期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Magmatism-Related Thermal Simulation of Volcanic Arcs in the Molucca Sea Bidirectional Subduction System
1
作者 YU Lei ZHANG Jian +2 位作者 DONG Miao FANG Gui Yu Lupeng 《Journal of Ocean University of China》 SCIE CAS CSCD 2023年第4期939-948,共10页
The bidirectional subduction system,island arc magmatic activities,and thermal structure of the forearc basin in the Molucca Sea are taken into consideration in this study.The active volcanic arcs on both sides of the... The bidirectional subduction system,island arc magmatic activities,and thermal structure of the forearc basin in the Molucca Sea are taken into consideration in this study.The active volcanic arcs on both sides of the bidirectional subduction zone in the Molucca Sea are undergoing arc-arc collisions.We applied a finite element thermal simulation method to reconstruct the thermal evolution history of the Molucca Sea Plate based on geophysical data.Then,we analyzed the thermodynamic characteristics of island arc volcanism on both sides of the bidirectional subduction zone.The results showed that at 10Myr,the oceanic ridge of the Molucca Sea Plate was asymmetrically biased to the west,causing this bidirectional subduction to be deeper in the west than in the east.Furthermore,the oceanic ridge subducted under the Sangihe arc at 5.5Myr,causing intermittent cessation of volcanic activities.Due to the convergence of bidirectional subduction,the geothermal gradient in the top 3km depth of the forearc area between the Sangihe and Halmahera arcs decreased from about 60℃km^(−1) at 4Myr to about 38℃km^(−1) today.Finally,within the 45–100 km depth range of the sliding surface of the subduction,anomalously high-temperature zones formed due to shear friction during the bidirectional subduction. 展开更多
关键词 Molucca Sea bidirectional subduction zone ARC thermal simulation:island-arc magmatism
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部