This study aims to investigate the influence of social media on college choice among undergraduates majoring in Big Data Management and Application in China.The study attempts to reveal how information on social media...This study aims to investigate the influence of social media on college choice among undergraduates majoring in Big Data Management and Application in China.The study attempts to reveal how information on social media platforms such as Weibo,WeChat,and Zhihu influences the cognition and choice process of prospective students.By employing an online quantitative survey questionnaire,data were collected from the 2022 and 2023 classes of new students majoring in Big Data Management and Application at Guilin University of Electronic Technology.The aim was to evaluate the role of social media in their college choice process and understand the features and information that most attract prospective students.Social media has become a key factor influencing the college choice decision-making of undergraduates majoring in Big Data Management and Application in China.Students tend to obtain school information through social media platforms and use this information as an important reference in their decision-making process.Higher education institutions should strengthen their social media information dissemination,providing accurate,timely,and attractive information.It is also necessary to ensure effective management of social media platforms,maintain a positive reputation for the school on social media,and increase the interest and trust of prospective students.Simultaneously,educational decision-makers should consider incorporating social media analysis into their recruitment strategies to better attract new student enrollment.This study provides a new perspective for understanding higher education choice behavior in the digital age,particularly by revealing the importance of social media in the educational decision-making process.This has important practical and theoretical implications for higher education institutions,policymakers,and social media platform operators.展开更多
As an introductory course for the emerging major of big data management and application,“Introduction to Big Data”has not yet formed a curriculum standard and implementation plan that is widely accepted and used by ...As an introductory course for the emerging major of big data management and application,“Introduction to Big Data”has not yet formed a curriculum standard and implementation plan that is widely accepted and used by everyone.To this end,we discuss some of our explorations and attempts in the construction and teaching process of big data courses for the major of big data management and application from the perspective of course planning,course implementation,and course summary.After interviews with students and feedback from questionnaires,students are highly satisfied with some of the teaching measures and programs currently adopted.展开更多
The mining industry faces a number of challenges that promote the adoption of new technologies.Big data,which is driven by the accelerating progress of information and communication technology,is one of the promising ...The mining industry faces a number of challenges that promote the adoption of new technologies.Big data,which is driven by the accelerating progress of information and communication technology,is one of the promising technologies that can reshape the entire mining landscape.Despite numerous attempts to apply big data in the mining industry,fundamental problems of big data,especially big data management(BDM),in the mining industry persist.This paper aims to fill the gap by presenting the basics of BDM.This work provides a brief introduction to big data and BDM,and it discusses the challenges encountered by the mining industry to indicate the necessity of implementing big data.It also summarizes data sources in the mining industry and presents the potential benefits of big data to the mining industry.This work also envisions a future in which a global database project is established and big data is used together with other technologies(i.e.,automation),supported by government policies and following international standards.This paper also outlines the precautions for the utilization of BDM in the mining industry.展开更多
As technology and the internet develop,more data are generated every day.These data are in large sizes,high dimensions,and complex structures.The combination of these three features is the“Big Data”[1].Big data is r...As technology and the internet develop,more data are generated every day.These data are in large sizes,high dimensions,and complex structures.The combination of these three features is the“Big Data”[1].Big data is revolutionizing all industries,bringing colossal impacts to them[2].Many researchers have pointed out the huge impact that big data can have on our daily lives[3].We can utilize the information we obtain and help us make decisions.Also,the conclusions we drew from the big data we analyzed can be used as a prediction for the future,helping us to make more accurate and benign decisions earlier than others.If we apply these technics in finance,for example,in stock,we can get detailed information for stocks.Moreover,we can use the analyzed data to predict certain stocks.This can help people decide whether to buy a stock or not by providing predicted data for people at a certain convincing level,helping to protect them from potential losses.展开更多
Mobile networks possess significant information and thus are considered a gold mine for the researcher’s community.The call detail records(CDR)of a mobile network are used to identify the network’s efficacy and the ...Mobile networks possess significant information and thus are considered a gold mine for the researcher’s community.The call detail records(CDR)of a mobile network are used to identify the network’s efficacy and the mobile user’s behavior.It is evident from the recent literature that cyber-physical systems(CPS)were used in the analytics and modeling of telecom data.In addition,CPS is used to provide valuable services in smart cities.In general,a typical telecom company hasmillions of subscribers and thus generatesmassive amounts of data.From this aspect,data storage,analysis,and processing are the key concerns.To solve these issues,herein we propose a multilevel cyber-physical social system(CPSS)for the analysis and modeling of large internet data.Our proposed multilevel system has three levels and each level has a specific functionality.Initially,raw Call Detail Data(CDR)was collected at the first level.Herein,the data preprocessing,cleaning,and error removal operations were performed.In the second level,data processing,cleaning,reduction,integration,processing,and storage were performed.Herein,suggested internet activity record measures were applied.Our proposed system initially constructs a graph and then performs network analysis.Thus proposed CPSS system accurately identifies different areas of internet peak usage in a city(Milan city).Our research is helpful for the network operators to plan effective network configuration,management,and optimization of resources.展开更多
Spatial vector data with high-precision and wide-coverage has exploded globally,such as land cover,social media,and other data-sets,which provides a good opportunity to enhance the national macroscopic decision-making...Spatial vector data with high-precision and wide-coverage has exploded globally,such as land cover,social media,and other data-sets,which provides a good opportunity to enhance the national macroscopic decision-making,social supervision,public services,and emergency capabilities.Simultaneously,it also brings great challenges in management technology for big spatial vector data(BSVD).In recent years,a large number of new concepts,parallel algorithms,processing tools,platforms,and applications have been proposed and developed to improve the value of BSVD from both academia and industry.To better understand BSVD and take advantage of its value effectively,this paper presents a review that surveys recent studies and research work in the data management field for BSVD.In this paper,we discuss and itemize this topic from three aspects according to different information technical levels of big spatial vector data management.It aims to help interested readers to learn about the latest research advances and choose the most suitable big data technologies and approaches depending on their system architectures.To support them more fully,firstly,we identify new concepts and ideas from numerous scholars about geographic information system to focus on BSVD scope in the big data era.Then,we conclude systematically not only the most recent published literatures but also a global view of main spatial technologies of BSVD,including data storage and organization,spatial index,processing methods,and spatial analysis.Finally,based on the above commentary and related work,several opportunities and challenges are listed as the future research interests and directions for reference.展开更多
文摘This study aims to investigate the influence of social media on college choice among undergraduates majoring in Big Data Management and Application in China.The study attempts to reveal how information on social media platforms such as Weibo,WeChat,and Zhihu influences the cognition and choice process of prospective students.By employing an online quantitative survey questionnaire,data were collected from the 2022 and 2023 classes of new students majoring in Big Data Management and Application at Guilin University of Electronic Technology.The aim was to evaluate the role of social media in their college choice process and understand the features and information that most attract prospective students.Social media has become a key factor influencing the college choice decision-making of undergraduates majoring in Big Data Management and Application in China.Students tend to obtain school information through social media platforms and use this information as an important reference in their decision-making process.Higher education institutions should strengthen their social media information dissemination,providing accurate,timely,and attractive information.It is also necessary to ensure effective management of social media platforms,maintain a positive reputation for the school on social media,and increase the interest and trust of prospective students.Simultaneously,educational decision-makers should consider incorporating social media analysis into their recruitment strategies to better attract new student enrollment.This study provides a new perspective for understanding higher education choice behavior in the digital age,particularly by revealing the importance of social media in the educational decision-making process.This has important practical and theoretical implications for higher education institutions,policymakers,and social media platform operators.
文摘As an introductory course for the emerging major of big data management and application,“Introduction to Big Data”has not yet formed a curriculum standard and implementation plan that is widely accepted and used by everyone.To this end,we discuss some of our explorations and attempts in the construction and teaching process of big data courses for the major of big data management and application from the perspective of course planning,course implementation,and course summary.After interviews with students and feedback from questionnaires,students are highly satisfied with some of the teaching measures and programs currently adopted.
文摘The mining industry faces a number of challenges that promote the adoption of new technologies.Big data,which is driven by the accelerating progress of information and communication technology,is one of the promising technologies that can reshape the entire mining landscape.Despite numerous attempts to apply big data in the mining industry,fundamental problems of big data,especially big data management(BDM),in the mining industry persist.This paper aims to fill the gap by presenting the basics of BDM.This work provides a brief introduction to big data and BDM,and it discusses the challenges encountered by the mining industry to indicate the necessity of implementing big data.It also summarizes data sources in the mining industry and presents the potential benefits of big data to the mining industry.This work also envisions a future in which a global database project is established and big data is used together with other technologies(i.e.,automation),supported by government policies and following international standards.This paper also outlines the precautions for the utilization of BDM in the mining industry.
文摘As technology and the internet develop,more data are generated every day.These data are in large sizes,high dimensions,and complex structures.The combination of these three features is the“Big Data”[1].Big data is revolutionizing all industries,bringing colossal impacts to them[2].Many researchers have pointed out the huge impact that big data can have on our daily lives[3].We can utilize the information we obtain and help us make decisions.Also,the conclusions we drew from the big data we analyzed can be used as a prediction for the future,helping us to make more accurate and benign decisions earlier than others.If we apply these technics in finance,for example,in stock,we can get detailed information for stocks.Moreover,we can use the analyzed data to predict certain stocks.This can help people decide whether to buy a stock or not by providing predicted data for people at a certain convincing level,helping to protect them from potential losses.
基金supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(NRF-2021R1A6A1A03039493).
文摘Mobile networks possess significant information and thus are considered a gold mine for the researcher’s community.The call detail records(CDR)of a mobile network are used to identify the network’s efficacy and the mobile user’s behavior.It is evident from the recent literature that cyber-physical systems(CPS)were used in the analytics and modeling of telecom data.In addition,CPS is used to provide valuable services in smart cities.In general,a typical telecom company hasmillions of subscribers and thus generatesmassive amounts of data.From this aspect,data storage,analysis,and processing are the key concerns.To solve these issues,herein we propose a multilevel cyber-physical social system(CPSS)for the analysis and modeling of large internet data.Our proposed multilevel system has three levels and each level has a specific functionality.Initially,raw Call Detail Data(CDR)was collected at the first level.Herein,the data preprocessing,cleaning,and error removal operations were performed.In the second level,data processing,cleaning,reduction,integration,processing,and storage were performed.Herein,suggested internet activity record measures were applied.Our proposed system initially constructs a graph and then performs network analysis.Thus proposed CPSS system accurately identifies different areas of internet peak usage in a city(Milan city).Our research is helpful for the network operators to plan effective network configuration,management,and optimization of resources.
基金This work is supported by the Strategic Priority Research Program of Chinese Academy of Sciences[grant number XDA19020201].
文摘Spatial vector data with high-precision and wide-coverage has exploded globally,such as land cover,social media,and other data-sets,which provides a good opportunity to enhance the national macroscopic decision-making,social supervision,public services,and emergency capabilities.Simultaneously,it also brings great challenges in management technology for big spatial vector data(BSVD).In recent years,a large number of new concepts,parallel algorithms,processing tools,platforms,and applications have been proposed and developed to improve the value of BSVD from both academia and industry.To better understand BSVD and take advantage of its value effectively,this paper presents a review that surveys recent studies and research work in the data management field for BSVD.In this paper,we discuss and itemize this topic from three aspects according to different information technical levels of big spatial vector data management.It aims to help interested readers to learn about the latest research advances and choose the most suitable big data technologies and approaches depending on their system architectures.To support them more fully,firstly,we identify new concepts and ideas from numerous scholars about geographic information system to focus on BSVD scope in the big data era.Then,we conclude systematically not only the most recent published literatures but also a global view of main spatial technologies of BSVD,including data storage and organization,spatial index,processing methods,and spatial analysis.Finally,based on the above commentary and related work,several opportunities and challenges are listed as the future research interests and directions for reference.