期刊文献+
共找到133篇文章
< 1 2 7 >
每页显示 20 50 100
Biomineralization of soil with crude soybean urease using different calcium salts
1
作者 Yajie Weng Junjie Zheng +2 位作者 Hanjiang Lai Mingjuan Cui Xingzhi Ding 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第5期1788-1798,共11页
Calcium salt is an important contributing factor for calcium-based biomineralization.To study the effect of calcium salt on soil biomineralization using crude soybean urease,the calcium salts,including the calcium chl... Calcium salt is an important contributing factor for calcium-based biomineralization.To study the effect of calcium salt on soil biomineralization using crude soybean urease,the calcium salts,including the calcium chloride (CaCl_(2)),calcium acetate ((CH_(3)COO)_(2)Ca) and calcium nitrate (Ca(NO_(3))_(2)),were used to prepare the biotreatment solution to carry out the biomineralization tests in this paper.Two series of biomineralization tests in solution and sand column,respectively,were conducted.Scanning electron microscopy (SEM) and X-ray diffraction (XRD) were performed to determine the microscopic characteristics of the precipitated calcium carbonate (CaCO_(3)) crystals.The experimental results indicate that the biomineralization effect is the best for the CaCl2 case,followed by (CH_(3)COO)_(2)Ca,and worst for Ca(NO_(3))_(2) under the test conditions of this study (i.e.1 mol/L of calcium salt-urea).The mechanism for the effect of the calcium salt on the biomineralization of crude soybean urease mainly involves: (1) inhibition of urease activity,and (2) influence on the crystal size and morphology of CaCO_(3).Besides Ca^(2+) ,the anions in solution can inhibit the activity of crude soybean urease,and NO_(3)− has a stronger inhibitory effect on the urease activity compared with both CH_(3)COO^(−) and Cl^(−) .The co-inhibition of Ca^(2+) and NO_(3)− on the activity of urease is the key reason for the worst biomineralization of the Ca(NO_(3))_(2) case in this study.The difference in biomineralization between the CaCl_(2) and (CH_(3)COO)_(2) Ca cases is strongly correlated with the crystal morphology of the precipitated CaCO_(3). 展开更多
关键词 biomineralization Crude soybean urease Calcium salt Influence mechanism
下载PDF
Biomineralization of Uranium: A Simulated Experiment and Its Significance 被引量:5
2
作者 MINMaozhong HuifangXU +3 位作者 L.L.BARTON WANGJinping PENGXinjian H.WIATROWSKI 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2005年第1期134-138,共5页
A simulated experimental reduction of and the synthesis of uraninite by a sulfate-reducing bacteria, Desulfovibrio desulfuricans DSM 642, are first reported. The simulated physicochemical experimental conditions were:... A simulated experimental reduction of and the synthesis of uraninite by a sulfate-reducing bacteria, Desulfovibrio desulfuricans DSM 642, are first reported. The simulated physicochemical experimental conditions were: 35°C, pH=7.0-7.4, corresponding to the environments of formation of the sandstone-hosted interlayer oxidation-zone type uranium deposits in Xinjiang, NW China. Uraninite was formed on the surface of the host bacteria after a one-week's incubation. Therefore, sulfate-reducing bacteria, which existed extensively in Jurassic sandstone-producing environments, might have participated in the biomineralization of this uranium deposit. There is an important difference in the order- disorder of the crystalline structure between the uraninite produced by Desulfovibrio desulfuricans and naturally occurring uraninite. Long time and slow precipitation and growth of uraninite in the geological environment might have resulted in larger uraninite crystals, with uraninite nanocrystals arranged in order, whereas the experimentally produced uraninite is composed of unordered uraninite nanocrystals which, in contrast, result from the short time span of formation and rapid precipitation and growth of uraninite. The discovery has important implications for understanding genetic significance in mineralogy, and also indicates that in-situ bioremediation of U-contaminated environments and use of biotechnology in the treatment of radioactive liquid waste is being contemplated. 展开更多
关键词 microbial biomineralization URANINITE sulfate-reducing bacteria sandstone-hosted uranium deposit simulated experiment
下载PDF
Does acid pickling of Mg-Ca alloy enhance biomineralization? 被引量:3
3
作者 Shebeer A Rahim VP Muhammad Rabeeh +1 位作者 M A Joseph T Hanas 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第3期1028-1038,共11页
The mechanical and physical properties of biodegradable magnesium(Mg)alloys make them suitable for temporary orthopaedic implants.The success of these alloys depends on their performance in the physiological environme... The mechanical and physical properties of biodegradable magnesium(Mg)alloys make them suitable for temporary orthopaedic implants.The success of these alloys depends on their performance in the physiological environment.In the present work,surface modification of Mg-Ca binary alloy by acid pickling for better biomineralization and controlled biodegradation is explored.The corrosion rates of nitric and phosphoric acid treated samples were analysed by conducting electrochemical corrosion tests.In vitro degradation behaviour was studied using immersion test in simulated body fluid(SBF).The sample surfaces were characterized using scanning electron microscope(SEM),energy dispersive X-ray spectroscopy(EDS),Fourier transform infrared spectroscopy(FTIR)and X-ray photoelectron spectroscopy(XPS).It is seen that acid pickling leads to significant improvement in biomineralization and develop in situ calcium phosphate(Ca P)coating on the sample surfaces.In addition,the treated samples recorded a reduced degradation rate in the SBF compared to untreated samples.Thus,acid pickling is suggested as an effective surface treatment method to tailor the biomineralization and degradation behaviour of the Mg-Ca alloy in the physiological environment. 展开更多
关键词 Inorganic acid pickling Magnesium alloy Surface pretreatment Surface characterization biomineralization Degradation rate
下载PDF
Redox control of magnetosome biomineralization 被引量:2
4
作者 Yingjie LI 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2021年第6期2070-2081,共12页
Magnetotactic bacteria can orientate in the Earth’s magnetic field to search for their preferred microoxic environments,which is achieved by their unique organelles,the magnetosomes.Magnetosomes contain nanometer-siz... Magnetotactic bacteria can orientate in the Earth’s magnetic field to search for their preferred microoxic environments,which is achieved by their unique organelles,the magnetosomes.Magnetosomes contain nanometer-sized crystal particles of magnetic iron minerals,which are only synthesized in lowoxygen environments.Although the mechanism of aerobic repression for magnetosome biomineralization has not yet fully understood,a series of studies have verified that redox modulation is pivotal for magnetosome formation.In this review,these advances in redox modulation for magnetosome biosynthesis are highlighted,mainly including respiration pathway enzymes,specific magnetosome-associated redox proteins,and oxygen-or nitrate-sensing regulators.Furthermore,their relationship during magnetosome biomineralization is discussed to give insight into redox control and biomineralization and inspire potential solutions for the application of respiration pathways to improve the yields of magnetosome. 展开更多
关键词 magnetotactic bacteria MAGNETOSOME biomineralization RESPIRATION redox control
下载PDF
Hot-Water Deposition of Pyritic Stromatolite and Its Relation to Biomineralization 被引量:2
5
作者 XIA Xuehui LIU Changtao LI Zhongmo 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2000年第3期529-533,共5页
Pyritic stromatolite, a rich pyrite ore, is scattered as reef masses in sedex deposits of the Proterozoic Yanshan rift trough. The pyritic stromatolite consists of a core and alternating concentric rims of light collo... Pyritic stromatolite, a rich pyrite ore, is scattered as reef masses in sedex deposits of the Proterozoic Yanshan rift trough. The pyritic stromatolite consists of a core and alternating concentric rims of light colloidal pyrite and dark organic materials. The concentric rims are cemented together by trichomes highly similar to the trichomic microorganisms inhabiting substantively around the black chimneys on the current sea beds while the core is composed chiefly of groups of thermophilous sulphur bacteria. Biomarkers for the molecules of pyritic stromatolite include pristane, phytane, regular isoprenoids paraffin, methyl-heptadecyl, and so on. This study reveals the existence of methane-yielding bacteria in the pyritic stromatolite and reflects the evolution of thermophilous thallophyta. 展开更多
关键词 pyritic stromatolite hydrothermal deposition biomineralization
下载PDF
Biomineralization Precursor Carrier System Based on Carboxyl- Functionalized Large Pore Mesoporous Silica Nanoparticles 被引量:1
6
作者 Sheng WEI Hua WU Xiao-juan LUO 《Current Medical Science》 SCIE CAS 2020年第1期155-167,共13页
Bone and teeth are derived from intrafibrillarly mineralized collagen fibrils as the second level of hierarchy.According to polymer-induced liquid-precursor process,using amorphous calcium phosphate precursor(ACP)is a... Bone and teeth are derived from intrafibrillarly mineralized collagen fibrils as the second level of hierarchy.According to polymer-induced liquid-precursor process,using amorphous calcium phosphate precursor(ACP)is able to achieve intrafibrillar mineralization in the case of bone biomineral in vitro.Therefore,ACP precursors might be blended with any osteoconductive scaffold as a promising bone formation supplement for in-situ remineralization of collagens in bone.In this study,mesoporous silica nanoparticles with carboxyl-functionalized groups and ultra large-pores have been synthesized and used for the delivery of liquid like biomimetic precursors(ACP).The precursor delivery capacity of the nanoparticles was verified by the precursor release profile and successful mineralization of 2D and 3D collagen models.The nanoparticles could be completely degraded in 60 days and exhibited good biocompatibility as well.The successful translational strategy for biomineralization precursors showed that biomineralization precursor laden ultra large pore mesoporous silica possessed the potential as a versatile supplement in demineralized bone formation through the induction of intrafibrillar collagen mineralization. 展开更多
关键词 biomineralization mesoporous silica amorphous calcium phosphate BIOCOMPATIBILITY BIODEGRADABILITY carboxyl functionalization
下载PDF
Biomineralization of the Surface of PLGA-(ASP-PEG) Modified with the K_(16) and RGD-containing Peptide 被引量:1
7
作者 郝杰 郑启新 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2009年第5期768-771,共4页
K16 and RGD-containing peptide was used to modify the surface of three-dimensional PLGA-(ASP-PEG) matrix, then the modified PLGA-(ASP-PEG) was incubated in modified simulated body fluid (SBF). The biomineralizat... K16 and RGD-containing peptide was used to modify the surface of three-dimensional PLGA-(ASP-PEG) matrix, then the modified PLGA-(ASP-PEG) was incubated in modified simulated body fluid (SBF). The biomineralization of the modified PLGA- (ASP-PEG) was explored, and the peptide was synthesized with solid phase synthesis technology and linked cova-lently to PLGA-(ASP-PEG) through cross-linker (Sulfo-LC-SPDP), which was characterized with XPS. The modified PLGA-(ASP-PEG) (Experiment group, EG) and PLGA-(ASP-PEG) (Control group, CG) were all incubated into SBF for 10 d, and the growth of hydroxyapatite (HA) nanocrys-tals was confirmed with XRD, EDS and SEM. HPLC shows that peptide purity is 94.13%, while MS analysis shows that molecular value of peptide is 2741.26. Binding energy of the sulphur in EG was 164 eV is detected by XPS, and the ratio of carbon and sulphur is 99.746:0.1014. SEM analysis demonstrates the better growth of bonelike HA nanocrystals in EG than that in CG. The component of mineral in EG consisted mainly of hydroxyapatite containing low crystalline nanocrystals, and the Ca/P ratio is about 1.60, which is similar to that of natural bone, while the Ca/P ratio in CG is 1.52. PLGA-(ASP-PEG) modified with peptide provided enough functional groups for biomineralization, and possessed the bonelike structure. 展开更多
关键词 biomineralization PLGA hydroxyapatite (HA) PEPTIDE
下载PDF
Biomineralization in the La' erma Gold Deposit of the Western Qinling Mountains 被引量:1
8
作者 LIN Li and ZHU LidongDepartment of Geology, Chengdu Institute of Technology, Chengdu, Sichuan 610059 Zhang Yuxu Fei Zhenbi 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 1998年第1期65-76,共12页
Geological and geochemical studies and experiments on mineralization indicate that the source bed of the La' erma gold deposit in the south subbelt of the western Qinling Mountains is hydrothermal cherts in the Ca... Geological and geochemical studies and experiments on mineralization indicate that the source bed of the La' erma gold deposit in the south subbelt of the western Qinling Mountains is hydrothermal cherts in the Cambrian Taiyangding Group. Organic geochemical study of the cherts shows that the organic precursors intimately associated with gold are marine bacteria and algae. The gold content in chert,is positively correlated with the amount of bacterial and algal microfossils, and simulation experiments on biomineralization of modern bacteria and algae indicate that bacteria and algae played an important role in the formation of the La' erma gold deposit. 展开更多
关键词 biomineralization La' erma gold deposit Taiyangding Group source bed
下载PDF
Remnants of an Powerful Ancient “Dynasty”:Material Cycle and Biomineralization in Modern Seafloor Hydrothermal System 被引量:1
9
作者 SUN Zhilei CAO Hong +1 位作者 ZOU Mingliang ZHANG Xilin 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2016年第6期2287-2288,共2页
The origin of ancient banded iron formation (BIF) has remained unclear for a long time. How the precipitation process occurred and what the environmental condition was have been widely discussed among scientists, be... The origin of ancient banded iron formation (BIF) has remained unclear for a long time. How the precipitation process occurred and what the environmental condition was have been widely discussed among scientists, because the period when the major BIFs deposited (-2.8 to 1.8Ga) is the same time when biosphere and atmosphere significantly changed. Based on the discovery of modern seafloor hydrothermal vents, it is possible that reductive environment controlled by vent system is related to the environment where BIF was deposited. According to matter source. 展开更多
关键词 Remnants of an Powerful Ancient DYNASTY Material Cycle and biomineralization in Modern Seafloor Hydrothermal System
下载PDF
Biomineralization of Zinc-Phosphate-Based Nano Needles by Living Microalgae 被引量:1
10
作者 Giulia Santomauro Vesna Srot +4 位作者 Birgit Bussmann Peter A. van Aken Franz Brümmer Horst Strunk Joachim Bill 《Journal of Biomaterials and Nanobiotechnology》 2012年第3期362-370,共9页
Up to now, chemical synthesis routes only provide restricted opportunities for the formation of structured nano particles. In contrast, living microorganisms generate nano materials of well defined shapes by the preci... Up to now, chemical synthesis routes only provide restricted opportunities for the formation of structured nano particles. In contrast, living microorganisms generate nano materials of well defined shapes by the precise control of biomineralization. Here we reveal new principles for the generation of functional nano materials through the process of biomineralization. We used the detoxification mechanism of the unicellular alga Scenedesmus obliquus to generate a techno logically interesting zinc-phosphate-based nano material. The algae were incubated in media with a sublethal zinc concentration (6.53 mg Zn dm-3) for 4 weeks. Using BF-and ADF-STEM imaging combined with analytical XEDS we could show that nano needles containing phosphorus and zinc were formed inside the living cells. Further more, the cells incubated with zinc show a strong fluorescence. Our findings indicate that the algae used polyphosphate bodies for detoxification of the zinc ions, leading to the generation of intracellular zinc-phosphate-based nano needles. Beside the technological application of this material, the fluorescent cells can be used for labeling of e.g. biological probes. This new experimental protocol for the production of an inorganic functional material can be applied also for other substances. 展开更多
关键词 NANO NEEDLES biomineralization ZINC Phosphate MICROALGAE Fluorescence
下载PDF
A Chicken's Egg as a Reaction Vessel to Explore Biomineralization
11
作者 Tanmay Bera P. Ramachandrarao 《Journal of Bionic Engineering》 SCIE EI CSCD 2007年第3期133-141,共9页
Natural composites, formed through biomineralization, have highly ordered structures which have been aptly explored for functional applications. Though the role of organic phases has been well understood in biomineral... Natural composites, formed through biomineralization, have highly ordered structures which have been aptly explored for functional applications. Though the role of organic phases has been well understood in biomineralization, not enough attention has been paid to the role of bio-membranes which are often found encapsulating the chamber in which mineralization occurs. We have used the natural protein and semi-permeable membrane of chicken eggs to grow different materials such as ceramics, semi-metals and metals to understand the role of bio-membranes in biomineralization. We here report the successful biomimetic synthesis of calcite, cadmium sulphide, and silver having homogeneous morphologies. We have found that the membrane operates like a tuned gateway, playing a significant role in controlling the morphology of the inorganic crystals formed during biomineralization. 展开更多
关键词 biomimetics biomineralization bio-membranes proteins organic-inorganic interface EGGS
下载PDF
In vivo and in vitro biomineralization in the presence of the inner-shell film of pearl oyster
12
作者 YAN Zhenguang MENG Wei +5 位作者 LIU Zhengtao YANG Suwen LIU Xiaojun SUN Juan XIE Liping ZHANG Rongqing 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2011年第1期87-93,共7页
The inner shell surface is the biomineralization site in shell formation and an inner-shell film covers it. This surface is composed of two regions: an outer calcitic region and an inner aragonitic region. In this st... The inner shell surface is the biomineralization site in shell formation and an inner-shell film covers it. This surface is composed of two regions: an outer calcitic region and an inner aragonitic region. In this study, some amalgamated calcite crystals were found in the calcitic region and some aragonitic "imprints" were found in the central part of the aragonitic region. The "imprints" are probably the trace of mantle cells that adhered to the inner shell surface when the shell was produced. Furthermore, to build a novel in vitro biomineralization system, the inner-shell film was detached from the shell and introduced to the calcitic crystallization solution. Crystallization experiments showed that nacre proteins could induce aragonite crystals in the novel system but inhibited calcite growth in the absence of the inner-shell film. These data suggested that the inner-shell film may induce aragonite growth in vivo by combining nacre proteins. 展开更多
关键词 biomineralization inner shell surface inner-shell film NACRE Pinctada fucata
下载PDF
In Vitro Biomineralization of Glutaraldehyde Crosslinked Chitosan/Glutamic Acid Films
13
作者 冯芳 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2009年第1期9-14,共6页
In vitro biomineralization of glutaraldehyde crosslinked chitosan/glutamic acid films were studied. IR and ESCA (electron spectroscopy for chemical analysis) determinations confirm that chitosan and glutamic acid ar... In vitro biomineralization of glutaraldehyde crosslinked chitosan/glutamic acid films were studied. IR and ESCA (electron spectroscopy for chemical analysis) determinations confirm that chitosan and glutamic acid are successfully crosslinked by glutaraldehyde to form chitosan-glutamic acid surfaces. Composite films were soaked in saturated Ca(OH)2 solution for 8 d and then immersed in simulated body fluid (SBF) for more than 20 d. Morphological characterizations and structure of cal-cium phosphate coatings deposited on the films were studied by SEM, XRD, and EDAX (energy dispersive X-ray analysis). Initially, the treatment in SBF results in the formation of single-layer cal-cium phosphate particles over the film surface. As immersion time increases, further nucleation and growth produce the simulated calcium-carbonate hydroxyapatite coating. ICP results show Ca/P ratio of calcium phosphate coating is a function of SBF immersion time. The inducing of glutamic acid improves the biomineralization property of chitosan films. 展开更多
关键词 CHITOSAN biomineralization calcium phosphate glutamic acid
下载PDF
Biomimetic biomineralization nanoplatform-mediated differentiation therapy and phototherapy for cancer stem cell inhibition and antitumor immunity activation
14
作者 Shan Gao Meng Liu +7 位作者 Dongzhu Liu Xinru Kong Yuelin Fang Yingying Li Hang Wu Jianbo Ji Xiaoye Yang Guangxi Zhai 《Asian Journal of Pharmaceutical Sciences》 SCIE CAS 2023年第5期164-184,共21页
Growing evidence suggests that the presence of cancer stem cells(CSCs)is a major challenge in current tumor treatments,especially the transition from non-CSCs to differentiation of CSCs for evading conventional therap... Growing evidence suggests that the presence of cancer stem cells(CSCs)is a major challenge in current tumor treatments,especially the transition from non-CSCs to differentiation of CSCs for evading conventional therapies and driving metastasis.Here we propose a therapeutic strategy of synergistic differentiation therapy and phototherapy to induce differentiation of CSCs into mature tumor cells by differentiation inducers and synergistic elimination of them and normal cancer cells through phototherapy.In this work,we synthesized a biomimetic nanoplatform loaded with IR-780 and all-trans retinoic acid(ATRA)via biomineralization.This method can integrate aluminum ions into small-sized protein carriers to form nanoclusters,which undergo responsive degradation under acidic conditions and facilitate deep tumor penetration.With the help of CSC differentiation induced by ATRA,IR-780 inhibited the self-renewal of CSCs and cancer progression by generating hyperthermia and reactive oxygen species in a synergistic manner.Furthermore,ATRA can boost immunogenic cell death induced by phototherapy,thereby strongly causing a systemic anti-tumor immune response and efficiently eliminating CSCs and tumor cells.Taken together,this dual strategy represents a new paradigm of targeted eradication of CSCs and tumors by inducing CSC differentiation,improving photothermal therapy/photodynamic therapy and enhancing antitumor immunity. 展开更多
关键词 Cancer stem cells Differentiation therapy PHOTOTHERAPY biomineralization Immunogenic cell death
下载PDF
Removal of Au(III) from Aqueous Au(III) Solution Using Microbial Cells by Biosorption and Biomineralization
15
作者 Takehiko Tsuruta Ichiro Maeda 《Advances in Microbiology》 2021年第4期199-212,共14页
The demand for gold has increased in the medical and industrial fields. Therefore, recycling this element has become essential. Although gold recovery using microbes has been investigated, there is a dearth of these s... The demand for gold has increased in the medical and industrial fields. Therefore, recycling this element has become essential. Although gold recovery using microbes has been investigated, there is a dearth of these studies on identifying the species that have a high gold recovering ability. Herein, gold (III) removal by microbial cells was investigated to obtain basic information on gold (III) removal from aqueous systems by biosorption and biomineralization. High amounts of gold were removed from the solution containing hydrogen tetrachloroaurate (III) by the tested microbial species, which included bacteria, fungi and yeasts. However, relatively less gold was recovered by biosorption using gram-positive bacteria, fungi, and yeasts than that by gram-negative bacteria. Therefore, we first examined gold (III) removal by biosorption and biomineralization by <i>Pseudomonas saccharophila</i>, which was able to remove the largest amounts of gold (III). Incubation time and other factors affecting gold removal were then examined. <i>P. saccharophila</i> removed about half the amount of gold (III) by biosorption and the remaining half by biomineralization. 展开更多
关键词 Gold (III) Biosorption Gold (0) biomineralization MICROORGANISM Peudomonas saccharophila
下载PDF
Mechanisms and influencing factors of biomineralization based heavy metal remediation:A review
16
作者 Hanjiang Lai Xingzhi Ding +4 位作者 Mingjuan Cui Junjie Zheng Zhibo Chen Jialong Pei Jianwei Zhang 《Biogeotechnics》 2023年第3期77-86,共10页
Heavy metal contamination of soil and water is one of the most prominent environmental issues worldwide.Through bioaccumulation and biomagnification of the food chain,heavy metals can be enriched hundreds of times and... Heavy metal contamination of soil and water is one of the most prominent environmental issues worldwide.Through bioaccumulation and biomagnification of the food chain,heavy metals can be enriched hundreds of times and eventually enter the human body,posing a major threat to human health.Biomineralization has the greatest potential to become an efficient and environmentally friendly heavy metal remediation technology and has received much attention in recent decades.This review summarizes the latest progress of biomineralization technology on carbonate precipitation and phosphate precipitation in heavy metal remediation.Both microorganisms(including bacteria and fungi)and enzymes can induce carbonate and phosphate precipitation,converting the free heavy metal ions into insoluble salts.However,the mechanisms of the heavy metal remediation are significantly different.For example,urea hydrolysis,which occurs intracellularly when urease-producing bacteria(UPB)are used,is the most commonly used mechanism for carbonate precipitation based bioremediation.In contrast,phosphate solubilization by either enzymes or organic acids secreted by phosphate solubilizing bacteria(PSB)is extracellular,and both soluble and insoluble phosphorus can be decomposed by PSB.Moreover,some influencing factors such as the different species of microorganism,heavy metals and some environmental conditions that may affect the bioremediation of heavy metals were also summarized in this paper.The challenges of biomineralization based heavy metal remediation are also discussed.Based on the reviews of previous studies,a comprehensive understanding of heavy metal removal through microorganism can be increased,and thus promotes the applications of biomineralization technology in the treatment of large-scale heavy metal contaminated sites. 展开更多
关键词 Heavy metal contamination Bioremediation biomineralization Mechanisms Influencing factor
下载PDF
A critical review of biomineralization in environmental geotechnics:Applications,trends,and perspectives
17
作者 Yu Zhang Xinlei Hu +1 位作者 Yijie Wang Ningjun Jiang 《Biogeotechnics》 2023年第1期41-49,共9页
In this review paper,the applications of biomineralization in environmental geotechnics are analyzed.Three environmental geotechnics scenarios,namely heavy metal contamination immobilization and removal,waste and CO_(... In this review paper,the applications of biomineralization in environmental geotechnics are analyzed.Three environmental geotechnics scenarios,namely heavy metal contamination immobilization and removal,waste and CO_(2)containment,and recycled use of industrial byproducts,are discussed and evaluated regarding current trends and prospects.The biomineralization process,specifically the Microbially Induced Carbonate Precipitation(MICP)technology,is an effective solution for immobilizing heavy metals through co-precipitation with calcium carbonate,with successful results in cleaning up contaminated soils.The nature of biomineralization enhances earth material strength and decreases permeability,making it suitable for waste and CO_(2)containment.Additionally,using industrial byproducts in MICP technology can improve the physical,mechanical,and hydraulic properties of earth materials,making it a potential solution for efficient waste utilization.In conclusion,the applications of biomineralization in environmental geotechnics hold great promise for solving various environmental problems.However,further research is needed to better understand the control and consistency of biomineralization processes,the durability of biominerals,the scale of applications,and environmental concerns. 展开更多
关键词 biomineralization Environmental geotechnics Heavy metal immobilization Waste containment Industrial byproduct utilization
下载PDF
Enhancing biomineralization process efficiency with trained bacterial strains:A technical perspective
18
作者 Chang Zhao Vahab Toufigh +5 位作者 Jinxuan Zhang Yi Liu Wenjun Fan Xiang He Baofeng Cao Yang Xiao 《Biogeotechnics》 2023年第2期73-75,共3页
Microorganisms have been essential in the natural world for millions of years,contributing significantly to environmental interaction.It has been disoverd that some bacteria are potential in geotechnical and environm... Microorganisms have been essential in the natural world for millions of years,contributing significantly to environmental interaction.It has been disoverd that some bacteria are potential in geotechnical and environmental engineering due to their outstanding ability of biomineralization.Therefore,how to train bacteria as special and professional“workers”for biomineralization is increasingly a key topic in related research fields.This article briefly introduces the methods that are commonly utilized to improve the environmental adaptability and mineralization efficiency of bacteria,including microbial domestication,microbial mutation breeding,microbial targeted screening,and bio-stimulation,which make great implications to advance the field of biomineralization. 展开更多
关键词 biomineralization efficiency Depositional patterns Microbial trainning Bio-stimulation
下载PDF
Effect analysis of biomineralization for solidifying desert sands
19
作者 Linchang Miao Hengxing Wang +2 位作者 Xiaohao Sun Linyu Wu Guangcai Fan 《Biogeotechnics》 2024年第1期45-52,共8页
The sand-dust weather has become an environmental hazard in the world.However,it is still a challenge to control sandstorms and decrease sand-dust weather.The biomineralization technology for solidifying desert sands ... The sand-dust weather has become an environmental hazard in the world.However,it is still a challenge to control sandstorms and decrease sand-dust weather.The biomineralization technology for solidifying desert sands has been developed as a novel method in recent years.In this study,the wind erosion tests and verification tests of the sand solidification system were conducted via a series of laboratory experiments.The effects of sand barriers,injecting volume and concentration of the biochemical solution in the sandstorm protection were studied.Moreover,a field test of 60,000 square metres was conducted in the solidification area on both sides of the Wuma Highway in the Tengri Desert.The biomineralization technique was used to solidify sand to prevent the wind from blowing quicksand onto the newly built highway and causing accidents.Results demonstrated that the biomineralization sand solidification method had a good solidification==effect,improved the survival rate,and promoted the growth of plants in the desert.This innovative biomineralization technology is an environmentally responsible technology to control sandstorm disasters. 展开更多
关键词 Desertification Urease Solidification desert sand of biomineralization Combined solidification desert sand
下载PDF
An Injectable silk-based hydrogel as a novel biomineralization seedbed for critical-sized bone defect regeneration 被引量:2
20
作者 Yuhui Zhu Hao Gu +4 位作者 Jiawei Yang Anshuo Li Lingli Houh Mingliang Zhou Xinquan Jiang 《Bioactive Materials》 SCIE CSCD 2024年第5期274-290,共17页
The healing process of critical-sized bone defects urges for a suitable biomineralization environment. However, the unsatisfying repair outcome usually results from a disturbed intricate milieu and the lack of in situ... The healing process of critical-sized bone defects urges for a suitable biomineralization environment. However, the unsatisfying repair outcome usually results from a disturbed intricate milieu and the lack of in situ mineralization resources. In this work, we have developed a composite hydrogel that mimics the natural bone healing processes and serves as a seedbed for bone regeneration. The oxidized silk fibroin and fibrin are incorporated as rigid geogrids, and amorphous calcium phosphate (ACP) and platelet-rich plasma serve as the fertilizers and loam, respectively. Encouragingly, the seedbed hydrogel demonstrates excellent mechanical and biomineralization properties as a stable scaffold and promotes vascularized bone regeneration in vivo. Additionally, the seedbed serves a succinate-like function via the PI3K-Akt signaling pathway and subsequently orchestrates the mitochondrial calcium uptake, further converting the exogenous ACP into endogenous ACP. Additionally, the seedbed hydrogel realizes the succession of calcium resources and promotes the evolution of the biotemplate from fibrin to collagen. Therefore, our work has established a novel silk-based hydrogel that functions as an in-situ biomineralization seedbed, providing a new insight for critical-sized bone defect regeneration. 展开更多
关键词 Silk fibroin Bone regeneration HYDROGEL biomineralization Platelet-rich plasma
原文传递
上一页 1 2 7 下一页 到第
使用帮助 返回顶部