The observation on biophoton emission, free radical and toxicity of benzene to zebra fish and carp hepatic microsome has demonstrated that there is the corresponding relationship between them by means of 60 Coγ radio...The observation on biophoton emission, free radical and toxicity of benzene to zebra fish and carp hepatic microsome has demonstrated that there is the corresponding relationship between them by means of 60 Coγ radiolysis. Free radicals play a key role in this relationship. A common photon originates of two biosystems are the excited species including singlet and triplet molecules (1O2 and C=0) as well as hydrocyclohexadienyl radical.OH and so on. OH, to a certain extent, directly participates in photon emission and toxicity of benzene to aquatic biosystems.These are the conclusions, but these are also problems. With the solution of the latters,model established in this work could be expected that it will be favorable for the development of photon-toxicology.展开更多
LCM (life cycle management) is a systematic approach, mindset and culture that considers economic, social, and environmental factors among other factors in the decision making process throughout various business or ...LCM (life cycle management) is a systematic approach, mindset and culture that considers economic, social, and environmental factors among other factors in the decision making process throughout various business or organizational decisions that affect both inputs and outputs of a product or service life cycle. It is a product, process, or activity management system aimed at minimizing environmental and socio-economic burdens associated with an organization's product or process during its entire life cycle and value chain. LCM's application is gaining wider acceptance both in the corporate and governmental organizations as an approach to reduce ecological footprints and to improve the sustainability of human activities. But where and how can it be used in agricultural engineering applications? This study highlights the potential areas of LCM application in agricultural and allied sectors and how it can be utilized. The study revealed that LCM tools such as design for environment and life cycle analysis can be used to evaluate the environmental impacts of-and to improve the products, equipment, and structures produced by biosystems engineers as well as the processes used to generate them.展开更多
This paper describes the history of the harmonisation of agricultural/biosystems engineering degree study programs in Europe from 1989, when the need for this process was widely felt, until now, when this need was par...This paper describes the history of the harmonisation of agricultural/biosystems engineering degree study programs in Europe from 1989, when the need for this process was widely felt, until now, when this need was partly satisfied through the implementation of the projects of two EU funded thematic networks, i.e., USAEE-TN and ERABEE-TN. The objective of this paper is to contribute to promote, in each EU country and elsewhere, the process of harmonisation of agricultural/biosystems engineering degree study programs, and student and graduate mobility within the EU, as well as between the EU and the USA. At present, in Europe, this harmonisation process is aided by the key results of the projects of USAEE-TN, ERABEE-TN and POMSEBES. USAEE developed some core curricula, to be used as benchmarks for European agricultural/biosystems engineering degree study programs, and a web-based database of these study programs. ERABEE promoted the transition from agricultural engineering to biosystems engineering and established the recognition procedures of new European study programs in biosystems engineering. The EU-US POMSEBES consortium built up a platform for exchange of experiences and ideas between the USA and the EU, aimed at: enhancing the quality and linkage of research and education; establishing appropriate policy oriented measures; promoting compatible degree study programs in biosystems engineering, within the EU as well as between the EU and the USA.展开更多
The aim of this study is to determine the influence of tree litters on soil nutrients in a managed forest in southwestern Nigeria.Mono species tree clusters consisted of indigenous species:Gmelina arborea,Tectona gran...The aim of this study is to determine the influence of tree litters on soil nutrients in a managed forest in southwestern Nigeria.Mono species tree clusters consisted of indigenous species:Gmelina arborea,Tectona grandis,Leucaena leucocephala,Bambusa vulgaris,Treculia africana,Anogeissus leiocarpus were selected and analyzed for their litter and soil chemical properties at 0–5 and 15–30 cm.T.africana and T.grandis litters have the highest nutrients,while L.leucocephala and A.leiocarpus are the lowest.Soils under G.arborea,T.africana,and A.leiocarpus are more acidic due to lower calcium and magnesium contents but have higher manganese and sulphur levels.Tree litters improved soil nitrogen,phosphorous,and micro-nutrients but depleted potassium.Litter lignin and carbon appeared to hinder the release of some nutrients.Nitrogen,potassium and copper are concentrated in the topsoil while others nutrients are not differentiated with soil depth.There is a positive correlation between litter chemistry and soil chemical properties.It was concluded that tree litter chemistry differs according to species but determines soil reaction and nutrient content.The magnitude of the effect on soil properties is related to the quality of the organic litters.展开更多
Intracellular calcium ion concentration oscillation in a cell subjected to external noise and irradiated by an electromagnetic field is considered. The effects of the intensity E0, the polar angle θ and the frequency...Intracellular calcium ion concentration oscillation in a cell subjected to external noise and irradiated by an electromagnetic field is considered. The effects of the intensity E0, the polar angle θ and the frequency w of the external electric field on steady-state probability distribution and the mean Ca2+ concentration, respectively, are investigated by a numerical calculation method. The results indicate that (i) variation of w cannot affect the intracellular calcium oscillation; (ii) the steady-state probability distribution presents a meaningful modification due to the variations of E0 and 0, while variation of 0 does not affect the steady-state probability distribution under the condition of a small E0, and E0 cannot affect the steady-state probability distribution either when θ=π/2; (iii) the mean Ca2+ concentration increases as E0 increases when θ〈π/2 and, as 0 increases, it first increases and then decreases. However, it does not vary with E0 increasing when θ=π/2, but it increases with 0 increasing when E0 is small.展开更多
Metabolic modeling and machine learning(ML)are crucial components of the evolving next-generation tools in systems and synthetic biology,aiming to unravel the intricate relationship between genotype,phenotype,and the ...Metabolic modeling and machine learning(ML)are crucial components of the evolving next-generation tools in systems and synthetic biology,aiming to unravel the intricate relationship between genotype,phenotype,and the environment.Nonetheless,the comprehensive exploration of integrating these two frameworks,and fully harnessing the potential of fluxomic data,remains an unexplored territory.In this study,we present,rigorously evaluate,and compare ML-based techniques for data integration.The hybrid model revealed that the overexpression of six target genes and the knockout of seven target genes contribute to enhanced ethanol production.Specifically,we investigated the influence of succinate dehydrogenase(SDH)on ethanol biosynthesis in Saccharomyces cerevisiae through shake flask experiments.The findings indicate a noticeable increase in ethanol yield,ranging from 6%to 10%,in SDH subunit gene knockout strains compared to the wild-type strain.Moreover,in pursuit of a high-yielding strain for ethanol production,dual-gene deletion experiments were conducted targeting glycerol-3-phosphate dehydrogenase(GPD)and SDH.The results unequivocally demonstrate significant enhancements in ethanol production for the engineered strains Δsdh4Δgpd1,Δsdh5Δgpd1,Δsdh6Δgpd1,Δsdh4Δgpd2,Δsdh5Δgpd2,and Δsdh6Δgpd2,with improvements of 21.6%,27.9%,and 22.7%,respectively.Overall,the results highlighted that integrating mechanistic flux features substantially improves the prediction of gene knockout strains not accounted for in metabolic reconstructions.In addition,the finding in this study delivers valuable tools for comprehending and manipulating intricate phenotypes,thereby enhancing prediction accuracy and facilitating deeper insights into mechanistic aspects within the field of synthetic biology.展开更多
Human milk oligosaccharides(HMOs)are very distinctive components in human milk and are beneficial for infant health.Lacto-N-biose I(LNB)is the core structural unit of HMOs,which could be used for the synthesis of othe...Human milk oligosaccharides(HMOs)are very distinctive components in human milk and are beneficial for infant health.Lacto-N-biose I(LNB)is the core structural unit of HMOs,which could be used for the synthesis of other HMOs.In this study,an ATP-free in vitro synthetic enzymatic biosystem contained four thermostable enzymes(alpha-glucan phosphorylase from Thermococcus kodakarensis,UDP-glucose-hexose-1-phosphate uridylyltransferase from Thermotoga maritima,UDP-glucose 4-epimerase from T.maritima,lacto-N-biose phosphorylase from Clostridium thermobutyricum)were constructed for the biosynthesis of LNB from starch and N-acetylglucosamine(GlcNAc).Under the optimal conditions,0.75 g/L and 2.23 g/L LNB was produced from 1.1 g/L and 4.4 g/L GlcNAc and excess starch,with the molar yield of 39%and 29%based on the GlcNAc concentration,respectively,confirming the feasibility of this in vitro synthetic enzymatic biosystem for LNB synthesis and shedding light on the biosynthesis of other HMOs using LNB as the core structural unit from low cost polysaccharides.展开更多
Synthetic biology is an interdisciplinary field that takes top-down approaches to understand and engineer biological systems through design-build-test cycles. A number of advances in this relatively young field have g...Synthetic biology is an interdisciplinary field that takes top-down approaches to understand and engineer biological systems through design-build-test cycles. A number of advances in this relatively young field have greatly accelerated such engineering cycles. Specifically, various innovative tools were developed for in silico biosystems design, DNA de novo synthesis and assembly, construct verification, as well as metabolite analysis, which have laid a solid foundation for building biological foundries for rapid prototyping of improved or novel biosystems. This review summarizes the state-of-the-art technologies for synthetic biology and discusses the challenges to establish such biological foundries.展开更多
An emerging method for effectively improving the catalytic activity of metal oxide hybrids involves the creation of metal oxide interfaces for facilitating the activation of reagents. Here, we demonstrate that bilayer...An emerging method for effectively improving the catalytic activity of metal oxide hybrids involves the creation of metal oxide interfaces for facilitating the activation of reagents. Here, we demonstrate that bilayer vesicles formed from a hexavanadate cluster functionalized with two alkyl chains are highly efficient catalysts for the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) with H2O2 at room temperature, a widely used model reaction mimicking the activity of peroxidase in biological catalytic oxidation processes. Driven by hydrophobic interactions, the double-tailed hexavanadate-headed amphiphiles can self-assemble into bilayer vesicles and create hydrophobic domains that segregate the TMB chromogenic substrate. The reaction of TMB with H2O2 takes place at the interface of the hydrophilic and hydrophobic domains, where the reagents also make contact with the catalytic hexavanadate clusters, and it is approximately two times more efficient compared with the reactions carried out with the corresponding unassembled systems. Moreover, the assembled vesicular system possesses affinity for TMB comparable to that of reported noble metal mimic nanomaterials, as well as a higher maximum reaction rate.展开更多
Cell-free synthetic enzymatic biosystem is emerging to expand the traditional biotechnological mode by utilizing a number of purified/partially purified enzymes and coenzymes in a single reaction vessel for the produc...Cell-free synthetic enzymatic biosystem is emerging to expand the traditional biotechnological mode by utilizing a number of purified/partially purified enzymes and coenzymes in a single reaction vessel for the production of desired products from low-cost substrates.Here,a cell-free synthetic biosystem containing minimized number of reactions was designed for the conversion of D-glucose to L-lactate via pyruvate.This NADH-balanced biosystem was comprised of only 5 thermophilic enzymes without ATP supplementation.After optimization of enzyme loading amounts,buffer concentration and cofactor concentration,D-glucose was converted to L-lactate with a product yield of∼90%.Our study has provided an emerging platform with potentials in producing pyruvatederived chemicals,and may promote the development of cell-free synthetic enzymatic biosystems for biomanufacturing.展开更多
文摘The observation on biophoton emission, free radical and toxicity of benzene to zebra fish and carp hepatic microsome has demonstrated that there is the corresponding relationship between them by means of 60 Coγ radiolysis. Free radicals play a key role in this relationship. A common photon originates of two biosystems are the excited species including singlet and triplet molecules (1O2 and C=0) as well as hydrocyclohexadienyl radical.OH and so on. OH, to a certain extent, directly participates in photon emission and toxicity of benzene to aquatic biosystems.These are the conclusions, but these are also problems. With the solution of the latters,model established in this work could be expected that it will be favorable for the development of photon-toxicology.
文摘LCM (life cycle management) is a systematic approach, mindset and culture that considers economic, social, and environmental factors among other factors in the decision making process throughout various business or organizational decisions that affect both inputs and outputs of a product or service life cycle. It is a product, process, or activity management system aimed at minimizing environmental and socio-economic burdens associated with an organization's product or process during its entire life cycle and value chain. LCM's application is gaining wider acceptance both in the corporate and governmental organizations as an approach to reduce ecological footprints and to improve the sustainability of human activities. But where and how can it be used in agricultural engineering applications? This study highlights the potential areas of LCM application in agricultural and allied sectors and how it can be utilized. The study revealed that LCM tools such as design for environment and life cycle analysis can be used to evaluate the environmental impacts of-and to improve the products, equipment, and structures produced by biosystems engineers as well as the processes used to generate them.
文摘This paper describes the history of the harmonisation of agricultural/biosystems engineering degree study programs in Europe from 1989, when the need for this process was widely felt, until now, when this need was partly satisfied through the implementation of the projects of two EU funded thematic networks, i.e., USAEE-TN and ERABEE-TN. The objective of this paper is to contribute to promote, in each EU country and elsewhere, the process of harmonisation of agricultural/biosystems engineering degree study programs, and student and graduate mobility within the EU, as well as between the EU and the USA. At present, in Europe, this harmonisation process is aided by the key results of the projects of USAEE-TN, ERABEE-TN and POMSEBES. USAEE developed some core curricula, to be used as benchmarks for European agricultural/biosystems engineering degree study programs, and a web-based database of these study programs. ERABEE promoted the transition from agricultural engineering to biosystems engineering and established the recognition procedures of new European study programs in biosystems engineering. The EU-US POMSEBES consortium built up a platform for exchange of experiences and ideas between the USA and the EU, aimed at: enhancing the quality and linkage of research and education; establishing appropriate policy oriented measures; promoting compatible degree study programs in biosystems engineering, within the EU as well as between the EU and the USA.
文摘The aim of this study is to determine the influence of tree litters on soil nutrients in a managed forest in southwestern Nigeria.Mono species tree clusters consisted of indigenous species:Gmelina arborea,Tectona grandis,Leucaena leucocephala,Bambusa vulgaris,Treculia africana,Anogeissus leiocarpus were selected and analyzed for their litter and soil chemical properties at 0–5 and 15–30 cm.T.africana and T.grandis litters have the highest nutrients,while L.leucocephala and A.leiocarpus are the lowest.Soils under G.arborea,T.africana,and A.leiocarpus are more acidic due to lower calcium and magnesium contents but have higher manganese and sulphur levels.Tree litters improved soil nitrogen,phosphorous,and micro-nutrients but depleted potassium.Litter lignin and carbon appeared to hinder the release of some nutrients.Nitrogen,potassium and copper are concentrated in the topsoil while others nutrients are not differentiated with soil depth.There is a positive correlation between litter chemistry and soil chemical properties.It was concluded that tree litter chemistry differs according to species but determines soil reaction and nutrient content.The magnitude of the effect on soil properties is related to the quality of the organic litters.
基金supported by the National Natural Science Foundation of China (Grant No. 10865006)the Science Foundation of Yunnan University,China (Grant No. 2009A001Z)
文摘Intracellular calcium ion concentration oscillation in a cell subjected to external noise and irradiated by an electromagnetic field is considered. The effects of the intensity E0, the polar angle θ and the frequency w of the external electric field on steady-state probability distribution and the mean Ca2+ concentration, respectively, are investigated by a numerical calculation method. The results indicate that (i) variation of w cannot affect the intracellular calcium oscillation; (ii) the steady-state probability distribution presents a meaningful modification due to the variations of E0 and 0, while variation of 0 does not affect the steady-state probability distribution under the condition of a small E0, and E0 cannot affect the steady-state probability distribution either when θ=π/2; (iii) the mean Ca2+ concentration increases as E0 increases when θ〈π/2 and, as 0 increases, it first increases and then decreases. However, it does not vary with E0 increasing when θ=π/2, but it increases with 0 increasing when E0 is small.
基金financially supported by the National Natural Science Foundation of China(Grant NO.32071461)the National Key Research and Development Program of China(Grant NO.2019YFA0904300).
文摘Metabolic modeling and machine learning(ML)are crucial components of the evolving next-generation tools in systems and synthetic biology,aiming to unravel the intricate relationship between genotype,phenotype,and the environment.Nonetheless,the comprehensive exploration of integrating these two frameworks,and fully harnessing the potential of fluxomic data,remains an unexplored territory.In this study,we present,rigorously evaluate,and compare ML-based techniques for data integration.The hybrid model revealed that the overexpression of six target genes and the knockout of seven target genes contribute to enhanced ethanol production.Specifically,we investigated the influence of succinate dehydrogenase(SDH)on ethanol biosynthesis in Saccharomyces cerevisiae through shake flask experiments.The findings indicate a noticeable increase in ethanol yield,ranging from 6%to 10%,in SDH subunit gene knockout strains compared to the wild-type strain.Moreover,in pursuit of a high-yielding strain for ethanol production,dual-gene deletion experiments were conducted targeting glycerol-3-phosphate dehydrogenase(GPD)and SDH.The results unequivocally demonstrate significant enhancements in ethanol production for the engineered strains Δsdh4Δgpd1,Δsdh5Δgpd1,Δsdh6Δgpd1,Δsdh4Δgpd2,Δsdh5Δgpd2,and Δsdh6Δgpd2,with improvements of 21.6%,27.9%,and 22.7%,respectively.Overall,the results highlighted that integrating mechanistic flux features substantially improves the prediction of gene knockout strains not accounted for in metabolic reconstructions.In addition,the finding in this study delivers valuable tools for comprehending and manipulating intricate phenotypes,thereby enhancing prediction accuracy and facilitating deeper insights into mechanistic aspects within the field of synthetic biology.
基金the National Key Research and Development Program of China(2021YFC2102300)the National Natural Science Foundation of China(Grant number 32022044)the cooperation fund with Shandong Runde Biotechnology Co.,LTD.
文摘Human milk oligosaccharides(HMOs)are very distinctive components in human milk and are beneficial for infant health.Lacto-N-biose I(LNB)is the core structural unit of HMOs,which could be used for the synthesis of other HMOs.In this study,an ATP-free in vitro synthetic enzymatic biosystem contained four thermostable enzymes(alpha-glucan phosphorylase from Thermococcus kodakarensis,UDP-glucose-hexose-1-phosphate uridylyltransferase from Thermotoga maritima,UDP-glucose 4-epimerase from T.maritima,lacto-N-biose phosphorylase from Clostridium thermobutyricum)were constructed for the biosynthesis of LNB from starch and N-acetylglucosamine(GlcNAc).Under the optimal conditions,0.75 g/L and 2.23 g/L LNB was produced from 1.1 g/L and 4.4 g/L GlcNAc and excess starch,with the molar yield of 39%and 29%based on the GlcNAc concentration,respectively,confirming the feasibility of this in vitro synthetic enzymatic biosystem for LNB synthesis and shedding light on the biosynthesis of other HMOs using LNB as the core structural unit from low cost polysaccharides.
基金the National Institutes of Health(GM077596)the National Academies Keck Futures Initiative on Synthetic Biology,Defense Advanced Research Program Agency,Roy J.Carver Charitable TrustInstitute for Genomic Biology at the University of Illinois at Urbana-Champaign for financial support in our development and application of DNA assembly technologies
文摘Synthetic biology is an interdisciplinary field that takes top-down approaches to understand and engineer biological systems through design-build-test cycles. A number of advances in this relatively young field have greatly accelerated such engineering cycles. Specifically, various innovative tools were developed for in silico biosystems design, DNA de novo synthesis and assembly, construct verification, as well as metabolite analysis, which have laid a solid foundation for building biological foundries for rapid prototyping of improved or novel biosystems. This review summarizes the state-of-the-art technologies for synthetic biology and discusses the challenges to establish such biological foundries.
基金We gratefully acknowledge the financially support by the National Natural Science Foundation of China (Nos. 21631007, 21401050, 21471087 and 21271068), Beijing Natural Science Foundation (No. 2164063), China Postdoctoral Science Foundation (No. 2014M560948), the State Key Laboratory of Natural and Biomimetic Drugs (No. K20160202), the National Natural Science Foundation of Hubei Province (No. 2015CFA131) and Wuhan Applied Basic Research Program (No. 2014010101010020). T. B. L. acknowledges support from the National Science Foundation (No. CHE1607138) and the University of Akron.
文摘An emerging method for effectively improving the catalytic activity of metal oxide hybrids involves the creation of metal oxide interfaces for facilitating the activation of reagents. Here, we demonstrate that bilayer vesicles formed from a hexavanadate cluster functionalized with two alkyl chains are highly efficient catalysts for the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) with H2O2 at room temperature, a widely used model reaction mimicking the activity of peroxidase in biological catalytic oxidation processes. Driven by hydrophobic interactions, the double-tailed hexavanadate-headed amphiphiles can self-assemble into bilayer vesicles and create hydrophobic domains that segregate the TMB chromogenic substrate. The reaction of TMB with H2O2 takes place at the interface of the hydrophilic and hydrophobic domains, where the reagents also make contact with the catalytic hexavanadate clusters, and it is approximately two times more efficient compared with the reactions carried out with the corresponding unassembled systems. Moreover, the assembled vesicular system possesses affinity for TMB comparable to that of reported noble metal mimic nanomaterials, as well as a higher maximum reaction rate.
文摘7900HT Fast Real-Time PCR可以在35分钟完成96孔板的PCR反应。缩短了加热循环时间,增加了研究人员的工作效率。这套系统包括一个让使用者可以互换的Fast PCR循环模块,一个qMan Fast Universal PCR Master Mix主机和Optical 96-Well Fast Thermal Cycling Hates快速热循环板。
基金the Key Research Program of the Chinese Academy of Sciences(Grant No.ZDRW-ZS-2016-3)National Natural Science Foundation of China(Grant No.31600636).
文摘Cell-free synthetic enzymatic biosystem is emerging to expand the traditional biotechnological mode by utilizing a number of purified/partially purified enzymes and coenzymes in a single reaction vessel for the production of desired products from low-cost substrates.Here,a cell-free synthetic biosystem containing minimized number of reactions was designed for the conversion of D-glucose to L-lactate via pyruvate.This NADH-balanced biosystem was comprised of only 5 thermophilic enzymes without ATP supplementation.After optimization of enzyme loading amounts,buffer concentration and cofactor concentration,D-glucose was converted to L-lactate with a product yield of∼90%.Our study has provided an emerging platform with potentials in producing pyruvatederived chemicals,and may promote the development of cell-free synthetic enzymatic biosystems for biomanufacturing.