AIM: To investigate whether bis (7)-tacrine, a multifunctional drug, inhibits N-methyl-D-aspartate (NMDA) -activated current in retinal ganglion cells (RGC) and provides neuroprotection against retinal cell damage. ME...AIM: To investigate whether bis (7)-tacrine, a multifunctional drug, inhibits N-methyl-D-aspartate (NMDA) -activated current in retinal ganglion cells (RGC) and provides neuroprotection against retinal cell damage. METHODS: Purified RGC cultures were obtained from retinas of 1-3 days old Sprague-Dawley (SD) rats, following a two-step immunopanning procedure. After 7 days of cultivation, the inhibition of NMDA-activated current by bis(7) -tacrine was measured by using patch-clamp recording techniques. In animal experiments, RGCs were damaged after intravitreal injection of NMDA (5 mu L, 40nmol) in adult rats. Bis (7)-tacrine(0.05, 0.1, 0.2mg/kg) or memantine(20mg/kg) was intraperitoneal administered to the rats fifteen minutes before intravitreally injection of NMDA. RGC damage was analyzed by histologic techniques, TUNEL and retrograde labeling techniques. RESULTS: Whole-cell patch-clamp recordings demonstrated that NMDA (30 mu mol/L) resulted in approximately -50 pA inward currents that were blocked by bis (7)-tacrine (1 mu mol/L). Histological examination and retrograde labeling analysis revealed that bis (7)-tacrine induced a significant neuroprotective effect against NMDA-induced cell damage 7 days after NMDA injection. TUNEL staining showed that pretreatment with bis(7)-tacrine was effective in ameliorating NMDA-induced apoptotic cell loss in the retinal ganglion cell layer 18 hours after injection. CONCLUSION: Bis (7)-tacrine possesses remarkable neuroprotective activities against retinal excitotoxicity through inhibition of NMDA receptors.展开更多
The effects of bis(7) tacrine, a novel dimeric acetylcholinesterase (AChE) inhibitor, on glutamate induced cell injury were investigated in primary cerebral cortical neurons of rats. Exposure of cultured neurons (1...The effects of bis(7) tacrine, a novel dimeric acetylcholinesterase (AChE) inhibitor, on glutamate induced cell injury were investigated in primary cerebral cortical neurons of rats. Exposure of cultured neurons (12 days after plating) to 0.5 mmol/L glutamate for 30 min resulted in significant cell damage. Pretreatment with bis(7) tacrine (0.03 1.0 μmol/L) reduced the glutamate induced neurotoxicity in a concentration dependent manner and the maximal response was seen at 1 μmol/L with approximately 30% protection. A receptor binding assay showed that bis(7) tacrine can completely displace MK 801 binding to rat cortical membrane with an IC 50 of 0.57 μmol/L. These findings suggest that bis(7) tacrine can directly interact with N methyl D aspartate receptor channel complex, which may contribute to the inhibitor's protective effects against glutamate induced excitotoxicity. Thus, it is possible that anti glutamate/anti AChE synergism is responsible for potentially better Alzheimer's therapy of bis(7) tacrine relative to tacrine.展开更多
The effects ofbis(7)-tacrine, a novel acetylcholinesterase inhibitor, on cognitive impairment and neuronal degeneration induced by permanent ligation of bilateral common carotid arteries (2VO) were investigated using ...The effects ofbis(7)-tacrine, a novel acetylcholinesterase inhibitor, on cognitive impairment and neuronal degeneration induced by permanent ligation of bilateral common carotid arteries (2VO) were investigated using the Morris water maze in rats. Once daily oral administration ofbis(7)-tacrine (0.025, 0.05 and 0.1 mg?kg?1) was started 14 days after 2VO operation. Over a three-week treatmentbis(7)-tacrine effectively reversed 2VO-induced spatial memory deficits in a dose-dependent fashion. Furthermore, histological observation showedbis(7)-tacrine decreased the neuropathological changes in the 2VO rats brain. These results suggest thatbis(7)-tacrine has therapeutic potential for the treatment of dementia caused by chronic cerebral hypoperfusion.展开更多
In normal rat forebrain, the NR1/NR2A and NR1/NR2B dimmers are the main constitutional forms of NMDA receptors. The present study was carried out to determine the functional properties of the heteromeric NMDA receptor...In normal rat forebrain, the NR1/NR2A and NR1/NR2B dimmers are the main constitutional forms of NMDA receptors. The present study was carried out to determine the functional properties of the heteromeric NMDA receptor subunits and their inhibition by bis(7)-tacrine (B7T). Rat NR1, NR2A and NR2B cDNAs were transfected into human embryonic kidney 293 cells (HEK-293).The inhibition of NMDA-activated currents by B7T was detected in HEK-293 cell expressing NR1/NR2A or NR1/NR2B receptors by using whole-cell patch-clamp techniques. The results showed that in HEK-293 cells expressing NR1/NR2A receptor, 1μmol/L B7T inhibited 30μmol/L NMDA- and 1000μmol/L NMDA-activated steady-state currents by 46% and 40%, respectively (P>0.05; n=5), suggesting that the inhibition of B7T on NR1/NR2A receptor doesn’t depend on NMDA concentration, which is consistent with a non-competitive mechanism of inhibition. But for the NR1/NR2B receptor, 1μmol/L B7T inhibited 30μmol/L NMDA- and 1000 μmol/L NMDA-activated steady-state currents by 61% and 13%, re-spectively (P<0.05; n=6), showing that B7T appears to be competitive with NMDA. In addition, simultaneous application of 1μmol/L B7T and 1000μmol/L NMDA produced a moderate inhibition of peak NMDA-activated current, followed by a gradual decline of the current to a steady state. However, the gradual onset of inhibition produced by B7T applied simultaneously with NMDA was eliminated when B7T was given 5s before NMDA. These results suggested that B7T inhibition of NMDA current mediated by NR1/NR2B receptor was slow onset, and it did not depend on the presence of the agonist. With holding potentials ranging from -50 to +50 mV, the B7T inhibition rate of NMDA currents didn’t change significantly, and neither did the reversal potential. We are led to conclude that the NR1/NR2B recombinant receptor can serve as a very useful model for studying the molecular mechanism of NMDA receptor inhibition by B7T.展开更多
This study investigated the influence of the addition of Al to a Mg-7Bi(B7,wt%)alloy,particularly its recrystallization behavior during extrusion and its resulting mechanical properties.The addition of 2 wt%Al to the ...This study investigated the influence of the addition of Al to a Mg-7Bi(B7,wt%)alloy,particularly its recrystallization behavior during extrusion and its resulting mechanical properties.The addition of 2 wt%Al to the B7 alloy resulted in a lower grain size,a reduction in the number density of fine Mg3Bi2 particles,and a higher area fraction of relatively coarse Mg3Bi2 particles in the extrusion billet.These microstructural changes increased the nucleation sites for recrystallization,reduced the Zener pinning effect,and enhanced particle-stimulated nucleation,all of which promoted dynamic recrystallization behavior during extrusion.As a result,the area fraction of recrystallized grains in the extruded alloy increased from 77%to 94%.The extruded B7 alloy exhibited a strong<10-10>fiber texture,whereas the extruded Mg-7Bi-2Al(BA72)alloy had a weak<10-10>-<2-1-10>texture,which was attributed to the minimal presence of unrecrystallized grains and the dispersed orientation of the recrystallized grains.The tensile yield strength(TYS)of the extruded BA72 alloy was higher than that of the extruded B7 alloy(170 and 124 MPa,respectively),which resulted from the enhanced grain-boundary and solid-solution strengthening effects.The tensile elongation(EL)of the BA72 alloy also exceeded that of the B7 alloy(20.3%and 6.1%,respectively),the result of the uniform formation of fine twins under tension in the former and the formation of a few coarse twins among the unrecrystallized grains in the latter.Consequently,the addition of a small amount of Al to the B7 alloy significantly improved both the strength and ductility of the extruded alloy,resulting in a remarkable increase in the product of the TYS and EL from 756 to 3451 MPa%and expanding its potential range of applications as a lightweight extruded structural component.展开更多
Bis[1-hydroxyalkylbenzo]-21-crown-7 (A-C) have been synthesized by ) two-step reactions from dibenzo-21-crown-7 (DB21C7). Extraction of cesium cation from nitric acid solutions by A-C has been investigated in nitromet...Bis[1-hydroxyalkylbenzo]-21-crown-7 (A-C) have been synthesized by ) two-step reactions from dibenzo-21-crown-7 (DB21C7). Extraction of cesium cation from nitric acid solutions by A-C has been investigated in nitromethane. Under the conditions of various concentration of HNO3 or NaNO3, the extractabilities of A and B were superior to that of DB21C7.展开更多
Bis (7- diethylaminocoumarin) ketone- 3(DACK) and diphenyliodonium salt (DPIO)combination as an effective photoinitiation system for radical polymerization has been investigated. The sensitized photolysis of DACK/DPIO...Bis (7- diethylaminocoumarin) ketone- 3(DACK) and diphenyliodonium salt (DPIO)combination as an effective photoinitiation system for radical polymerization has been investigated. The sensitized photolysis of DACK/DPIO leads to bleaching of DACK and decomposition of DPIO to generate initiating radical species. The electron transfer sensitization occurs mainly from the triplet state of DACK. The photobleaching obeyed a second-order kinetics and the rate constant was evaluated to be 31.3mol^(-1)·1·s^(-1) Photopolymerization of MMA initiated by DACK/DPIO was carried out in acetonitrile solution. The polymerization rate was found to be proportional to the concentration of DACK, DPIO and MMA with the exponents of 0.34, 0.40 and 1.0 respectively. The initiated efficiency is comparable to those of small molecular ketones.The sensitized photoinitiation mechanism has been discussed.展开更多
基金National Natural Science Foundation of China (No.81000380H1204)Natural Science Foundation of Hubei Province,China (No.2008CDA053)Scientific Research Fund of the Ministry of Health,Hubei Province,China (No.QJX2010-53)
文摘AIM: To investigate whether bis (7)-tacrine, a multifunctional drug, inhibits N-methyl-D-aspartate (NMDA) -activated current in retinal ganglion cells (RGC) and provides neuroprotection against retinal cell damage. METHODS: Purified RGC cultures were obtained from retinas of 1-3 days old Sprague-Dawley (SD) rats, following a two-step immunopanning procedure. After 7 days of cultivation, the inhibition of NMDA-activated current by bis(7) -tacrine was measured by using patch-clamp recording techniques. In animal experiments, RGCs were damaged after intravitreal injection of NMDA (5 mu L, 40nmol) in adult rats. Bis (7)-tacrine(0.05, 0.1, 0.2mg/kg) or memantine(20mg/kg) was intraperitoneal administered to the rats fifteen minutes before intravitreally injection of NMDA. RGC damage was analyzed by histologic techniques, TUNEL and retrograde labeling techniques. RESULTS: Whole-cell patch-clamp recordings demonstrated that NMDA (30 mu mol/L) resulted in approximately -50 pA inward currents that were blocked by bis (7)-tacrine (1 mu mol/L). Histological examination and retrograde labeling analysis revealed that bis (7)-tacrine induced a significant neuroprotective effect against NMDA-induced cell damage 7 days after NMDA injection. TUNEL staining showed that pretreatment with bis(7)-tacrine was effective in ameliorating NMDA-induced apoptotic cell loss in the retinal ganglion cell layer 18 hours after injection. CONCLUSION: Bis (7)-tacrine possesses remarkable neuroprotective activities against retinal excitotoxicity through inhibition of NMDA receptors.
文摘The effects of bis(7) tacrine, a novel dimeric acetylcholinesterase (AChE) inhibitor, on glutamate induced cell injury were investigated in primary cerebral cortical neurons of rats. Exposure of cultured neurons (12 days after plating) to 0.5 mmol/L glutamate for 30 min resulted in significant cell damage. Pretreatment with bis(7) tacrine (0.03 1.0 μmol/L) reduced the glutamate induced neurotoxicity in a concentration dependent manner and the maximal response was seen at 1 μmol/L with approximately 30% protection. A receptor binding assay showed that bis(7) tacrine can completely displace MK 801 binding to rat cortical membrane with an IC 50 of 0.57 μmol/L. These findings suggest that bis(7) tacrine can directly interact with N methyl D aspartate receptor channel complex, which may contribute to the inhibitor's protective effects against glutamate induced excitotoxicity. Thus, it is possible that anti glutamate/anti AChE synergism is responsible for potentially better Alzheimer's therapy of bis(7) tacrine relative to tacrine.
文摘The effects ofbis(7)-tacrine, a novel acetylcholinesterase inhibitor, on cognitive impairment and neuronal degeneration induced by permanent ligation of bilateral common carotid arteries (2VO) were investigated using the Morris water maze in rats. Once daily oral administration ofbis(7)-tacrine (0.025, 0.05 and 0.1 mg?kg?1) was started 14 days after 2VO operation. Over a three-week treatmentbis(7)-tacrine effectively reversed 2VO-induced spatial memory deficits in a dose-dependent fashion. Furthermore, histological observation showedbis(7)-tacrine decreased the neuropathological changes in the 2VO rats brain. These results suggest thatbis(7)-tacrine has therapeutic potential for the treatment of dementia caused by chronic cerebral hypoperfusion.
基金supported by grants from the National Natural Science Foundation of China(No. 30970927)the Natural Science Foundation of Hubei Province, China(No.2008CDA053)the Wuhan Science and Technology Foundation(Nos.200970634270,201250499145-27 and 20115069-9189-23)
文摘In normal rat forebrain, the NR1/NR2A and NR1/NR2B dimmers are the main constitutional forms of NMDA receptors. The present study was carried out to determine the functional properties of the heteromeric NMDA receptor subunits and their inhibition by bis(7)-tacrine (B7T). Rat NR1, NR2A and NR2B cDNAs were transfected into human embryonic kidney 293 cells (HEK-293).The inhibition of NMDA-activated currents by B7T was detected in HEK-293 cell expressing NR1/NR2A or NR1/NR2B receptors by using whole-cell patch-clamp techniques. The results showed that in HEK-293 cells expressing NR1/NR2A receptor, 1μmol/L B7T inhibited 30μmol/L NMDA- and 1000μmol/L NMDA-activated steady-state currents by 46% and 40%, respectively (P>0.05; n=5), suggesting that the inhibition of B7T on NR1/NR2A receptor doesn’t depend on NMDA concentration, which is consistent with a non-competitive mechanism of inhibition. But for the NR1/NR2B receptor, 1μmol/L B7T inhibited 30μmol/L NMDA- and 1000 μmol/L NMDA-activated steady-state currents by 61% and 13%, re-spectively (P<0.05; n=6), showing that B7T appears to be competitive with NMDA. In addition, simultaneous application of 1μmol/L B7T and 1000μmol/L NMDA produced a moderate inhibition of peak NMDA-activated current, followed by a gradual decline of the current to a steady state. However, the gradual onset of inhibition produced by B7T applied simultaneously with NMDA was eliminated when B7T was given 5s before NMDA. These results suggested that B7T inhibition of NMDA current mediated by NR1/NR2B receptor was slow onset, and it did not depend on the presence of the agonist. With holding potentials ranging from -50 to +50 mV, the B7T inhibition rate of NMDA currents didn’t change significantly, and neither did the reversal potential. We are led to conclude that the NR1/NR2B recombinant receptor can serve as a very useful model for studying the molecular mechanism of NMDA receptor inhibition by B7T.
基金supported by the Materials and Components Technology Development Program(No.20024843)funded by the Ministry of Trade,Industry,and Energy(MOTIE,South Korea)+1 种基金the National Research Foundation of Korea(NRF)grant(No.RS-2023-00244478)funded by the Ministry of Science,ICT,and Future Planning(MSIP,South Korea).
文摘This study investigated the influence of the addition of Al to a Mg-7Bi(B7,wt%)alloy,particularly its recrystallization behavior during extrusion and its resulting mechanical properties.The addition of 2 wt%Al to the B7 alloy resulted in a lower grain size,a reduction in the number density of fine Mg3Bi2 particles,and a higher area fraction of relatively coarse Mg3Bi2 particles in the extrusion billet.These microstructural changes increased the nucleation sites for recrystallization,reduced the Zener pinning effect,and enhanced particle-stimulated nucleation,all of which promoted dynamic recrystallization behavior during extrusion.As a result,the area fraction of recrystallized grains in the extruded alloy increased from 77%to 94%.The extruded B7 alloy exhibited a strong<10-10>fiber texture,whereas the extruded Mg-7Bi-2Al(BA72)alloy had a weak<10-10>-<2-1-10>texture,which was attributed to the minimal presence of unrecrystallized grains and the dispersed orientation of the recrystallized grains.The tensile yield strength(TYS)of the extruded BA72 alloy was higher than that of the extruded B7 alloy(170 and 124 MPa,respectively),which resulted from the enhanced grain-boundary and solid-solution strengthening effects.The tensile elongation(EL)of the BA72 alloy also exceeded that of the B7 alloy(20.3%and 6.1%,respectively),the result of the uniform formation of fine twins under tension in the former and the formation of a few coarse twins among the unrecrystallized grains in the latter.Consequently,the addition of a small amount of Al to the B7 alloy significantly improved both the strength and ductility of the extruded alloy,resulting in a remarkable increase in the product of the TYS and EL from 756 to 3451 MPa%and expanding its potential range of applications as a lightweight extruded structural component.
文摘Bis[1-hydroxyalkylbenzo]-21-crown-7 (A-C) have been synthesized by ) two-step reactions from dibenzo-21-crown-7 (DB21C7). Extraction of cesium cation from nitric acid solutions by A-C has been investigated in nitromethane. Under the conditions of various concentration of HNO3 or NaNO3, the extractabilities of A and B were superior to that of DB21C7.
文摘Bis (7- diethylaminocoumarin) ketone- 3(DACK) and diphenyliodonium salt (DPIO)combination as an effective photoinitiation system for radical polymerization has been investigated. The sensitized photolysis of DACK/DPIO leads to bleaching of DACK and decomposition of DPIO to generate initiating radical species. The electron transfer sensitization occurs mainly from the triplet state of DACK. The photobleaching obeyed a second-order kinetics and the rate constant was evaluated to be 31.3mol^(-1)·1·s^(-1) Photopolymerization of MMA initiated by DACK/DPIO was carried out in acetonitrile solution. The polymerization rate was found to be proportional to the concentration of DACK, DPIO and MMA with the exponents of 0.34, 0.40 and 1.0 respectively. The initiated efficiency is comparable to those of small molecular ketones.The sensitized photoinitiation mechanism has been discussed.
基金Project supported by the Talent Training Funds of Beijing (No. 20051D0501501)the Funding Project for Academic HumanResources Development in Institutions of Higher Learning under the Jurisdiction of Beijing MunicipalityBeijing Natural Science Foundation (No.2073021)