This study investigates full liquid phase sintering as a process of fabrication parts from WE43(Mg-4wt.%Y-3wt.%RE-0.7wt.%Zr)alloy using binder jetting additive manufacturing(BJAM).This fabrication process is being dev...This study investigates full liquid phase sintering as a process of fabrication parts from WE43(Mg-4wt.%Y-3wt.%RE-0.7wt.%Zr)alloy using binder jetting additive manufacturing(BJAM).This fabrication process is being developed for use in producing structural or biomedical devices.Specifically,this study focused on achieving a near-dense microstructure with WE43 Mg alloy while substantially reducing the duration of sintering post-processing after BJAM part rendering.The optimal process resulted in microstructure with 2.5%porosity and significantly reduced sintering time.The improved sintering can be explained by the presence of Y_(2)O_(3)and Nd_(2)O_(3)oxide layers,which form spontaneously on the surface of WE43 powder used in BJAM.These layers appear to be crucial in preventing shape distortion of the resulting samples and in enabling the development of sintering necks,particularly under sintering conditions exceeding the liquidus temperature of WE43 alloy.Sintered WE43 specimens rendered by BJAM achieved significant improvement in both corrosion resistance and mechanical properties through reduced porosity levels related to the sintering time.展开更多
Binder jetting 3D printing is a rapid,cost effective,and efficient moulding/core making process,which can be applied to a large variety of materials.However,it exhibits a relatively low green-part strength.This may ca...Binder jetting 3D printing is a rapid,cost effective,and efficient moulding/core making process,which can be applied to a large variety of materials.However,it exhibits a relatively low green-part strength.This may cause the collapse of the printed parts during de-caking and the pick-up procedure,especially in the case of small-scale structures,such as thin walls,tips,and channels.In this work,polyvinyl alcohol(PVA)was used as the additive in coated sand powder.By exploiting the binding effect between the two composites(thermoplastic phenolic resin and PVA)triggered by the binder,bonding necks firmly form among the sand particles,improving the green-part strength of the coated sand printed parts.Experiments based on the Taguchi method were used to investigate the relationship between the process parameters and the green-part tensile strength.The following set of optimal process parameters was identified:50wt.%alcoholicity of the binder,75%binder saturation,0.36 mm layer thickness and 4.5wt.%PVA content.Further,the effect of such parameters on the green-part tensile strength was determined via statistical analysis.The green part of an engine cylinder head sand pattern with complex cavity structures was printed,and the green-part tensile strength reached 2.31 MPa.Moreover,the ZL301 aluminum alloy impeller shape casting was prepared using sand molds printed with the optimal process parameters.The results confirm that the proposed binder jetting 3D printing process can guarantee the integrity of the printed green parts and of small-size structures during de-caking and the pick-up procedure.Furthermore,the casting made from the printed sand molds exhibits a relatively high quality.展开更多
Originally developed decades ago, the binder jetting additive manufacturing (B J-AM) process possesses various advantages compared to other additive manufacturing (AM) technologies such as broad material compat- i...Originally developed decades ago, the binder jetting additive manufacturing (B J-AM) process possesses various advantages compared to other additive manufacturing (AM) technologies such as broad material compat- ibility and technological expandability. However, the adoption of B J-AM has been limited by the lack of knowledge with the fundamental understanding of the process principles and characteristics, as well as the relatively few systematic design guideline that are available. In this work, the process design considerations for B J-AM in green part fabrication were discussed in detail in order to provide a comprehensive perspective of the design for additive manufacturing for the process. Various process factors, including binder saturation, in- process drying, powder spreading, powder feedstock characteristics, binder characteristics and post-process curing, could significantly affect the printing quality of the green parts such as geometrical accuracy and part integrity. For powder feedstock with low flowability, even though process parameters could be optimized to partially offset the printing feasibility issue, the qualities of the green parts will be intrinsically limited due to the existence of large internal voids that are inaccessible to the binder. In addition, during the process development, the balanced combination between the saturation level and in-process drying is of critical importance in the quality control of the green parts.展开更多
Binder jet printing(BJP)is a state-of-the-art additive manufacturing technique for producing porous magnesium structures.Porous MgZn-Zr based BJP samples were assessed for corrosion performance in simulated body fluid...Binder jet printing(BJP)is a state-of-the-art additive manufacturing technique for producing porous magnesium structures.Porous MgZn-Zr based BJP samples were assessed for corrosion performance in simulated body fluids by electrochemical and hydrogen evolution measurements.The corrosion rates of the BJP specimens were significantly higher than solid controls,even after accounting for their larger surface areas,suggesting that the BJP microstructure is detrimental to corrosion performance.X-ray computed tomography revealed nonuniform corrosion within the porous structure,with corrosion products forming on the pore walls.Impregnating the pores with hydroxyapatite or polymers greatly improved the corrosion resistance of the BJP samples.展开更多
Additive manufacturing(AM),also known as 3D-printing(3DP)technology,is an advanced manufacturing technology that has developed rapidly in the past 40 years.However,the ceramic material printing is still challenging be...Additive manufacturing(AM),also known as 3D-printing(3DP)technology,is an advanced manufacturing technology that has developed rapidly in the past 40 years.However,the ceramic material printing is still challenging because of the issue of cracking.Indirect 3D printing has been designed and drawn attention because of its high manufacturing speed and low cost.Indirect 3D printing separates the one-step forming process of direct 3D printing into binding and material sintering,avoiding the internal stress caused by rapid cooling,making it possible to realize the highquality ceramic component with complex shape.This paper presents the research progress of leading indirect 3D printing technologies,including binder jetting(BJ),stereolithography(SLA),and fused deposition modeling(FDM).At present,the additive manufacturing of ceramic materials is mainly achieved through indirect 3D printing technology,and these materials include silicon nitride,hydroxyapatite functional ceramics,silicon carbide structural ceramics.展开更多
Ceramic-reinforced metal matrix composites(MMCs)display beneficial properties owing to their combination of ceramic and metal phases.However,the properties are highly dependent on the reinforcing phase composition,vol...Ceramic-reinforced metal matrix composites(MMCs)display beneficial properties owing to their combination of ceramic and metal phases.However,the properties are highly dependent on the reinforcing phase composition,volume fraction and morphology.Continuous fiber or network reinforcement morphologies are difficult and expensive to manufacture,and the often-used discontinuous particle or whisker reinforcement morphologies result in less effective properties.Here,we demonstrate the formation of a co-continuous ceramic-reinforced metal matrix composite using solid-state processing.Binder jet additive manufacturing(BJAM)was used to print a nickel superalloy part followed by post-processing via reactive sintering to form a continuous carbide reinforcing phase at the particle boundaries.The kinetics of reinforcement formation are investigated in order to develop a relationship between reactive sintering time,temperature and powder composition on the reinforcing phase thickness and volume fraction.To evaluate performance,the wear resistance of the reinforced BJAM alloy 625 MMC was compared to unreinforced BJAM alloy 625,demonstrating a 64%decrease in the specific wear rate under abrasive wear conditions.展开更多
The MAX phases are a group of layered ternary,quaternary,or quinary compounds with characteristics of both metals and ceramics.Over recent decades,the synthesis of bulk MAX phase parts for wider engineering applicatio...The MAX phases are a group of layered ternary,quaternary,or quinary compounds with characteristics of both metals and ceramics.Over recent decades,the synthesis of bulk MAX phase parts for wider engineering applications has gained increasing attention in aerospace,nuclear,and defence industries.The recent adoption of additive manufacturing(AM)technologies in MAX phase fabrication is a step forward in this field.This work overviews the recent progress in additive manufacturing(AM)of bulk MAX phases along with the achieved geometric features,microstructures,and properties after briefing the conventional powder sintering methods of fabricating MAX phase components.Critical challenges associated with these innovative AM-based methods,including,poor AM processability,low MAX phase purity,and insufficient geometric accuracy of the final parts,are also discussed.Accordingly,outlooks for the immediate future in this area are discussed based on the optimization of present fabrication routes and the potential of other AM technologies.展开更多
Bioceramics are a popular class of materials used in biomedical applications due to their mechanical stability and biocompatibility.They exist in a variety of fields including hip joints for orthopedics,tooth fillings...Bioceramics are a popular class of materials used in biomedical applications due to their mechanical stability and biocompatibility.They exist in a variety of fields including hip joints for orthopedics,tooth fillings for dentistry,and scaffolds for tissue engineering;however,the standard processes currently used to manufacture these ce-ramic products can be time-consuming and costly.In response,current literature alternatively proposes additive manufacturing(3D printing)strategies to fabricate bioceramic materials in a cost-effective and efficient man-ner.Herein,we briefly cover five common processes and materials used in additive manufacturing bioceramics:fused deposition modeling,material jetting,binder jetting,powder bed fusion,and vat photopolymerization.Fur-thermore,we discuss the potential of these 3D printed ceramic structures when applied to different biomedical technologies such as bone tissue scaffolds and structural implants.展开更多
文摘This study investigates full liquid phase sintering as a process of fabrication parts from WE43(Mg-4wt.%Y-3wt.%RE-0.7wt.%Zr)alloy using binder jetting additive manufacturing(BJAM).This fabrication process is being developed for use in producing structural or biomedical devices.Specifically,this study focused on achieving a near-dense microstructure with WE43 Mg alloy while substantially reducing the duration of sintering post-processing after BJAM part rendering.The optimal process resulted in microstructure with 2.5%porosity and significantly reduced sintering time.The improved sintering can be explained by the presence of Y_(2)O_(3)and Nd_(2)O_(3)oxide layers,which form spontaneously on the surface of WE43 powder used in BJAM.These layers appear to be crucial in preventing shape distortion of the resulting samples and in enabling the development of sintering necks,particularly under sintering conditions exceeding the liquidus temperature of WE43 alloy.Sintered WE43 specimens rendered by BJAM achieved significant improvement in both corrosion resistance and mechanical properties through reduced porosity levels related to the sintering time.
基金the National Key Research and Development Program of China(No.2018YFB1106800)。
文摘Binder jetting 3D printing is a rapid,cost effective,and efficient moulding/core making process,which can be applied to a large variety of materials.However,it exhibits a relatively low green-part strength.This may cause the collapse of the printed parts during de-caking and the pick-up procedure,especially in the case of small-scale structures,such as thin walls,tips,and channels.In this work,polyvinyl alcohol(PVA)was used as the additive in coated sand powder.By exploiting the binding effect between the two composites(thermoplastic phenolic resin and PVA)triggered by the binder,bonding necks firmly form among the sand particles,improving the green-part strength of the coated sand printed parts.Experiments based on the Taguchi method were used to investigate the relationship between the process parameters and the green-part tensile strength.The following set of optimal process parameters was identified:50wt.%alcoholicity of the binder,75%binder saturation,0.36 mm layer thickness and 4.5wt.%PVA content.Further,the effect of such parameters on the green-part tensile strength was determined via statistical analysis.The green part of an engine cylinder head sand pattern with complex cavity structures was printed,and the green-part tensile strength reached 2.31 MPa.Moreover,the ZL301 aluminum alloy impeller shape casting was prepared using sand molds printed with the optimal process parameters.The results confirm that the proposed binder jetting 3D printing process can guarantee the integrity of the printed green parts and of small-size structures during de-caking and the pick-up procedure.Furthermore,the casting made from the printed sand molds exhibits a relatively high quality.
基金Acknowledgements The authors would like to acknowledge the support of Rapid Prototyping Center (RPC) at University of Louisville and the many technical insights and discussions from Dan Brunermer at ExOne LLC. This work was partially supported by National Science Foundation (Grant No. 1450370, subaward No. OGMN 131508E4).
文摘Originally developed decades ago, the binder jetting additive manufacturing (B J-AM) process possesses various advantages compared to other additive manufacturing (AM) technologies such as broad material compat- ibility and technological expandability. However, the adoption of B J-AM has been limited by the lack of knowledge with the fundamental understanding of the process principles and characteristics, as well as the relatively few systematic design guideline that are available. In this work, the process design considerations for B J-AM in green part fabrication were discussed in detail in order to provide a comprehensive perspective of the design for additive manufacturing for the process. Various process factors, including binder saturation, in- process drying, powder spreading, powder feedstock characteristics, binder characteristics and post-process curing, could significantly affect the printing quality of the green parts such as geometrical accuracy and part integrity. For powder feedstock with low flowability, even though process parameters could be optimized to partially offset the printing feasibility issue, the qualities of the green parts will be intrinsically limited due to the existence of large internal voids that are inaccessible to the binder. In addition, during the process development, the balanced combination between the saturation level and in-process drying is of critical importance in the quality control of the green parts.
基金the first Singapore-Germany Academic-Industry(2+2)international collaboration grant(Grant No.:A1890b0050)Agency for Science,Technology and Research(A^(*)STAR),under the RIE2020 Advanced Manufacturing and Engineering(AME)Programmatic Grant No.A1881b0061support of a scholarship from the A^(*)STAR Graduate Academy。
文摘Binder jet printing(BJP)is a state-of-the-art additive manufacturing technique for producing porous magnesium structures.Porous MgZn-Zr based BJP samples were assessed for corrosion performance in simulated body fluids by electrochemical and hydrogen evolution measurements.The corrosion rates of the BJP specimens were significantly higher than solid controls,even after accounting for their larger surface areas,suggesting that the BJP microstructure is detrimental to corrosion performance.X-ray computed tomography revealed nonuniform corrosion within the porous structure,with corrosion products forming on the pore walls.Impregnating the pores with hydroxyapatite or polymers greatly improved the corrosion resistance of the BJP samples.
基金Project(51901020)supported by the National Natural Science Foundation of ChinaProject(2019JZZY010327)supported by Shandong Key Research and Development Plan,China+1 种基金Project(201942074001)supported by Aeronautical Science Foundation of ChinaProject(FRF-IP-20-05)supported by the Fundamental Research Funds for the Central Universities,China。
文摘Additive manufacturing(AM),also known as 3D-printing(3DP)technology,is an advanced manufacturing technology that has developed rapidly in the past 40 years.However,the ceramic material printing is still challenging because of the issue of cracking.Indirect 3D printing has been designed and drawn attention because of its high manufacturing speed and low cost.Indirect 3D printing separates the one-step forming process of direct 3D printing into binding and material sintering,avoiding the internal stress caused by rapid cooling,making it possible to realize the highquality ceramic component with complex shape.This paper presents the research progress of leading indirect 3D printing technologies,including binder jetting(BJ),stereolithography(SLA),and fused deposition modeling(FDM).At present,the additive manufacturing of ceramic materials is mainly achieved through indirect 3D printing technology,and these materials include silicon nitride,hydroxyapatite functional ceramics,silicon carbide structural ceramics.
基金funding support from the Natural Sciences and Engineering Research Council of Canada(NSERC)the Canada Research Chairs(CRC)Program+1 种基金Huys Industries and the CWB Welding Foundationthe Centre for Advanced Materials Joining and the Multi-Scale Additive Manufacturing Lab at the University of Waterloo。
文摘Ceramic-reinforced metal matrix composites(MMCs)display beneficial properties owing to their combination of ceramic and metal phases.However,the properties are highly dependent on the reinforcing phase composition,volume fraction and morphology.Continuous fiber or network reinforcement morphologies are difficult and expensive to manufacture,and the often-used discontinuous particle or whisker reinforcement morphologies result in less effective properties.Here,we demonstrate the formation of a co-continuous ceramic-reinforced metal matrix composite using solid-state processing.Binder jet additive manufacturing(BJAM)was used to print a nickel superalloy part followed by post-processing via reactive sintering to form a continuous carbide reinforcing phase at the particle boundaries.The kinetics of reinforcement formation are investigated in order to develop a relationship between reactive sintering time,temperature and powder composition on the reinforcing phase thickness and volume fraction.To evaluate performance,the wear resistance of the reinforced BJAM alloy 625 MMC was compared to unreinforced BJAM alloy 625,demonstrating a 64%decrease in the specific wear rate under abrasive wear conditions.
基金financially supported by the ARC Discovery Project for funding support(No.DP210103162)。
文摘The MAX phases are a group of layered ternary,quaternary,or quinary compounds with characteristics of both metals and ceramics.Over recent decades,the synthesis of bulk MAX phase parts for wider engineering applications has gained increasing attention in aerospace,nuclear,and defence industries.The recent adoption of additive manufacturing(AM)technologies in MAX phase fabrication is a step forward in this field.This work overviews the recent progress in additive manufacturing(AM)of bulk MAX phases along with the achieved geometric features,microstructures,and properties after briefing the conventional powder sintering methods of fabricating MAX phase components.Critical challenges associated with these innovative AM-based methods,including,poor AM processability,low MAX phase purity,and insufficient geometric accuracy of the final parts,are also discussed.Accordingly,outlooks for the immediate future in this area are discussed based on the optimization of present fabrication routes and the potential of other AM technologies.
文摘Bioceramics are a popular class of materials used in biomedical applications due to their mechanical stability and biocompatibility.They exist in a variety of fields including hip joints for orthopedics,tooth fillings for dentistry,and scaffolds for tissue engineering;however,the standard processes currently used to manufacture these ce-ramic products can be time-consuming and costly.In response,current literature alternatively proposes additive manufacturing(3D printing)strategies to fabricate bioceramic materials in a cost-effective and efficient man-ner.Herein,we briefly cover five common processes and materials used in additive manufacturing bioceramics:fused deposition modeling,material jetting,binder jetting,powder bed fusion,and vat photopolymerization.Fur-thermore,we discuss the potential of these 3D printed ceramic structures when applied to different biomedical technologies such as bone tissue scaffolds and structural implants.