Zinc(Zn),a widespread metal in the Earth’s crust,serves as a crucial nutrient in the Southern Ocean’s primary production.Studies on Zn in Antarctic snow and ice offer insights into the origins of this metal and its ...Zinc(Zn),a widespread metal in the Earth’s crust,serves as a crucial nutrient in the Southern Ocean’s primary production.Studies on Zn in Antarctic snow and ice offer insights into the origins of this metal and its transport routes,as well as its impact on the biogeochemical processes within the Antarctic atmosphere–land–ocean system.This review examines research on the spatial and temporal distribution of Zn in Antarctic snow and ice,as well as in Southern Ocean waters.It includes an overview of advanced methods for sampling and analyzing Zn,along with explanations for the observed variations.The review also discusses various sources of Zn as a nutrient to the Southern Ocean.Finally,it addresses prospective issues related to the use of Zn isotopes in identifying atmospheric sources and their biogeochemical effects on the development of the Southern Ocean ecosystem.展开更多
Spartina alterniflora Loisel, a species vegetating in intertidal flats along the eastern coast of the United States, was introduced in China almost 30 years ago and has become an urgent topic due to its invasiveness i...Spartina alterniflora Loisel, a species vegetating in intertidal flats along the eastern coast of the United States, was introduced in China almost 30 years ago and has become an urgent topic due to its invasiveness in the coastal zone of China. The impacts of this alien species S. alterniflora on intertidal ecosystem processes in the Jiangsu coastland were investigated by comparing the sediment nutrient availability and trace element concentration characteristics in a mud flat and those of a four-year old Spartina salt marsh that had earlier been a mudflat. At each study site, fifteen plots were sampled in different seasons to determine the sediment characteristics along the tidal flats. The results suggested that Spartina salt marsh sediments had significantly higher total N, available P, and water content, but lower pH and bulk density than mudflat sediments. Sediment salinity, water content, total N, organic C, and available P decreased along a seaward gradient in the Spartina salt marsh and increased with vegetation biomass. Furthermore, the concentrations of trace elements and some metal elements in the sediment were higher under Spartina although these increases were not significant. Also, in the Spartina marsh, some heavy metals were concentrated in the surface layer of the sediment. The Spartina salt marsh in this study was only four years old; therefore, it is suggested that further study of this allen species on a longer time frame in the Jiangsu coastland should be carried out.展开更多
Stable isotope techniques have been proved useful as tools for studying the carbon (C) and nitrogen (N) biogeochemical cycles of ecosystem. This paper firstly introduced the basic principles and the distribution chara...Stable isotope techniques have been proved useful as tools for studying the carbon (C) and nitrogen (N) biogeochemical cycles of ecosystem. This paper firstly introduced the basic principles and the distribution characteristics of stable isotope, then reviewed the recent advances and applications of stable isotope in the C and N biogeochemical cycles of ecosystem. By applying the 13 C natural abundance technique, ecologists are able to understand the photosynthetic path and CO 2 fixation of plants, the CO 2 exchange and C balance status of ecosystem, the composition, distribution and turnover of soil organic C and the sources of organic matter in food webs, while by using the 13 C labeled technique, the effects of elevated CO 2 on the C processes of ecosystem and the sources and fate of organic matter in ecosystem can be revealed in detail. Differently, by applying the 15 N natural abundance technique, ecologists are able to analyze the biological N 2 -fixation, the N sources of ecosystem, the N transformation processes of ecosystem and the N trophic status in food webs, while by using the 15 N labeled technique, the sources, transformation and fate of N in ecosystem and the effects of N input on the ecosystem can be investigated in depth. The applications of both C and N isotope natural abundance and labeled techniques, combined with the elemental, other isotope ( 34 S) and molecular biomarker information, will be more propitious to the investigation of C and N cycle mechanisms. Finally, this paper concluded the problems existed in current researches, and put forward the perspective of stable isotope techniques in the studies on C and N biogeochemical cycles of ecosystem in the future.展开更多
Sediment samples were cored from 3 locations representing the inner bay, the outer bay and the bay mouth of Jiaozhou Bay in September 2003 to study the source and biogeochemical characteristics of nitrogen and phospho...Sediment samples were cored from 3 locations representing the inner bay, the outer bay and the bay mouth of Jiaozhou Bay in September 2003 to study the source and biogeochemical characteristics of nitrogen and phosphorus in the bay. The content and vertical distributions of total nitrogen (TN), total phosphorus (TP), organic nitrogen (ON), organic phosphorus (OP), inorganic nitrogen (IN), inorganic phosphorus (IP), the ratio of organic carbon and total nitrogen (OC/TN), and the ratio of total nitrogen and total phosphorus (TN/TP) in the sediments were analyzed. The results show that both TN and TP in surface sediments decrease from the inner bay to the outer bay. In general, ON occupies 50%?70% of TN and IP accounts for more than 60% of TP. In ratio of OC:TN, the nitrogen accumulated in the sediments from the inner bay and the bay mouth came mainly from terrestrial sources, and the portion of autogenetic nitrogen was 28.9% and 13.1%, respectively. However, in the outer bay, nitrogen was mainly autogenetic, accounting for 62.1% of TN, whereas phosphorus was mainly land-derived. The sedimentation fluxes of nitrogen and phosphorus varied spatially. The overall diagenesis rate of nitrogen was higher than that of phosphorus. Specifically, the diagenesis rate of OP was higher than that of IP. However, the diagenesis rate of ON was not always higher than that of IN. In species, the diagenesis rate of IN is sometimes much higher than that of the OC. In various environments, the diagenesis rate is, to some degree, affected by OC, pH, Eh, and Es.展开更多
Both vertical and horizontal profiles of total dissolved selenium,dissolved organic and inorganic selenium,including Se(IV)and Se(VI),as well as particulate selenium in seawater were obtained on a basis of newly devel...Both vertical and horizontal profiles of total dissolved selenium,dissolved organic and inorganic selenium,including Se(IV)and Se(VI),as well as particulate selenium in seawater were obtained on a basis of newly developed separation technique form Antarctic Ocean,where the prodiction of deep waters occurs.The results exhibited that the concentrations of Se(IV) and Se(VI) were elevated and the total concentration in the surface of the high latitude waters (1. 31 nmol/L) was above those at lower latitudes (1.09 nmol/L) and also that previously reported from the Southern Ocean(1.18 nmol/L,Suzuki,1987).Preliminary investigation using specifically designed microlayer-sampler,that was first employed to identify the main biogeochemical proeesses,revealed Antarctic Ocean being functioning as a potential source as selenium in sea-air exchange. The mean life time of the selenium,detected as Se(IV) in deep water, was also estimated rather shorter than the residence time of the water mass, based on the samples collected from the cruise of China's Sixth Scientific Expedition.展开更多
In recent years, the spectacular massive green tide of Ulva prolifera has become a recurrent phenomenon appearing every summer in the coastal waters off Qingdao(Yellow Sea, China), attracting the attention of scientis...In recent years, the spectacular massive green tide of Ulva prolifera has become a recurrent phenomenon appearing every summer in the coastal waters off Qingdao(Yellow Sea, China), attracting the attention of scientists and local government. Based on multidisciplinary data collected during summer and winter, this study focuses on the hydrological characteristics and regional biogeochemical processes in coastal waters off Qingdao.The results show that the boundary of the Yellow Sea Cold Water Mass(YSCWM) can reach the Qingdao coastal region in summer and is locally raised to the upper layers to form coastal upwelling beyond tidal mixing and favorable wind. The regional summer upwelling off the Qingdao coast effectively enriches the nutrient concentrations in the upper water column and thus promotes growth of phytoplankton but reduces the dissolved oxygen(DO) concentration and pH value in the bottom. The regional summer upwelling off Qingdao coast may facilitate the growth and regional blooming of the U. prolifera that migrate to this region with the southerly wind.Additionally, the effects of the front on the aggregation of U. prolifera may be significant. In winter, the Yellow Sea Warm Current(YSWC) extends and spreads along the offshore region off the Subei Shoal towards the Qingdao coastal sea. This tongue-shaped warm water meets the cold coastal water off Qingdao, which leads to the formation of a physical front. As a consequence, remarkable fronts of nutrient and chlorophyll a(Chl a) also form between the shoreward warm water and the cold coastal water. This study increases the understanding of the interactions between the regional physical, chemical, and biological processes off the Qingdao coast.展开更多
Biogeochemical cyclic activity of the ars (arsenic resistance system) operon is arsB influx/effux encoded by the ecological of Pseudomonas putida.This suggests that studying arsenite-oxidizing bacteria may lead to a b...Biogeochemical cyclic activity of the ars (arsenic resistance system) operon is arsB influx/effux encoded by the ecological of Pseudomonas putida.This suggests that studying arsenite-oxidizing bacteria may lead to a better understanding of molecular geomicrobiology,which can be applied to the bioremediation of arsenic-contaminated mines.This is the first report in which multiple arsB-binding mechanisms have been used on indigenous bacteria.In ArsB (strains OS-5; ABB83931; OS-19; ABB04282 and RW-28; ABB88574...展开更多
Lake Aha in Guizhou Province, China is a medium-sized artificial reservoir with seasonally anoxic hypolimnion. Long-term sedimentary accumulation of iron and manganese resulted in their enrichment in the upper sedimen...Lake Aha in Guizhou Province, China is a medium-sized artificial reservoir with seasonally anoxic hypolimnion. Long-term sedimentary accumulation of iron and manganese resulted in their enrichment in the upper sediments. In anoxic season, Fe2+ and Mn2+ formed from bioledcal oxidation, would diffuse upto upper water from sediments. However, the concentration of Fe2+ incrlater and decreased earlier than that of Mn2+. Generally, Sulfate reduction occUrred at 6cm below the sediment-water interface. Whereas, in anoxic season, the reduction reached sediment top, inhibiting the release of Fe2+. As the oxidation of Mn2+ required molecular oxygen as catalyst, Serious anoxia caused the violent diffusion of Mn2+. Based on the bio-effects on the accumulation of Mn in natural fresh water, it’s necessary to seek a way to control manganese rerelease through accumulated manganese bacteria action.Keywrods: petdeopitional migration of Fe and Mn, biogaxhemical effect, Lake展开更多
Rivers link terrestrial ecosystems and marine ecosystems, and they transport large amounts of substances into oceans each year, including several forms of silicon(Si), carbon(C), and other nutrients. However, river da...Rivers link terrestrial ecosystems and marine ecosystems, and they transport large amounts of substances into oceans each year, including several forms of silicon(Si), carbon(C), and other nutrients. However, river damming affects the water flow and biogeochemical cycles of Si, C, and other nutrients through biogeochemical interacting processes. In this review, we first summarize the current understanding of the effects of river damming on the processes of biogeochemical Si cycle, especially the source, composition, and recycling process of biogenic silica(BSi). Then, we introduce dam impacts on the cycles of C and some other nutrients. Dissolved silicon in rivers is mainly released from phytolith dissolution and silicate weathering. BSi in suspended matter or sediments in most rivers mainly consists of phytoliths and mainly originates from soil erosion. However, diatom growth and deposition in many reservoirs formed by river interception may significantly increase the contribution of diatom Si to total BSi, and thus significantly influence the biogeochemical Si,C, and nutrient cycles. Yet the turnover of phytoliths and diatoms in different rivers formed by river damming is still poorly quantified. Thus, they should be further investigated to enhance our understanding about the effects of river damming on global biogeochemical Si, C and nutrient cycles.展开更多
This paper reports the relationship between the biogeochemical characteristics of C. N. P and flocculation and settling of suspended materials in the Changjiang Estuary. Regional activities of bacteria and the plankto...This paper reports the relationship between the biogeochemical characteristics of C. N. P and flocculation and settling of suspended materials in the Changjiang Estuary. Regional activities of bacteria and the plankton and biogeochemical processes at the water-particle interface under some environmental conditions are quite variable. This leads to the transition of material phase with speciation variation of elements C. N. P. in the transfer processes. Therefore, the composition and reactivity of particle surface and dissolved constituent are modified, affecting the stability of the particulate dispersion system. In summer, the concentration of NO3 and PO4 are positively correlated with turbidity, while the weight percentage of PON, POC and PP are negatively correlated with turbidity. When particles in the river move seaward, two zones can be distinguished: i) zone with maximum flocculation speed, in salinity 0. 1~2. 0 ;ii) zone with huge coagulating particles netting and high turbidity at the bottom, in salinity 2~11.The highest values of C/N in particles (or the low valley of C. E. C.of particle surface) appear in the two zones. These results demonstrate that the biogeochemical action is one of the major factors and mechanisms to dominate the flocculation of particles in the Changjiang Estuary.展开更多
The contribution of phytoliths to total biogenic silica(BSi) volumes in rivers worldwide,and the associated implications for the biogeochemical cycle,require in-depth study.Based on samples from rivers in Peninsular M...The contribution of phytoliths to total biogenic silica(BSi) volumes in rivers worldwide,and the associated implications for the biogeochemical cycle,require in-depth study.Based on samples from rivers in Peninsular Malaysia,this project investigated the source and characteristics of B Si found in Asian tropical rivers,as well as the process of reverse weathering taking place in these fluvial systems.Results indicated that BSi samples collected in sediments consisted of phytolith,diatom and sponge spicules.Phytoliths,predominantly of the elongate form,comprised 92.8%-98.3% of BSi in the Pahang River.Diatom BSi in this river consisted mainly of pennatae diatoms,but represented a relatively small proportion of the total BSi volume.However,diatom BSi(predominantly of the Centricae form) was more prevalent in the Pontian and Endau Rivers with shares of 68.8% and 79.3% of the total BSi volumes,respectively,than Pahang River.Carbon contents of the BSi particulates ranged from 1.85% to 10.8% with an average of 4.79%.These values are higher than those recorded in other studies to date,and indicate that BSi plays a major role in controlling permanent carbon burial.This study suggests that phytoliths from terrestrial plants are the primary constituents of BSi in the rivers of Peninsular Malaysia,and therefore represent a significant proportion of the coastal silica budget.展开更多
Phosphorus(P),as a limiting nutrient,plays a crucial role in the mountainous ecosystem development.Its biogeochemical cycle in mountainous ecosystems determines the bioavailability and sustainable supply of P,and thus...Phosphorus(P),as a limiting nutrient,plays a crucial role in the mountainous ecosystem development.Its biogeochemical cycle in mountainous ecosystems determines the bioavailability and sustainable supply of P,and thus becomes a crucial process which needs to be fully understood and described for ecological and environmental conservation.However,most of research about P biogeochemical processes has been carried out in aquatic environment and agronomic field,but rare researches have been done in mountain ecosystem.In the present review,we summarize researches on P biogeochemical cycle concerning mountain ecosystem in recent decades,including rock weathering,the release,transformation and bioavailability of P,interactions between the P biological cycle and microbial and plant life,as well as the development of models.Based on the state of art,we propose the future work on this direction,including the integration of all these research,the development of a practical model to understand the P biogeochemical cycle and its bioavailability,and to provide a reference for ecological and environmental conservation of mountainous ecosystems and lowland aquatic systems.展开更多
Based on the author’s previously obtained results on P and Si forms in southern Bohai Sea surface sediments,this study mainly foucusing on the controlling factors, existence forms, and biogeochemical processes of P a...Based on the author’s previously obtained results on P and Si forms in southern Bohai Sea surface sediments,this study mainly foucusing on the controlling factors, existence forms, and biogeochemical processes of P and Si showed that the transferable forms of phosphorus in sediments were mainly controlled by the mineralization of organic matters and the reduction of high valence iron; whereas the transferable forms of silicon were possibly controlled by the dissolution and precipitation as well as biochemical processes of living organisms.展开更多
The biogeochemical behavior of DIN (dissolved inorganic nitrogen), phosphate and silicate in the Minjiang River estuary is discussed based on data obtained from May, 1990 to Feb., 1991 oceanographic surveys in the are...The biogeochemical behavior of DIN (dissolved inorganic nitrogen), phosphate and silicate in the Minjiang River estuary is discussed based on data obtained from May, 1990 to Feb., 1991 oceanographic surveys in the area. The annual fluxes of nutrients in the Minjiang River estuary were estimated to be 326.8 ×103 t for silicate, 771.0 t for phosphate, 45.7×103 t for DIN (42.1×103 t for nitrate, 3.0×103 t for ammonia. 600 t for nitrite), respectively.展开更多
Crop harvesting and residue removal from croplands often result in imbalanced biogeochemical cycles of carbon and nutrients in croplands, putting forward an austere challenge to sustainable agricultural production. As...Crop harvesting and residue removal from croplands often result in imbalanced biogeochemical cycles of carbon and nutrients in croplands, putting forward an austere challenge to sustainable agricultural production. As a beneficial element, silicon(Si) has multiple eco-physiological functions, which could help crops to acclimatize their unfavorable habitats. Although many studies have reported that the application of Si can alleviate multiple abiotic and biotic stresses and increase biomass accumulation, the effects of Si on carbon immobilization and nutrients uptake into plants in croplands have not yet been explored. This review focused on Si-associated regulation of plant carbon accumulation, lignin biosynthesis, and nutrients uptake, which are important for biogeochemical cycles of carbon and nutrients in croplands. The tradeoff analysis indicates that the supply of bioavailable Si can enhance plant net photosynthetic rate and biomass carbon production(especially root biomass input to soil organic carbon pool), but reduce shoot lignin biosynthesis. Besides, the application of Si could improve uptake of most nutrients under deficient conditions, but restricts excess uptake when they are supplied in surplus amounts. Nevertheless, Si application to crops may enhance the uptake of nitrogen and iron when they are supplied in deficient to luxurious amounts, while potassium uptake enhanced by Si application is often involved in alleviating salt stress and inhibiting excess sodium uptake in plants. More importantly, the amount of Si accumulated in plant positively correlates with nutrients release during the decay of crop biomass, but negatively correlates with straw decomposability due to the reduced lignin synthesis. The Si-mediated plant growth and litter decomposition collectively suggest that Si cycling in croplands plays important roles in biogeochemical cycles of carbon and nutrients. Hence, scientific Si management in croplands will be helpful for maintaining sustainable development of agriculture.展开更多
In order to develop a coupled basin scale model of ocean circulation and biogeochemical cycling,we present a biogeochemical model including 12 components to study the ecosystem in the China coastal seas(CCS).The for...In order to develop a coupled basin scale model of ocean circulation and biogeochemical cycling,we present a biogeochemical model including 12 components to study the ecosystem in the China coastal seas(CCS).The formulation of phytoplankton mortality and zooplankton growth are modified according to biological characteristics of CCS.The four sensitivity biological parameters,zooplankton assimilation efficiency rate(ZooAE_N),zooplankton basal metabolism rate(ZooBM),maximum specific growth rate of zooplankton(μ_(20)) and maximum chlorophyll to carbon ratio(Chl2C_m) are obtained in sensitivity experiments for the phytoplankton,and experiments about the parameter μ_(20'),half-saturation for phytoplankton NO_3 uptake(K_(NO_3)) and remineralization rate of small detritusN(SDeRRN) are conducted.The results demonstrate that the biogeochemical model is quite sensitive to the zooplankton grazing parameter when it ranges from 0.1 to 1.2 d^(-1).The K_(NO_3) and SDeRRN also play an important role in determining the nitrogen cycle within certain ranges.The sensitive interval of KNO_3 is from 0.1 to 1.5(mmol/m^3)^(-1),and interval of SEdRRN is from 0.01 and 0.1 d^(-1).The observational data from September 1998 to July 2000 obtained at SEATS station are used to validate the performance of biological model after parameters optimization.The results show that the modified model has a good capacity to reveal the biological process features,and the sensitivity analysis can save computational resources greatly during the model simulation.展开更多
As a serious consequence of ocean warming and increased stratification,a rapid decrease in dissolved oxygen(DO)content of the world’s oceans has attracted more and more attention recently.In open oceans,the decline o...As a serious consequence of ocean warming and increased stratification,a rapid decrease in dissolved oxygen(DO)content of the world’s oceans has attracted more and more attention recently.In open oceans,the decline of DO is characterized by the expansion of oxygen minimum zones(OMZs)in the ocean interior.Vast OMZs exist within the mesopelagic zones of the Tropical Western Pacific(TWP),but have gained very little attention.In this study,we focus on characteristics of OMZs in three typical seamounts areas(named Y3,M2,and Kocebu,respectively)of the TWP.Based on distributions of DO,the OMZs of the three seamounts areas are very different in scope,thickness,and the minimum oxygen content.The significantly different characteristics of OMZs at the seamounts are mainly because they are located in regions affected by different ventilation and consumption characteristic.To quantitatively describe the intensity of OMZs,a parameter,IOMZ,is firstly proposed.According to this quantitative parameter,the intensity order of OMZs for the three seamounts areas is Kocebu>M2>Y3.Potential biogeochemical effects of OMZs in the three seamounts areas are discussed using IOMZ.With higher IOMZ,the degradation of particulate organic carbon(POC)tends to be lower.Yet because of the limited data,their relationship still need more research to prove.However,if this relationship holds in global oceans,the presence of seamounts would—under climate warming with expanding OMZs—promote vertical transport of POC resulting in an enhanced biological pump.Our study provides a new way to quantitatively study the impact of OMZs on the efficiency of biological pump.展开更多
An artificial way to prevent and cure the iodine deficiency disorder(IDD) through ameliorating the biogeochemical environment of the regions where iodine is deficient was put forward. In this paper, the concrete meth...An artificial way to prevent and cure the iodine deficiency disorder(IDD) through ameliorating the biogeochemical environment of the regions where iodine is deficient was put forward. In this paper, the concrete method to achieve this way was given and its feasibility is confirmed by test.展开更多
The vegetation has been poisoned by gold in the western Guangdong-Hainan region. The gold content ofthe leaves there is as high as 10-1961 times the abundance, the chlorophyll content is 10%-30% lower thanthat of the ...The vegetation has been poisoned by gold in the western Guangdong-Hainan region. The gold content ofthe leaves there is as high as 10-1961 times the abundance, the chlorophyll content is 10%-30% lower thanthat of the vegetation in metamorphic terrains and 10%-20% higher than that in granite terrains, and thecarotenoid content is 10%-44% lower than the background value. The water content of leaves is 10% to 20%lower than the background value. The cells of leaves are deformed and broken. The leaf surface shows colourspots and becomes yellow or dark green. The spectral reflectance of the leaf surface is 5%-30% higher than thebackground value: the spectral shape has shifted 5-15 nm to the short wavelength. The gray scales of eanopyon images of Landsat TM and airborne imaging scanner (AIS) are 10%-100% higher than the backgroundvalues. On Landsat TM and AIS false colour images, plants poisoned by gold display a yellow color, whichdisinguishes them from background plants. According to the spectral and image features of goldbiogeochemical effects, the author has constructed a gold information system and expert prediction system,and thus two gold target areas and two gold prospect areas have been identified rapidly, economically andaccurately in the western Guangdong-Hainan region which is extensively covered by vegetation.展开更多
This study proposed an integrated biogeochemical modeling of nitrogen load from anthropogenic and natural sources in Japan.Firstly,the nitrogen load(NL) from different sources such as crop,livestock,industrial plant,u...This study proposed an integrated biogeochemical modeling of nitrogen load from anthropogenic and natural sources in Japan.Firstly,the nitrogen load(NL) from different sources such as crop,livestock,industrial plant,urban and rural resident was calculated by using datasets of fertilizer utilization,population distribution, land use map,and social census.Then,the nitrate leaching from soil layers in farmland,grassland and natural conditions was calculated by using a展开更多
基金supported by the National Natural Science Foundation of China(Grant nos.42176240 and 42101142).
文摘Zinc(Zn),a widespread metal in the Earth’s crust,serves as a crucial nutrient in the Southern Ocean’s primary production.Studies on Zn in Antarctic snow and ice offer insights into the origins of this metal and its transport routes,as well as its impact on the biogeochemical processes within the Antarctic atmosphere–land–ocean system.This review examines research on the spatial and temporal distribution of Zn in Antarctic snow and ice,as well as in Southern Ocean waters.It includes an overview of advanced methods for sampling and analyzing Zn,along with explanations for the observed variations.The review also discusses various sources of Zn as a nutrient to the Southern Ocean.Finally,it addresses prospective issues related to the use of Zn isotopes in identifying atmospheric sources and their biogeochemical effects on the development of the Southern Ocean ecosystem.
基金Project supported by the Natural Science Foundation of Jiangsu Province (No.JSNSF 20050307)the National Natural Science Foundation of China (No.NSFC 30470326).
文摘Spartina alterniflora Loisel, a species vegetating in intertidal flats along the eastern coast of the United States, was introduced in China almost 30 years ago and has become an urgent topic due to its invasiveness in the coastal zone of China. The impacts of this alien species S. alterniflora on intertidal ecosystem processes in the Jiangsu coastland were investigated by comparing the sediment nutrient availability and trace element concentration characteristics in a mud flat and those of a four-year old Spartina salt marsh that had earlier been a mudflat. At each study site, fifteen plots were sampled in different seasons to determine the sediment characteristics along the tidal flats. The results suggested that Spartina salt marsh sediments had significantly higher total N, available P, and water content, but lower pH and bulk density than mudflat sediments. Sediment salinity, water content, total N, organic C, and available P decreased along a seaward gradient in the Spartina salt marsh and increased with vegetation biomass. Furthermore, the concentrations of trace elements and some metal elements in the sediment were higher under Spartina although these increases were not significant. Also, in the Spartina marsh, some heavy metals were concentrated in the surface layer of the sediment. The Spartina salt marsh in this study was only four years old; therefore, it is suggested that further study of this allen species on a longer time frame in the Jiangsu coastland should be carried out.
基金Under the auspices of Knowledge Innovation Programs of Chinese Academy of Sciences (No. KZCX2-YW-223)National Natural Science Foundation of China (No. 40803023)+1 种基金Key Program of Natural Science Foundation of Shandong Province(No. ZR2010DZ001)Talents Foundation of Chinese Academy of Sciences (No. AJ0809BX-036)
文摘Stable isotope techniques have been proved useful as tools for studying the carbon (C) and nitrogen (N) biogeochemical cycles of ecosystem. This paper firstly introduced the basic principles and the distribution characteristics of stable isotope, then reviewed the recent advances and applications of stable isotope in the C and N biogeochemical cycles of ecosystem. By applying the 13 C natural abundance technique, ecologists are able to understand the photosynthetic path and CO 2 fixation of plants, the CO 2 exchange and C balance status of ecosystem, the composition, distribution and turnover of soil organic C and the sources of organic matter in food webs, while by using the 13 C labeled technique, the effects of elevated CO 2 on the C processes of ecosystem and the sources and fate of organic matter in ecosystem can be revealed in detail. Differently, by applying the 15 N natural abundance technique, ecologists are able to analyze the biological N 2 -fixation, the N sources of ecosystem, the N transformation processes of ecosystem and the N trophic status in food webs, while by using the 15 N labeled technique, the sources, transformation and fate of N in ecosystem and the effects of N input on the ecosystem can be investigated in depth. The applications of both C and N isotope natural abundance and labeled techniques, combined with the elemental, other isotope ( 34 S) and molecular biomarker information, will be more propitious to the investigation of C and N cycle mechanisms. Finally, this paper concluded the problems existed in current researches, and put forward the perspective of stable isotope techniques in the studies on C and N biogeochemical cycles of ecosystem in the future.
基金the National Key Project for Basic Research of China (Contract No. 2007CB407305)Qingdao Special Project for Outstanding Scientists (Grant No. 05-2-JC-90)the "The 100-Talent Project" of Chinese Academy of Sciences, and the Knowledge Innovation Program of Chinese Academy of Sciences (No.KZCX3-SW-214)
文摘Sediment samples were cored from 3 locations representing the inner bay, the outer bay and the bay mouth of Jiaozhou Bay in September 2003 to study the source and biogeochemical characteristics of nitrogen and phosphorus in the bay. The content and vertical distributions of total nitrogen (TN), total phosphorus (TP), organic nitrogen (ON), organic phosphorus (OP), inorganic nitrogen (IN), inorganic phosphorus (IP), the ratio of organic carbon and total nitrogen (OC/TN), and the ratio of total nitrogen and total phosphorus (TN/TP) in the sediments were analyzed. The results show that both TN and TP in surface sediments decrease from the inner bay to the outer bay. In general, ON occupies 50%?70% of TN and IP accounts for more than 60% of TP. In ratio of OC:TN, the nitrogen accumulated in the sediments from the inner bay and the bay mouth came mainly from terrestrial sources, and the portion of autogenetic nitrogen was 28.9% and 13.1%, respectively. However, in the outer bay, nitrogen was mainly autogenetic, accounting for 62.1% of TN, whereas phosphorus was mainly land-derived. The sedimentation fluxes of nitrogen and phosphorus varied spatially. The overall diagenesis rate of nitrogen was higher than that of phosphorus. Specifically, the diagenesis rate of OP was higher than that of IP. However, the diagenesis rate of ON was not always higher than that of IN. In species, the diagenesis rate of IN is sometimes much higher than that of the OC. In various environments, the diagenesis rate is, to some degree, affected by OC, pH, Eh, and Es.
文摘Both vertical and horizontal profiles of total dissolved selenium,dissolved organic and inorganic selenium,including Se(IV)and Se(VI),as well as particulate selenium in seawater were obtained on a basis of newly developed separation technique form Antarctic Ocean,where the prodiction of deep waters occurs.The results exhibited that the concentrations of Se(IV) and Se(VI) were elevated and the total concentration in the surface of the high latitude waters (1. 31 nmol/L) was above those at lower latitudes (1.09 nmol/L) and also that previously reported from the Southern Ocean(1.18 nmol/L,Suzuki,1987).Preliminary investigation using specifically designed microlayer-sampler,that was first employed to identify the main biogeochemical proeesses,revealed Antarctic Ocean being functioning as a potential source as selenium in sea-air exchange. The mean life time of the selenium,detected as Se(IV) in deep water, was also estimated rather shorter than the residence time of the water mass, based on the samples collected from the cruise of China's Sixth Scientific Expedition.
基金The Open Fund of Laboratory for Marine Ecology and Environmental Science,Qingdao National Laboratory for Marine Science and Technology under contract No.LMEES201808the Scientific and Technological Innovation Project of the Qingdao National Laboratory for Marine Science and Technology under contract No.2016ASKJ02+2 种基金the National Key Research and Development Program of China under contract Nos 2016YFC1402101 and 2017YFC1404402the National Natural Science Foundation of China under contract No.41606040the National Project of Comprehensive Investigation and Research of Coastal Seas in China under contract No.908-01-ST03
文摘In recent years, the spectacular massive green tide of Ulva prolifera has become a recurrent phenomenon appearing every summer in the coastal waters off Qingdao(Yellow Sea, China), attracting the attention of scientists and local government. Based on multidisciplinary data collected during summer and winter, this study focuses on the hydrological characteristics and regional biogeochemical processes in coastal waters off Qingdao.The results show that the boundary of the Yellow Sea Cold Water Mass(YSCWM) can reach the Qingdao coastal region in summer and is locally raised to the upper layers to form coastal upwelling beyond tidal mixing and favorable wind. The regional summer upwelling off the Qingdao coast effectively enriches the nutrient concentrations in the upper water column and thus promotes growth of phytoplankton but reduces the dissolved oxygen(DO) concentration and pH value in the bottom. The regional summer upwelling off Qingdao coast may facilitate the growth and regional blooming of the U. prolifera that migrate to this region with the southerly wind.Additionally, the effects of the front on the aggregation of U. prolifera may be significant. In winter, the Yellow Sea Warm Current(YSWC) extends and spreads along the offshore region off the Subei Shoal towards the Qingdao coastal sea. This tongue-shaped warm water meets the cold coastal water off Qingdao, which leads to the formation of a physical front. As a consequence, remarkable fronts of nutrient and chlorophyll a(Chl a) also form between the shoreward warm water and the cold coastal water. This study increases the understanding of the interactions between the regional physical, chemical, and biological processes off the Qingdao coast.
基金the Korea Science and Engineering Foundation (KOSEF) through the National Research Lab.Program funded by the Korean Ministry of Science and Technology (No.M10300000298-06J0000-29810).
文摘Biogeochemical cyclic activity of the ars (arsenic resistance system) operon is arsB influx/effux encoded by the ecological of Pseudomonas putida.This suggests that studying arsenite-oxidizing bacteria may lead to a better understanding of molecular geomicrobiology,which can be applied to the bioremediation of arsenic-contaminated mines.This is the first report in which multiple arsB-binding mechanisms have been used on indigenous bacteria.In ArsB (strains OS-5; ABB83931; OS-19; ABB04282 and RW-28; ABB88574...
文摘Lake Aha in Guizhou Province, China is a medium-sized artificial reservoir with seasonally anoxic hypolimnion. Long-term sedimentary accumulation of iron and manganese resulted in their enrichment in the upper sediments. In anoxic season, Fe2+ and Mn2+ formed from bioledcal oxidation, would diffuse upto upper water from sediments. However, the concentration of Fe2+ incrlater and decreased earlier than that of Mn2+. Generally, Sulfate reduction occUrred at 6cm below the sediment-water interface. Whereas, in anoxic season, the reduction reached sediment top, inhibiting the release of Fe2+. As the oxidation of Mn2+ required molecular oxygen as catalyst, Serious anoxia caused the violent diffusion of Mn2+. Based on the bio-effects on the accumulation of Mn in natural fresh water, it’s necessary to seek a way to control manganese rerelease through accumulated manganese bacteria action.Keywrods: petdeopitional migration of Fe and Mn, biogaxhemical effect, Lake
基金the support from the State's Key Project of Research and Development Plan of China (2016YFA0601002)the National Natural Science Foundation of China (41522207,41571130042)
文摘Rivers link terrestrial ecosystems and marine ecosystems, and they transport large amounts of substances into oceans each year, including several forms of silicon(Si), carbon(C), and other nutrients. However, river damming affects the water flow and biogeochemical cycles of Si, C, and other nutrients through biogeochemical interacting processes. In this review, we first summarize the current understanding of the effects of river damming on the processes of biogeochemical Si cycle, especially the source, composition, and recycling process of biogenic silica(BSi). Then, we introduce dam impacts on the cycles of C and some other nutrients. Dissolved silicon in rivers is mainly released from phytolith dissolution and silicate weathering. BSi in suspended matter or sediments in most rivers mainly consists of phytoliths and mainly originates from soil erosion. However, diatom growth and deposition in many reservoirs formed by river interception may significantly increase the contribution of diatom Si to total BSi, and thus significantly influence the biogeochemical Si,C, and nutrient cycles. Yet the turnover of phytoliths and diatoms in different rivers formed by river damming is still poorly quantified. Thus, they should be further investigated to enhance our understanding about the effects of river damming on global biogeochemical Si, C and nutrient cycles.
文摘This paper reports the relationship between the biogeochemical characteristics of C. N. P and flocculation and settling of suspended materials in the Changjiang Estuary. Regional activities of bacteria and the plankton and biogeochemical processes at the water-particle interface under some environmental conditions are quite variable. This leads to the transition of material phase with speciation variation of elements C. N. P. in the transfer processes. Therefore, the composition and reactivity of particle surface and dissolved constituent are modified, affecting the stability of the particulate dispersion system. In summer, the concentration of NO3 and PO4 are positively correlated with turbidity, while the weight percentage of PON, POC and PP are negatively correlated with turbidity. When particles in the river move seaward, two zones can be distinguished: i) zone with maximum flocculation speed, in salinity 0. 1~2. 0 ;ii) zone with huge coagulating particles netting and high turbidity at the bottom, in salinity 2~11.The highest values of C/N in particles (or the low valley of C. E. C.of particle surface) appear in the two zones. These results demonstrate that the biogeochemical action is one of the major factors and mechanisms to dominate the flocculation of particles in the Changjiang Estuary.
基金Supported by the National Natural Science Foundation of China(Nos.41106072,41376093)the International Collaboration Science Plan(No.GASI-01-02-01-04)
文摘The contribution of phytoliths to total biogenic silica(BSi) volumes in rivers worldwide,and the associated implications for the biogeochemical cycle,require in-depth study.Based on samples from rivers in Peninsular Malaysia,this project investigated the source and characteristics of B Si found in Asian tropical rivers,as well as the process of reverse weathering taking place in these fluvial systems.Results indicated that BSi samples collected in sediments consisted of phytolith,diatom and sponge spicules.Phytoliths,predominantly of the elongate form,comprised 92.8%-98.3% of BSi in the Pahang River.Diatom BSi in this river consisted mainly of pennatae diatoms,but represented a relatively small proportion of the total BSi volume.However,diatom BSi(predominantly of the Centricae form) was more prevalent in the Pontian and Endau Rivers with shares of 68.8% and 79.3% of the total BSi volumes,respectively,than Pahang River.Carbon contents of the BSi particulates ranged from 1.85% to 10.8% with an average of 4.79%.These values are higher than those recorded in other studies to date,and indicate that BSi plays a major role in controlling permanent carbon burial.This study suggests that phytoliths from terrestrial plants are the primary constituents of BSi in the rivers of Peninsular Malaysia,and therefore represent a significant proportion of the coastal silica budget.
基金funded by Chinese Academy of Sciences (Grant Nos. KZCX2-YW-BR-21 and KZZD-EW-TZ-06)Natural Science Foundation of China (Grant No. 41272200)
文摘Phosphorus(P),as a limiting nutrient,plays a crucial role in the mountainous ecosystem development.Its biogeochemical cycle in mountainous ecosystems determines the bioavailability and sustainable supply of P,and thus becomes a crucial process which needs to be fully understood and described for ecological and environmental conservation.However,most of research about P biogeochemical processes has been carried out in aquatic environment and agronomic field,but rare researches have been done in mountain ecosystem.In the present review,we summarize researches on P biogeochemical cycle concerning mountain ecosystem in recent decades,including rock weathering,the release,transformation and bioavailability of P,interactions between the P biological cycle and microbial and plant life,as well as the development of models.Based on the state of art,we propose the future work on this direction,including the integration of all these research,the development of a practical model to understand the P biogeochemical cycle and its bioavailability,and to provide a reference for ecological and environmental conservation of mountainous ecosystems and lowland aquatic systems.
文摘Based on the author’s previously obtained results on P and Si forms in southern Bohai Sea surface sediments,this study mainly foucusing on the controlling factors, existence forms, and biogeochemical processes of P and Si showed that the transferable forms of phosphorus in sediments were mainly controlled by the mineralization of organic matters and the reduction of high valence iron; whereas the transferable forms of silicon were possibly controlled by the dissolution and precipitation as well as biochemical processes of living organisms.
文摘The biogeochemical behavior of DIN (dissolved inorganic nitrogen), phosphate and silicate in the Minjiang River estuary is discussed based on data obtained from May, 1990 to Feb., 1991 oceanographic surveys in the area. The annual fluxes of nutrients in the Minjiang River estuary were estimated to be 326.8 ×103 t for silicate, 771.0 t for phosphate, 45.7×103 t for DIN (42.1×103 t for nitrate, 3.0×103 t for ammonia. 600 t for nitrite), respectively.
基金supports from the National Natural Science Foundation of China (41522207, 41571130042, 31572191 and 31772387)the National Key R&D Program of China (2016YFA0601002)
文摘Crop harvesting and residue removal from croplands often result in imbalanced biogeochemical cycles of carbon and nutrients in croplands, putting forward an austere challenge to sustainable agricultural production. As a beneficial element, silicon(Si) has multiple eco-physiological functions, which could help crops to acclimatize their unfavorable habitats. Although many studies have reported that the application of Si can alleviate multiple abiotic and biotic stresses and increase biomass accumulation, the effects of Si on carbon immobilization and nutrients uptake into plants in croplands have not yet been explored. This review focused on Si-associated regulation of plant carbon accumulation, lignin biosynthesis, and nutrients uptake, which are important for biogeochemical cycles of carbon and nutrients in croplands. The tradeoff analysis indicates that the supply of bioavailable Si can enhance plant net photosynthetic rate and biomass carbon production(especially root biomass input to soil organic carbon pool), but reduce shoot lignin biosynthesis. Besides, the application of Si could improve uptake of most nutrients under deficient conditions, but restricts excess uptake when they are supplied in surplus amounts. Nevertheless, Si application to crops may enhance the uptake of nitrogen and iron when they are supplied in deficient to luxurious amounts, while potassium uptake enhanced by Si application is often involved in alleviating salt stress and inhibiting excess sodium uptake in plants. More importantly, the amount of Si accumulated in plant positively correlates with nutrients release during the decay of crop biomass, but negatively correlates with straw decomposability due to the reduced lignin synthesis. The Si-mediated plant growth and litter decomposition collectively suggest that Si cycling in croplands plays important roles in biogeochemical cycles of carbon and nutrients. Hence, scientific Si management in croplands will be helpful for maintaining sustainable development of agriculture.
基金The National Natural Science Foundation of China under contract Nos 41206023,41222038 and 41076011the National Basic Research Project(973 Program)of China under contract No.2011CB403606+2 种基金the China-Korea Joint Ocean Research Center"Cooperation on the Development of Basic Technologies for the Yellow Sea and East China Sea Operational Oceanographic System(YOOS)"the Public Science and Technology Research Funds Projects of Ocean under contrcat No.201205018the"Strategic Priority Research Program"of the Chinese Academy of Sciences,under contract No.XDA01020304
文摘In order to develop a coupled basin scale model of ocean circulation and biogeochemical cycling,we present a biogeochemical model including 12 components to study the ecosystem in the China coastal seas(CCS).The formulation of phytoplankton mortality and zooplankton growth are modified according to biological characteristics of CCS.The four sensitivity biological parameters,zooplankton assimilation efficiency rate(ZooAE_N),zooplankton basal metabolism rate(ZooBM),maximum specific growth rate of zooplankton(μ_(20)) and maximum chlorophyll to carbon ratio(Chl2C_m) are obtained in sensitivity experiments for the phytoplankton,and experiments about the parameter μ_(20'),half-saturation for phytoplankton NO_3 uptake(K_(NO_3)) and remineralization rate of small detritusN(SDeRRN) are conducted.The results demonstrate that the biogeochemical model is quite sensitive to the zooplankton grazing parameter when it ranges from 0.1 to 1.2 d^(-1).The K_(NO_3) and SDeRRN also play an important role in determining the nitrogen cycle within certain ranges.The sensitive interval of KNO_3 is from 0.1 to 1.5(mmol/m^3)^(-1),and interval of SEdRRN is from 0.01 and 0.1 d^(-1).The observational data from September 1998 to July 2000 obtained at SEATS station are used to validate the performance of biological model after parameters optimization.The results show that the modified model has a good capacity to reveal the biological process features,and the sensitivity analysis can save computational resources greatly during the model simulation.
基金the Science&Technology Basic Resources Investigation Program of China(No.2017FY100802)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA19060401)the National Natural Science Foundation of China(No.91958103)。
文摘As a serious consequence of ocean warming and increased stratification,a rapid decrease in dissolved oxygen(DO)content of the world’s oceans has attracted more and more attention recently.In open oceans,the decline of DO is characterized by the expansion of oxygen minimum zones(OMZs)in the ocean interior.Vast OMZs exist within the mesopelagic zones of the Tropical Western Pacific(TWP),but have gained very little attention.In this study,we focus on characteristics of OMZs in three typical seamounts areas(named Y3,M2,and Kocebu,respectively)of the TWP.Based on distributions of DO,the OMZs of the three seamounts areas are very different in scope,thickness,and the minimum oxygen content.The significantly different characteristics of OMZs at the seamounts are mainly because they are located in regions affected by different ventilation and consumption characteristic.To quantitatively describe the intensity of OMZs,a parameter,IOMZ,is firstly proposed.According to this quantitative parameter,the intensity order of OMZs for the three seamounts areas is Kocebu>M2>Y3.Potential biogeochemical effects of OMZs in the three seamounts areas are discussed using IOMZ.With higher IOMZ,the degradation of particulate organic carbon(POC)tends to be lower.Yet because of the limited data,their relationship still need more research to prove.However,if this relationship holds in global oceans,the presence of seamounts would—under climate warming with expanding OMZs—promote vertical transport of POC resulting in an enhanced biological pump.Our study provides a new way to quantitatively study the impact of OMZs on the efficiency of biological pump.
文摘An artificial way to prevent and cure the iodine deficiency disorder(IDD) through ameliorating the biogeochemical environment of the regions where iodine is deficient was put forward. In this paper, the concrete method to achieve this way was given and its feasibility is confirmed by test.
文摘The vegetation has been poisoned by gold in the western Guangdong-Hainan region. The gold content ofthe leaves there is as high as 10-1961 times the abundance, the chlorophyll content is 10%-30% lower thanthat of the vegetation in metamorphic terrains and 10%-20% higher than that in granite terrains, and thecarotenoid content is 10%-44% lower than the background value. The water content of leaves is 10% to 20%lower than the background value. The cells of leaves are deformed and broken. The leaf surface shows colourspots and becomes yellow or dark green. The spectral reflectance of the leaf surface is 5%-30% higher than thebackground value: the spectral shape has shifted 5-15 nm to the short wavelength. The gray scales of eanopyon images of Landsat TM and airborne imaging scanner (AIS) are 10%-100% higher than the backgroundvalues. On Landsat TM and AIS false colour images, plants poisoned by gold display a yellow color, whichdisinguishes them from background plants. According to the spectral and image features of goldbiogeochemical effects, the author has constructed a gold information system and expert prediction system,and thus two gold target areas and two gold prospect areas have been identified rapidly, economically andaccurately in the western Guangdong-Hainan region which is extensively covered by vegetation.
文摘This study proposed an integrated biogeochemical modeling of nitrogen load from anthropogenic and natural sources in Japan.Firstly,the nitrogen load(NL) from different sources such as crop,livestock,industrial plant,urban and rural resident was calculated by using datasets of fertilizer utilization,population distribution, land use map,and social census.Then,the nitrate leaching from soil layers in farmland,grassland and natural conditions was calculated by using a