMV infection of model plants B. distachyon inbred line Bd21 and N. benthamiana, which will shed light on the mechanism of SCMV infection of sugarcane and benefit sugarcane breeding against sugarcane mosaic disease.
基金Project supported by the Cultivation Fund of the Key Scientific and Technical Innovation Project, Ministry of Education of China (No. 705025) the National Natural Science Foundation of China (No. 30530520)
文摘The AtTOM1 gene of Arabidopsis thaliana had been shown to be essential for the efficient multiplication of Tobacco mosaic virus(TMV) in A.thaliana.In this study,we cloned an AtTOM1-like gene from Nicotiana benthamiana named as NbTOM1.Sequence alignment showed that NbTOM1 is closely related to AtTOM1 homologues of N.tabacum and Lycopersicon esculentum with 97.2% and 92.6% nucleotide sequence identities,respectively.Silencing of NbTOM1 by a modified viral satellite DNA-based vector resulted in complete inhibition of the multiplication of TMV in N.benthamiana.The result suggests that inhibition of NbTOM1 via RNA silencing is a potentially useful method for generating TMV-resistant plants.
基金supported by grants from the National Natural Science Foundation of China(32272491,32061143022,32202250)Work in Barbara Baker's laboratory is supported by USDA ARS CRIS 2030-22000-009-00D and 2030-22000-034-00Dby an Innovative Genomics Institute(2017)Aaward.
文摘Nicotiana tabacum and Nicotiana benthamiana are widely used models in plant biology research.However,genomic studies of these species have lagged.Here we report the chromosome-level reference genome assemblies for N.benthamiana and N.tabacum with an estimated 99.5%and 99.8%completeness,respec-tively.Sensitive transcription start and termination site sequencing methods were developed and used for accurate gene annotation in N.tabacum.Comparative analyses revealed evidence for the parental origins and chromosome structural changes,leading to hybrid genome formation of each species.Interestingly,theantiviral silencinggenesRDR1,RDR6,DCL2,DCL3,andAGO2were lost from one or both subgenomes in N.benthamiana,while both homeologs were kept in N.tabacum.Furthermore,the N.benthamiana genome encodes fewer immune receptors and signaling components than that of N.tabacum.These find-ings uncover possible reasons underlying the hypersusceptible nature of N.benthamiana.We developed the user-friendly Nicomics(http:/lifenglab.hzau.edu.cn/Nicomics/)web server to facilitate better use of Nicotiana genomic resources as well as gene structure and expression analyses.
基金supported by the National Natural Science Foundation of China(32270165 and 31872921)in part by China Agricultural Industry Technology System(Grant No.CARS-170304).
文摘Vicinal oxygen chelate(VOC)proteins are members of an enzyme superfamily with dioxygenase or non-dioxygenase activities.However,the biological functions of VOC proteins in plants are poorly understood.Here,we show that a VOC in Nicotiana benthamiana(NbVOC1)facilitates viral infection.NbVOC1 was significantly induced by infection by beet necrotic yellow vein virus(BNYVV).Transient overexpression of NbVOC1 or its homolog from Beta vulgaris(BvVOC1)enhanced BNYVV infection in N.benthamiana,which required the nuclear localization of VOC1.Consistent with this result,overexpressing NbVOC1 facilitated BNYVV infection,whereas,knockdown and knockout of NbVOC1 inhibited BNYVV infection in transgenic N.benthamiana plants.NbVOC1 interacts with the basic leucine zipper transcription factors bZIP17/28,which enhances their self-interaction and DNA binding to the promoters of unfolded protein response(UPR)-related genes.We propose that bZIP17/28 directly binds to the NbVOC1 promoter and induces its transcription,forming a positive feedback loop to induce the UPR and facilitating BNYVV infection.Collectively,our results demonstrate that NbVOC1 positively regulates the UPR that enhances viral infection in plants.
文摘Plants produce numerous terpenes and much effort has been dedicated to the identification and charac- terization of the terpene biosynthetic genes. However, little is known about how terpenes are transported within the cell and from the cell into the apoplast. To investigate a putative role of vesicle fusion in this pro- cess, we used Agrobacterium tumefaciens-mediated transient coexpression in Nicotiana benthamiana of an MtVAMP721e-RNAi construct (Vi) with either a caryophyllene synthase or a linalool synthase, respec- tively. Headspace analysis of the leaves showed that caryophyllene or linalool emission increased about five-fold when N. benthamiana VAMP72 function was blocked. RNA sequencing and protein ubiquitination analysis of the agroinflltrated N. benthamiana leaf extracts suggested that increased terpene emissions may be attributed to proteasome malfunction based on three observations: leaves with TPS+Vi showed (1) a higher level of a DsRed marker protein, (2) a higher level of ubiquitinated proteins, and (3) coordinated induced expression of multiple proteasome genes, presumably caused by the lack of proteasome- mediated feedback regulation. However, caryophyllene or linalool did not inhibit proteasome-related pro- tease activity in the in vitro assays. While the results are not conclusive for a role of vesicle fusion in terpene transport, they do show a strong interaction between inhibition of vesicle fusion and ectopic expression of certain terpenes. The results have potential applications in metabolic engineering.
基金This study was supported by the Fundamental Research Funds for the Central Universities(KYLH201703)the National Natural Science Foundation of China(31625023)。
文摘Verticillium wilt diseases caused by the soil-borne fungus Verticillium dahliae result in devastating yield losses in many economically important crops annually. Here, we identified a novel ethyleneinducing xylanase(EIX)-like protein, VdEIX3, from V. dahliae, which exhibits immunity-inducing activity in Nicotiana benthamiana. In vitro-purified VdEIX3 can induce strong oxidative burst, activate the expression of defense-related genes, and increase resistance against oomycete and fungal pathogens in N. benthamiana. VdEIX3 orthologs of other Verticillium pathogens also induce cell death in N. benthamiana, which form a new type of EIX protein family that is distinct from the known EIX proteins. A leucine-rich repeat receptor-like protein, NbEIX2, regulates the perception of VdEIX3 in N. benthamiana. Our results demonstrate that VdEIX3 is a novel EIX-like protein that can be recognized by N. benthamiana NbEIX2, and also suggest that NbEIX2 is a promising receptor-like protein that is potentially applicable to transgenic breeding for improving resistance to Verticillium wilt diseases.
文摘Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) is a bacterial pathogen of tomato and of the model plants Arabidopsis and Nicotiana benthamiana (N. benthamiana). Like numerous Gram-negative bacterial pathogens of animals and plants, Pst DC3000 exploits the conserved type III secretion system (TTSS) to deliver multiple virulence effectors directly into the host cells. Type III effectors (T3Es) collectively participate in causing disease, by mechanisms that are not well clarity. Elucidating the virulence function of individual effector is fundamental for understanding bacterial infection of plants. Here, we focused on studying one of these effectors, HopAA1-1, and analyzed its potential function and subcellular localization in N. benthamiana. Using an Agrobacterium-mediated transient expression system, we found that HopAA1-1 can trigger domain-dependent cell death in N. benthamiana. The observation using confocal microscopy showed that the YFP-tagged HopAA1-1 localizes to diverse cellular components containing nucleus, cytoplasm and cell membrane, which was demonstrated through immunoblot analysis of membrane fractionation and nuclear separation. Enforced HopAA1-1 subcellular localization, by tagging with a nuclear localization sequence (NLS) or a nuclear export sequence (NES), shows that HopAA1-1-induced cell death in N. benthamiana is suppressed in the nucleus but enhanced in the cytoplasm. Our research is lay a foundation for revealed the molecular pathogenesis of Pseudomonas syringae pv. tomato.
文摘Research background: The Arabidopsis-resistance protein L5 (AT1G12290) can trigger cell death in Nicotiana benthamiana, which is a characteristic function of an NBS-LRR (Nucleotide-Binding Sites and Leucine-Rich Repeat) protein activation. Purpose: To explore the function and molecular regulatory network of L5. Method: We employed yeast two-hybrid technology to search for interacting proteins of L5, combined with laser confocal microscopy to observe the subcellular localization of these candidate proteins, and analyzed the impact of these proteins on L5 function using an Agrobacterium mediated transient expression system. Results: Seven candidate interacting proteins were identified from the Arabidopsis cDNA library, including PPA1 (AT1G01050), RIN4 (AT3G25070), LSU1 (AT3G49580), BZIP24 (AT3G51960), BOI (AT4G19700), RING/U (AT4G22250) and PPA3 (AT2G46860). Functional analysis of these candidate interacting proteins showed that they participated in multiple pathways, including biological and abiotic stress, programmed cell death, protein degradation, material metabolism and transcriptional regulation. The results of laser confocal microscopy manifested that RIN4 was only localized on the plasma membrane (PM), and RING/U was mainly associated with the PM. PPA1, PPA3, LSU1, BZIP24, and BOI all emerged nuclear and cytoplasmic localization. The results of the transient assay proclaimed that both BOI and RING/U can inhibit cell death caused by L5. Conclusions: These results indicate that L5 immune receptors may participate in various pathways, and their protein levels and activities are strictly regulated at multiple levels, providing a basis for elucidating the mechanism of L5 immune receptors in Arabidopsis resistance.