The last decade was marked by the special interest in flora, biological characteristics, its adaptation to climate fluctuations and the influence of human activities. The steppe climate is generally characterized by i...The last decade was marked by the special interest in flora, biological characteristics, its adaptation to climate fluctuations and the influence of human activities. The steppe climate is generally characterized by its heterogeneity. The lower semi-arid: 300 mm to 400 mm per year; The arid higher: 200 mm to 300 mm per year; The arid lower: between 100 mm and 200 mm per year. Its wide analysis of a region is based on data provided by weather stations; a summary of the climate study area was analyzed with representative stations (Ain Sefra, El Aricha, Ras el-Ma, Saf-Saf). This steppe is in various states of degradation, consisting of Stipa tenacissima, Artemisia herba alba, Biscutella didyma, Spartium junceum and Lepidium glastifolium, etc..展开更多
Biological invasion represents a major worldwide threat to native biodiversity and environmental stability.Haloxylon persicum was introduced to Tunisia(North Africa)with Saharan bioclimate in 1969 to fix sandy dunes.S...Biological invasion represents a major worldwide threat to native biodiversity and environmental stability.Haloxylon persicum was introduced to Tunisia(North Africa)with Saharan bioclimate in 1969 to fix sandy dunes.Since then,it has gained significant interest for its potential to colonize,proliferate,and become naturalized in Tunisia.Hence,understanding the seed germination response of H.persicum to abiotic conditions,including temperature,water stress,and salt stress,is crucial for predicting its future spread and adopting effective control strategies.Our work investigated the germination behavior of this invasive plant species by incubation at temperatures from 10.0℃ to 35.0℃ and at various osmotic potentials(-2.00,-1.60,-1.00,-0.50,and 0.00 MPa)of polyethylene glycol-6000(PEG6000,indicating water stress)and sodium chloride(NaCl,indicating salt stress)solutions.Results showed remarkable correlations among the seed functional traits of H.persicum,indicating adaptive responses to local environmental constraints.The maximum germination rate was recorded at 25.0℃ with a rate of 0.39/d.Using the thermal time model,the base temperature was recorded at 8.4℃,the optimal temperature was 25.5℃,and the ceiling temperature was found at 58.3℃.Besides,based on the hydrotime model,the base water potential showed lower values of -7.74 and -10.90 MPa at the optimal temperatures of 25.0℃ and 30.0℃,respectively.Also,the species was found to have excellent tolerance to drought(water stress)compared to salt stress,which has implications for its potential growth into new habitats under climate change.Combining ecological and physiological approaches,this work elucidates the invasive potential of H.persicum and contributes to the protection of species distribution in Tunisian ecosystems.展开更多
This phyto-ecological study is on halophilic and salt-resistant vegetation of Oran region. The semiarid and sometimes arid climate has been defined and confirmed from a bioclimatic point of view. The pedological appro...This phyto-ecological study is on halophilic and salt-resistant vegetation of Oran region. The semiarid and sometimes arid climate has been defined and confirmed from a bioclimatic point of view. The pedological approach used shows a soil with sandy to silty-sandy texture, favoring regression of the vegetation and a halophilic vegetation set up. In this study, we analyze the floristic composition of the northern region of Hammam Boughrara using multiple floristic surveys conducted at three stations along the Tafna wadi. Dominated by Mediterranean and Saharo-Sindian elements, the relatively poor flora (88 species in total) is biologically characterized by a clear dominance of therophytes (>33%) and chamaephytes (>19%) to the detriment of phanerophytes.展开更多
Climate change can aff ect fi sh individuals or schools,and consequently the fi sheries.Studying future changes of fi sh distribution and abundance helps the scientifi c management of fi sheries.The dynamic bioclimate...Climate change can aff ect fi sh individuals or schools,and consequently the fi sheries.Studying future changes of fi sh distribution and abundance helps the scientifi c management of fi sheries.The dynamic bioclimate envelope model(DBEM)was used to identify the“environmental preference profi les”of the studied species based on outputs from three Earth system models(ESMs).Changes in ocean conditions in climate change scenarios could be transformed by the model into those in relative abundance and distribution of species.Therefore,the distributional response of 17 demersal fi shes to climate change in the Yellow Sea could be projected from 1970 to 2060.Indices of latitudinal centroid(LC)and mean temperature of relative abundance(MTRA)were used to represent the results conducted by model.Results present that 17 demersal fi sh species in the Yellow Sea show a trend of anti-poleward shift under both low-emission scenario(RCP 2.6)and high-emission scenario(RCP 8.5)from 1970 to 2060,with the projected average LC in three ESMs shifting at a rate of-1.17±4.55 and-2.76±3.82 km/decade,respectively,which is contrary to the previous projecting studies of fi shes suggesting that fi shes tend to move toward higher latitudes under increased temperature scenarios.The Yellow Sea Cold Water Mass could be the major driver resulting in the shift,which shows a potential signifi cance to fi shery resources management and marine conservation,and provides a new perspective in fi sh migration under climate change.展开更多
Based upon the studies of solutional rates with environment from South China to North China over a range of about 30 。 latitude, this paper discusses some of the consequence with equations. The response model shows ...Based upon the studies of solutional rates with environment from South China to North China over a range of about 30 。 latitude, this paper discusses some of the consequence with equations. The response model shows that the precipitation is the most important factor influencing the rate of solutional denudation except the lithology, the relief etc., but it is an integrational action on the solution process; at the same time, temperature acts as a threshold in bringing the precipitation into play. These suggest that firstly, the solutional denudation process is a comprehensive response to the multiple factors; secondly, karst solution is a complex response process to the climate, and as an integrated exogenic process under the bioclimate.展开更多
This aim of this study is to highlight the critical view of human action and anthropic at the steppe zone of Tlemcen. Therefore, the current paper tends to tackle an analytical study of the dynamics of ecosystems in b...This aim of this study is to highlight the critical view of human action and anthropic at the steppe zone of Tlemcen. Therefore, the current paper tends to tackle an analytical study of the dynamics of ecosystems in both states: El-Gor in the south-east and El-Bouihi in the southern-west of Tlemcen. To carry out this study it was necessary to present the bioclimatic context based on weather data to perform bioclimatic syntheses (diagram ombrothermic, climagramme rainfall Emberger). By comparison between old and recent periods (1913-1938) and (1984-2009), respectively, for the region of El-Gor and (1913-1938) and (1970-1990) for the El station-Bouihi, there is a net decrease in rainfall and higher temperatures at the new periods, which means that the study areas are moving towards the driest floors. The interpretation of multidimensional treatments AFC (Factor Analysis of Correspondences) vegetation helps to determine the existing affinities between the different taxa. These biostatistical analyses help to highlight the different factors often responsible for the dynamic regressive most cases.展开更多
基于39个地理分布信息和19个生物气候因子,利用BIOCLIM生态位模型对紫玉兰(Yulania liliiflora(Desr.) D. L. Fu)潜在适生区进行预测。结果显示,紫玉兰自然分布于云南、四川、贵州、湖北、甘肃、重庆、福建等地海拔300~1600 m的中低山...基于39个地理分布信息和19个生物气候因子,利用BIOCLIM生态位模型对紫玉兰(Yulania liliiflora(Desr.) D. L. Fu)潜在适生区进行预测。结果显示,紫玉兰自然分布于云南、四川、贵州、湖北、甘肃、重庆、福建等地海拔300~1600 m的中低山区。当前气候条件下,贵州苗岭是其主要适生区;随着全球气候变暖(CO2浓度倍增情况下),紫玉兰的适生区有向高海拔地区收缩的趋势,而在分布区的东北界,其潜在分布范围将扩散至湖南中部和浙江东部地区。影响紫玉兰地理分布格局的重要因素是水热条件的综合效应。ROC曲线检验的AUC值(0.998)表明,采用BIOCLIM模型对紫玉兰潜在分布区的预测结果准确性较高。本研究在气候变暖的大环境下分析紫玉兰的适生性,可为紫玉兰种质资源的保护利用提供依据。展开更多
文摘The last decade was marked by the special interest in flora, biological characteristics, its adaptation to climate fluctuations and the influence of human activities. The steppe climate is generally characterized by its heterogeneity. The lower semi-arid: 300 mm to 400 mm per year; The arid higher: 200 mm to 300 mm per year; The arid lower: between 100 mm and 200 mm per year. Its wide analysis of a region is based on data provided by weather stations; a summary of the climate study area was analyzed with representative stations (Ain Sefra, El Aricha, Ras el-Ma, Saf-Saf). This steppe is in various states of degradation, consisting of Stipa tenacissima, Artemisia herba alba, Biscutella didyma, Spartium junceum and Lepidium glastifolium, etc..
基金supported by the Tunisian Ministry of Higher Education and Scientific Research,Research General Direction,Excellence Project(21P2ES-D1P3)the International Foundation for Science(IFS)(I1-D-6596-1).
文摘Biological invasion represents a major worldwide threat to native biodiversity and environmental stability.Haloxylon persicum was introduced to Tunisia(North Africa)with Saharan bioclimate in 1969 to fix sandy dunes.Since then,it has gained significant interest for its potential to colonize,proliferate,and become naturalized in Tunisia.Hence,understanding the seed germination response of H.persicum to abiotic conditions,including temperature,water stress,and salt stress,is crucial for predicting its future spread and adopting effective control strategies.Our work investigated the germination behavior of this invasive plant species by incubation at temperatures from 10.0℃ to 35.0℃ and at various osmotic potentials(-2.00,-1.60,-1.00,-0.50,and 0.00 MPa)of polyethylene glycol-6000(PEG6000,indicating water stress)and sodium chloride(NaCl,indicating salt stress)solutions.Results showed remarkable correlations among the seed functional traits of H.persicum,indicating adaptive responses to local environmental constraints.The maximum germination rate was recorded at 25.0℃ with a rate of 0.39/d.Using the thermal time model,the base temperature was recorded at 8.4℃,the optimal temperature was 25.5℃,and the ceiling temperature was found at 58.3℃.Besides,based on the hydrotime model,the base water potential showed lower values of -7.74 and -10.90 MPa at the optimal temperatures of 25.0℃ and 30.0℃,respectively.Also,the species was found to have excellent tolerance to drought(water stress)compared to salt stress,which has implications for its potential growth into new habitats under climate change.Combining ecological and physiological approaches,this work elucidates the invasive potential of H.persicum and contributes to the protection of species distribution in Tunisian ecosystems.
基金supported by National Basic Research Program of China (973 Program,2002CB111405)the National Nature Science Foundation ofChina (30471162, 30671394)the National Key Technologies Research and Development Program of China(2006BAD08A13)~~
文摘This phyto-ecological study is on halophilic and salt-resistant vegetation of Oran region. The semiarid and sometimes arid climate has been defined and confirmed from a bioclimatic point of view. The pedological approach used shows a soil with sandy to silty-sandy texture, favoring regression of the vegetation and a halophilic vegetation set up. In this study, we analyze the floristic composition of the northern region of Hammam Boughrara using multiple floristic surveys conducted at three stations along the Tafna wadi. Dominated by Mediterranean and Saharo-Sindian elements, the relatively poor flora (88 species in total) is biologically characterized by a clear dominance of therophytes (>33%) and chamaephytes (>19%) to the detriment of phanerophytes.
基金Supported by the National Natural Science Foundation of China(No.42176234)the Chinese Arctic and Antarctic Creative Program(No.JDXT2018-01)the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(No.GML2019ZD0402)。
文摘Climate change can aff ect fi sh individuals or schools,and consequently the fi sheries.Studying future changes of fi sh distribution and abundance helps the scientifi c management of fi sheries.The dynamic bioclimate envelope model(DBEM)was used to identify the“environmental preference profi les”of the studied species based on outputs from three Earth system models(ESMs).Changes in ocean conditions in climate change scenarios could be transformed by the model into those in relative abundance and distribution of species.Therefore,the distributional response of 17 demersal fi shes to climate change in the Yellow Sea could be projected from 1970 to 2060.Indices of latitudinal centroid(LC)and mean temperature of relative abundance(MTRA)were used to represent the results conducted by model.Results present that 17 demersal fi sh species in the Yellow Sea show a trend of anti-poleward shift under both low-emission scenario(RCP 2.6)and high-emission scenario(RCP 8.5)from 1970 to 2060,with the projected average LC in three ESMs shifting at a rate of-1.17±4.55 and-2.76±3.82 km/decade,respectively,which is contrary to the previous projecting studies of fi shes suggesting that fi shes tend to move toward higher latitudes under increased temperature scenarios.The Yellow Sea Cold Water Mass could be the major driver resulting in the shift,which shows a potential signifi cance to fi shery resources management and marine conservation,and provides a new perspective in fi sh migration under climate change.
文摘Based upon the studies of solutional rates with environment from South China to North China over a range of about 30 。 latitude, this paper discusses some of the consequence with equations. The response model shows that the precipitation is the most important factor influencing the rate of solutional denudation except the lithology, the relief etc., but it is an integrational action on the solution process; at the same time, temperature acts as a threshold in bringing the precipitation into play. These suggest that firstly, the solutional denudation process is a comprehensive response to the multiple factors; secondly, karst solution is a complex response process to the climate, and as an integrated exogenic process under the bioclimate.
文摘This aim of this study is to highlight the critical view of human action and anthropic at the steppe zone of Tlemcen. Therefore, the current paper tends to tackle an analytical study of the dynamics of ecosystems in both states: El-Gor in the south-east and El-Bouihi in the southern-west of Tlemcen. To carry out this study it was necessary to present the bioclimatic context based on weather data to perform bioclimatic syntheses (diagram ombrothermic, climagramme rainfall Emberger). By comparison between old and recent periods (1913-1938) and (1984-2009), respectively, for the region of El-Gor and (1913-1938) and (1970-1990) for the El station-Bouihi, there is a net decrease in rainfall and higher temperatures at the new periods, which means that the study areas are moving towards the driest floors. The interpretation of multidimensional treatments AFC (Factor Analysis of Correspondences) vegetation helps to determine the existing affinities between the different taxa. These biostatistical analyses help to highlight the different factors often responsible for the dynamic regressive most cases.
文摘基于39个地理分布信息和19个生物气候因子,利用BIOCLIM生态位模型对紫玉兰(Yulania liliiflora(Desr.) D. L. Fu)潜在适生区进行预测。结果显示,紫玉兰自然分布于云南、四川、贵州、湖北、甘肃、重庆、福建等地海拔300~1600 m的中低山区。当前气候条件下,贵州苗岭是其主要适生区;随着全球气候变暖(CO2浓度倍增情况下),紫玉兰的适生区有向高海拔地区收缩的趋势,而在分布区的东北界,其潜在分布范围将扩散至湖南中部和浙江东部地区。影响紫玉兰地理分布格局的重要因素是水热条件的综合效应。ROC曲线检验的AUC值(0.998)表明,采用BIOCLIM模型对紫玉兰潜在分布区的预测结果准确性较高。本研究在气候变暖的大环境下分析紫玉兰的适生性,可为紫玉兰种质资源的保护利用提供依据。