Cassava root is shortly preserved after harvesting due to its tanning and rapid physiological decomposition. Consequently, the commercial value is reduced and the craving of its finishes products. With an aim of impro...Cassava root is shortly preserved after harvesting due to its tanning and rapid physiological decomposition. Consequently, the commercial value is reduced and the craving of its finishes products. With an aim of improving physiological quality, post harvest food value “the effects of bleaching and conservation in silo-pits were evaluated. Four (04) varieties of cassava: Bocou1, Bocou2, Bocou3 and Yavo were collected fresh and healthy in 13 months of maturity. They were subjected to a bleaching (65°C /15 - 30 s) followed by a kinetic conservation (7 days of intervals) in silo-pit (1 × 0.6 × 0.5 m). Results show that Bocou2 variety has the high proteins content (2.64% ± 0.01%), followed by hydrocyanic acid (8.21 ± 0.01 mg/100 g) and total carotenoids (26.7 μg/100 g). The conservation influences positively the protein content, reducing sugars content, the dries matter content and the total phenolic compounds for all the varieties excluded Bocou2 variety whose protein content drops. As regard of the fat contents, a weak increase is observed. The sensory analysis reveals that the boiled cassava of the Yavo variety is more appreciated followed by Bocou1 variety. Concerning the Attiéké, Bocou3 variety gives the more appreciated dish followed by the Yavo variety. In conclusion, the silo-pit conservation after bleaching improves the physiological quality of the cassava and the sensory taste even during 14 days. This study has a huge impact of reducing the post harvests losses and increases the commercial value of cassava in the world.展开更多
Sliced boiled chicken is a kind of Chinese food which has a history of more than two hundred years.At the very beginning,it was offered to customers as a kind of fast food.After two centuries’development,it has becom...Sliced boiled chicken is a kind of Chinese food which has a history of more than two hundred years.At the very beginning,it was offered to customers as a kind of fast food.After two centuries’development,it has become a cultural symbol of Guangdong region.In other words,the significance of sliced boiled chicken has transcended the food itself.It is an essential part of Cantonese life.Because it is a dish that is relatively easy to cook,we can see sliced boiled chicken everywhere in Guangdong Province,China.No matter in the city or in the countryside,in upscale restaurants or in fast food restaurants,if you want,you can easily find a place to enjoy the delicacy of sliced boiled chicken.However,most of the people just know to eat sliced boiled chicken.Only a small part of them will notice the history behind this dish.At the same time,though this dish is seen as a cultural symbol,most people just see it as a money making tool which greatly disturbs its development.展开更多
Changes in tissue structures, rheological properties of cross- and vertical section boiled abalone meat were studied in relation to boiling time. The adductor muscle of abalone Haliotis discus which was removed from t...Changes in tissue structures, rheological properties of cross- and vertical section boiled abalone meat were studied in relation to boiling time. The adductor muscle of abalone Haliotis discus which was removed from the shell, was boiled for 1, 2, and 3 h, respectively. Then it was cut up and separated into cross- and vertical section meat. When observed by a light microscope and a scanning electron microscope, structural changes in the myofibrils were greatest in the cross section meat compared with the vertical section meat. When boiling time was increased from 1 h to 3 h, the instantaneous modulus E 0 and rupture strength of both section meat decreased gradually with increased boiling time, and no significant differences were observed between these two section meat for the same boiling time. When boiled for 1 h, the relaxation time of cross section meat was much longer than that of vertical section meat. There were no significant changes in the relaxation time of vertical section for different boiling time, but the relaxation time of cross section meat was reduced gradually with increasing boiling time. These results confirmed that the difference in rheological properties between the cross- and vertical section meat was mainly due to the denaturation level of myofibrils when heated for 1 h, as well as due to the changes in the amount of denatured proteins, and the manner in which the inner denatured protein components weve exchanged after boiling time was increased from 1 h to 3 h.展开更多
Evaluation of dietary fiber and fatty acid composition of boiled, roasted, fermented and germinated breadnut seed flour was investigated. The seeds were dehulled and washed. It was divided into four equal parts for di...Evaluation of dietary fiber and fatty acid composition of boiled, roasted, fermented and germinated breadnut seed flour was investigated. The seeds were dehulled and washed. It was divided into four equal parts for different processing techniques: boiled, roasted, germinated and fermented. They were analyzed for dietary fibre and fatty acid composition using standard methods. Data were subjected to statistical analysis using Statistical Product for Service Solution (SPSS) version 23.0. Values were expressed as means and standard deviation, Duncan multiple range test was used in separating the means at 95% confidence interval. Dietary fibre composition showed that breadnut seed flours range from 4.94%(fermented breadnut seed flour) to 5.42%(roasted breadnut seed flour). Fatty acid profile showed that breadnut seed flours contain a greater amount of non-essential fatty acids which were highly significant (p < 0.05) in oleic acid (57.93%) for roasted breadnut seed flour followed by linoleic acid (25.76%) in fermented breadnut flour. Stearic acid was the only prominent non-essential fatty acid in the breadnut seed flour and ranged from 4.40%(fermented breadnut seed flour) to 6.27%(germinated breadnut seed flour). The study revealed that all the processed breadnut seed flours have appreciable quantities of dietary fibre and essential fatty acids than non-essential fatty acids. Breadnut seed should be recommended in wheat substitution in bakery industry and culinary uses. It is also recommended for weight loss program.展开更多
Flash boiling atomization(FBA)is a promising approach for enhancing spray atomization,which can generate a fine and more evenly distributed spray by increasing the fuel injection temperature or reducing the ambient pr...Flash boiling atomization(FBA)is a promising approach for enhancing spray atomization,which can generate a fine and more evenly distributed spray by increasing the fuel injection temperature or reducing the ambient pressure.However,when the outlet speed of the nozzle exceeds 400 m/s,investigating high-speed flash boiling atomization(HFBA)becomes quite challenging.This difficulty arises fromthe involvement ofmany complex physical processes and the requirement for a very fine mesh in numerical simulations.In this study,an HFBA model for gasoline direct injection(GDI)is established.This model incorporates primary and secondary atomization,as well as vaporization and boilingmodels,to describe the development process of the flash boiling spray.Compared to lowspeed FBA,these physical processes significantly impact HFBA.In this model,the Eulerian description is utilized for modeling the gas,and the Lagrangian description is applied to model the droplets,which effectively captures the movement of the droplets and avoids excessive mesh in the Eulerian coordinates.Under various conditions,numerical solutions of the Sauter mean diameter(SMD)for GDI show good agreement with experimental data,validating the proposed model’s performance.Simulations based on this HFBA model investigate the influences of fuel injection temperature and ambient pressure on the atomization process.Numerical analyses of the velocity field,temperature field,vapor mass fraction distribution,particle size distribution,and spray penetration length under different superheat degrees reveal that high injection temperature or low ambient pressure significantly affects the formation of small and dispersed droplet distribution.This effect is conducive to the refinement of spray particles and enhances atomization.展开更多
The regime of horizontal subcooled film boiling is characterized by the formation of a thin layer of vapor coveringthe surface of a flat horizontal heater. Based on the equations of motion of a viscous incompressible flu...The regime of horizontal subcooled film boiling is characterized by the formation of a thin layer of vapor coveringthe surface of a flat horizontal heater. Based on the equations of motion of a viscous incompressible fluid and theequation of heat transfer, the stability of such a vapor film is investigated. The influence of the modulation of thegravity field caused by vertical vibrations of the heater of finite frequency, as well as a constant electric fieldapplied normal to the surface of the heater, is taken into account. It is shown that in the case of a thick vaporfilm, the phase transition has a little effect on the thresholds for the occurrence of parametric instability in thesystem and its transformation into the most dangerous one. At the same time, the electric field contributes toan increase in these thresholds. It was found that the effect of vibrations on the stabilization of non-parametricinstability in the system is possible only in a narrow region of the parameter space where long-wave damped disturbances exist and consists of reducing the critical heat flux of stabilization. A vapor film stabilized in this waycan be destroyed due to the development of parametric instability. In contrast to the case of a thick vapor layer,the threshold for the onset of parametric instability for thin films largely depends on the value of subcooling in thesystem. In addition, this threshold decreases with increasing electric field strength. For a vapor film ten micronsthick, the instability threshold can be reduced by a factor of three or more by applying an electric field of aboutthree million volts per meter.展开更多
The Dongping deposit is the largest alkalic-hosted gold deposit in China containing>100 t of Au.This paper presents a new understanding for Dongping ore system,based on the previous studies.The mineralization origi...The Dongping deposit is the largest alkalic-hosted gold deposit in China containing>100 t of Au.This paper presents a new understanding for Dongping ore system,based on the previous studies.The mineralization originally occurred at 400-380 Ma,simultaneous with emplacement of the Shuiquangou alkaline complex,and was overprinted by the hydrothermal activity in the Yanshanian.Isotope compositions of ores indicate metals of the deposit are mainly provided by the Shuiquangou complex.Ore-forming fluids are characterized by increasing oxygen fugacity and decreasing sulfur fugacity,while tellurium fugacity increased in the Stage II-2 and decreased in Stage II-3.These systematic changes are closely related to the processes of mineral precipitation and fluid evolution.Sulfide precipitation from Stage Ⅰ to Stage Ⅱ was triggered by fluid boiling,which leads to the precipitation of Pb-Bi-Te,due to decrement of sulfur fugacity.Condensation of gas phase containing high concentration of H_2Te leads to precipitation of Te-Au-Ag minerals and native tellurium.Based on these hypotheses,this paper present a polyphase metallogenic model as follow.During the Devonian,fluids were released from alkaline magmas,which carried ore-forming materials form the surrounding rocks and precipitate the early ores.During the Jurassic-Cretaceous,fluorine-rich fluids exsolved from highly factionated Shangshuiquan granite,which extracted and concentrated Au from the Shuiquangou complex and the Sanggan Group metamorphic rocks,and finally formed the Dongping gold deposit.展开更多
NO one can precisely describe Beijing with a single word or sentence due to its extreme complexity.Every passenger who arrives in Beijing by plane is welcomed by an ocean of light.The light resembles boiling magma,flo...NO one can precisely describe Beijing with a single word or sentence due to its extreme complexity.Every passenger who arrives in Beijing by plane is welcomed by an ocean of light.The light resembles boiling magma,flowing along a layout of the city in an orderly manner.If Chang’an Avenue,Sanlitun,China World Trade Center,and National Olympic Sports Center are highlights of Beijing,the hutong s(lanes)distributed along the Central Axis represent the other side of the capital city.They tell the stories of this city and its citizens with a subtler voice.In these places where the city’s neon lights cannot reach,the essence of the city’s daily life exists in a small restaurant,a tanghulu(a traditional Chinese snack of candied fruit),or even a bowl of fermented soybean drink.展开更多
Ingredients: 125 grams of chicken breast meat, 125 grams of pork tenderloin, edible fungus, tremella, winter bamboo shoots and cucumbers, 100 grams of edible oil, 100 grams of corn starch and an optional amount of soy...Ingredients: 125 grams of chicken breast meat, 125 grams of pork tenderloin, edible fungus, tremella, winter bamboo shoots and cucumbers, 100 grams of edible oil, 100 grams of corn starch and an optional amount of soy sauce, cooking wine, vinegar, salt and MSG, soup stock, eggs, water soaked from Chinese prickly ashes, soya bean paste, scallions, ginger roots and garlic to taste. Directions: 1. Slice the chicken breast meat, the pork tenderloin, bamboo shoots and cucumbers. Add the chicken meat, egg whites and corn starch. Marinate the tenderloin in the Chinese prickly展开更多
This is a story of a young man named Owen, who lived in a faraway country, and a king, who was getting old and needed to find a successor(1). The king had thought of a way to find a successor who would have courage an...This is a story of a young man named Owen, who lived in a faraway country, and a king, who was getting old and needed to find a successor(1). The king had thought of a way to find a successor who would have courage and be honest.展开更多
Research reactors with neutron fluxes higher than 10^(14) n cm^(−2) s^(−1) are widely used in nuclear fuel and material irradiation,neutron-based scientific research,and medical and industrial isotope production.Such ...Research reactors with neutron fluxes higher than 10^(14) n cm^(−2) s^(−1) are widely used in nuclear fuel and material irradiation,neutron-based scientific research,and medical and industrial isotope production.Such high flux research reactors are not only important scientific research facilities for the development of nuclear energy but also represent the national comprehensive technical capability.China has several high flux research reactors that do not satisfy the requirements of nuclear energy development.A high flux research reactor has the following features:a compact core arrangement,high power density,plate-type fuel elements,a short refueling cycle,and high coolant velocity in the core.These characteristics make it difficult to simultaneously realize high neutron flux and optimal safety margin.A new multi-mission high flux research reactor was designed by the Institute of Nuclear and New Energy Technology at Tsinghua University in China;the reactor can simul-taneously realize an average neutron flux higher than 2.0×10^(15) n cm^(−2) s^(−1) and fulfill the current safety criterion.This high flux research reactor features advanced design concepts and has sufficient safety margins according to the preliminary safety analysis.Based on the analysis of the station blackout accident,loss of coolant accident,and reactivity accident of a single-control drum rotating out accidently,the maximum temperature of the cladding surface,minimum departure from nucleate boiling ratio,and temperature difference to the onset of nucleate boiling temperature satisfy the design limits.展开更多
A Zr-Gd alloy with neutron poisoning properties and resistance to boiling concentrated HNO3 corrosion was developed based on a corrosion-resistant Zr-702 alloy to meet the demand for neutron shielding in the closed-lo...A Zr-Gd alloy with neutron poisoning properties and resistance to boiling concentrated HNO3 corrosion was developed based on a corrosion-resistant Zr-702 alloy to meet the demand for neutron shielding in the closed-loop treatment of spent fuel and the nuclear chemical industry.In this study,1 wt.%,3 wt.%,5 wt.%,7 wt.%,and 9 wt.%Zr-Gd alloys were designed and fabricated with Zr-702 as the control element.The electrochemical behavior of the Zr-Gd alloys in boiling concentrated HNO3 was investigated,and the neutron shielding effect on plate thickness and Gd content was simulated.The experimental results demonstrate that the corrosion resistance of the alloy decreased slightly before~7-9 wt.%with increasing Gd content;this is the inflection point of its corrosion resistance.The alloy uniformly dissolved the Gd content that could not be dissolved in the Zr lattice,resulting in numerous micropores on the passivation coating,which deteriorated and accelerated the corrosion rate.The MCNP simulation demonstrated that when the Gd content was increased to 5 wt.%,a 2-mm-thick plate can shield 99.9%neutrons;an alloy with a Gd content≥7 wt.%required only a 1-mm-thick plate,thereby showing that the addition of Gd provides an excellent neutron poisoning effect.Thus,the corrosion resistance and neutron shielding performance of the Zr-Gd alloy can meet the harsh service requirements of the nuclear industry.展开更多
We use the phase field method to track the gas-liquid interface based on the gas-liquid two-phase flow in the pool boiling process,and study the bubble nucleation,growth,deformation,departure and other dynamic behavio...We use the phase field method to track the gas-liquid interface based on the gas-liquid two-phase flow in the pool boiling process,and study the bubble nucleation,growth,deformation,departure and other dynamic behaviors on the heating surface under microgravity.By simulating the correlation between liquid undercooling and bubble dynamics,we find that the bubble growth time increases with the increase of liquid undercooling,but the effect of liquid undercooling on bubble height is not significant.Meanwhile,the gas-liquid-solid three-phase contact angle and the gravity level will also have an effect on the bubble growth time and bubble height.With the increase of the contact angle,the bubble growth time and bubble height when the bubble departs also increase.While the effect of gravity level is on the contrary,the smaller the gravity level is,the larger the bubble height and bubble growth time when the bubble separates.展开更多
Computational fluid dynamics was used and a numerical simulation analysis of boiling heat transfer in microchannels with three depths and three cross-sectional profiles was conducted.The heat transfer coefficient and ...Computational fluid dynamics was used and a numerical simulation analysis of boiling heat transfer in microchannels with three depths and three cross-sectional profiles was conducted.The heat transfer coefficient and bubble generation process of three microchannel structures with a width of 80μm and a depth of 40,60,and 80μm were compared during the boiling process,and the factors influencing bubble generation were studied.A visual test bench was built,and test substrates of different sizes were prepared using a micro-nano laser.During the test,the behavior characteristics of the bubbles on the boiling surface and the temperature change of the heated wall were collected with a high-speed camera and a temperature sensor.It was found that the microchannel with a depth of 80μm had the largest heat transfer coefficient and shortest bubble growth period,the rectangular channel had a larger peak heat transfer coefficient and a lower frequency of bubble occurrence,while the V-shaped channel had the shortest growth period,i.e.,the highest frequency of bubble occurrence,but its heat transfer coefficient was smaller than that of the rectangular channel.展开更多
The boiling heat transfer technology with cavity surfaces can provide higher heat flux under lower wall superheat,which is of great significance for the cooling of electronic chips and microelectromechanical devices.I...The boiling heat transfer technology with cavity surfaces can provide higher heat flux under lower wall superheat,which is of great significance for the cooling of electronic chips and microelectromechanical devices.In this paper,the boiling characteristics of the cavity surfaces are investigated based on the lattice Boltzmann(LB)method,focusing on the effects of cavity shapes,sizes,and heater thermal conductivity on the heat transfer performance.The results show that the triangular cavity has the best boiling performance since it has less residual vapor and higher bubble departure frequency than those of the trapezoidal and rectangular cavities.As the cavity size increases,the enhancement of heat transfer by the cavity mouth is suppressed by the heat accumulation effect at the heater bottom.The liquid rewetting process during bubble departure is the reason for the fluctuation of the space-averaged heat flux,and the heater thermal conductivity determines the fluctuation amplitude.The evaporation of liquid in the cavity with high thermal conductivity walls is more intense,resulting in shorter waiting time and higher bubble departure frequency.展开更多
Various enhanced surfaces have been proposed over the years to improve boiling heat transfer. This paper introduces an experimental setup designed for boiling demonstration in the graduate-level Heat Transfer course. ...Various enhanced surfaces have been proposed over the years to improve boiling heat transfer. This paper introduces an experimental setup designed for boiling demonstration in the graduate-level Heat Transfer course. The pool boiling performance of water under atmospheric pressure of 1.025 bar is investigated by using several structured surfaces at heat fluxes of 28 and 35 kW/m<sup>2</sup>. Surfaces with holes, rectangular grooves, and mushroom fins are manufactured by an NC-controlled vertical milling machine. The heat flux versus excess temperature graph is plotted by using thermocouple measurements of water and base temperatures of the boiling vessel. The separation, rise, and growth of individual vapor bubbles from the surface during boiling were recorded with a digital camera. The results for the plain surface are compared to the Rohsenow correlation. The enhancement of heat transfer coefficient (h) ranged between 15% - 44.5% for all structured surfaces. The highest heat transfer coefficient enhancement is observed between 41% - 56.5% for holed surface-3 (405 holes) compared to the plain surface. The excess temperature dropped around 29% - 34% for holed surface-3 (405 holes) compared to the plain surface. The heat transfer coefficient increases as the spacing between channels or holes decreases. While the bubbles on holed and mushroomed surfaces were spherical, the bubbles on the flat and grooved surfaces were observed as formless. The suggested economical test design could be appropriate to keep students focused and participating in the classroom.展开更多
Phong,a 42-year-old Vietnamese motorcyclist begins his busy day at 5 a.m.In Hanoi,light motorcycles are an important mode of transportation.Countless motorcycles shuttle through the streets and alleys of the city,tran...Phong,a 42-year-old Vietnamese motorcyclist begins his busy day at 5 a.m.In Hanoi,light motorcycles are an important mode of transportation.Countless motorcycles shuttle through the streets and alleys of the city,transporting parcels,goods,and passengers to various destinations.Phong usually works for 12 hours straight with little rest.However,the unprecedented heat waves this summer had often pushed daytime temperatures to above 40 degrees Celsius,making it extremely difficult for Phong to complete his daily routine.Phong prepared a hat,a wet handkerchief,and more drinking water.He even installed a small umbrella above his mobile phone rack to prevent the phone from overheating in the sun because it is his only source of work.Despite all the equipment,he is still worried.“If I suffer heat stroke or anything else,I will be unable to work,”he said.“I can’t afford it.”展开更多
Combining with the low temperature material properties and the boiling heat transfer coefficient of specimen immersed in the liquid nitrogen, a numerical model based on metallo-thermo-mechanical couple theory was esta...Combining with the low temperature material properties and the boiling heat transfer coefficient of specimen immersed in the liquid nitrogen, a numerical model based on metallo-thermo-mechanical couple theory was established to reproduce the deep cryogenic treatment (DCT) process of a newly developed cold work die steel Cr8Mo2SiV (SDC99). Moreover, an experimental setup for rapid temperature measurement was designed to validate the simulation results. The investigation suggests that the differences in temperature and cooling rate between the surface and core of specimen are very significant. However, it should be emphasized that the acute temperature and cooling rate changes during DCT are mainly concentrated on the specimen surface region about 1/3 of the sample thickness. Subjected to DCT, the retained austenite of quenched specimen continues to transform to martensite and finally its phase volume fraction reduces to 2.3%. The predicted results are coincident well with the experimental data, which demonstrates that the numerical model employed in this study can accurately capture the variation characteristics of temperature and microstructure fields during DCT and provide a theoretical guidance for making the reasonable DCT procedure.展开更多
Based on the superposition principle of the nucleate boiling and convective heat transfer terms,a new correlation is developed for flow boiling heat transfer characteristics in helically coiled tubes.The effects of th...Based on the superposition principle of the nucleate boiling and convective heat transfer terms,a new correlation is developed for flow boiling heat transfer characteristics in helically coiled tubes.The effects of the geometric and system parameters on heat transfer characteristics in helically coiled tubes are investigated by collecting large amounts of experimental data and analyzing the heat transfer mechanisms. The existing correlations are divided into two categories,and they are calculated with the experimental data.The Dn factor is introduced to take into account the effect of a complex geometrical structure on flow boiling heat transfer.A new correlation is developed for predicting the flow boiling heat transfer coefficients in the helically coiled tubes,which is validated by the experimental data of R134a flow boiling heat transfer in them;and the average relative error and root mean square error of the new correlation are calculated.The results show that the new correlation agrees well with the experimental data,indicating that the new correlation can be used for predicting flow boiling heat transfer characteristics in the helically coiled tubes.展开更多
A novel phase change heat sink was fabricated for packaging cooling of high power light emitting diode (LED). 3D structures as enhanced boiling structure in the evaporation surface were composed of a spiral micro-gr...A novel phase change heat sink was fabricated for packaging cooling of high power light emitting diode (LED). 3D structures as enhanced boiling structure in the evaporation surface were composed of a spiral micro-groove along circumferential direction and radial micro-grooves which were processed by ploughing-extrusion (P-E) and stamping, respectively. Meanwhile, the cycle power of refrigerant was supplied by wick of sintered copper powder on internal surface of phase change heat sink. Operational characteristics were tested under different heat loads and refrigerants. The experimental results show that phase change heat sink is provided with a good heat transfer capability and the temperature of phase change heat sink reaches 86.8 ℃ under input power of 10 W LED at ambient temperature of 20 ℃.展开更多
文摘Cassava root is shortly preserved after harvesting due to its tanning and rapid physiological decomposition. Consequently, the commercial value is reduced and the craving of its finishes products. With an aim of improving physiological quality, post harvest food value “the effects of bleaching and conservation in silo-pits were evaluated. Four (04) varieties of cassava: Bocou1, Bocou2, Bocou3 and Yavo were collected fresh and healthy in 13 months of maturity. They were subjected to a bleaching (65°C /15 - 30 s) followed by a kinetic conservation (7 days of intervals) in silo-pit (1 × 0.6 × 0.5 m). Results show that Bocou2 variety has the high proteins content (2.64% ± 0.01%), followed by hydrocyanic acid (8.21 ± 0.01 mg/100 g) and total carotenoids (26.7 μg/100 g). The conservation influences positively the protein content, reducing sugars content, the dries matter content and the total phenolic compounds for all the varieties excluded Bocou2 variety whose protein content drops. As regard of the fat contents, a weak increase is observed. The sensory analysis reveals that the boiled cassava of the Yavo variety is more appreciated followed by Bocou1 variety. Concerning the Attiéké, Bocou3 variety gives the more appreciated dish followed by the Yavo variety. In conclusion, the silo-pit conservation after bleaching improves the physiological quality of the cassava and the sensory taste even during 14 days. This study has a huge impact of reducing the post harvests losses and increases the commercial value of cassava in the world.
文摘Sliced boiled chicken is a kind of Chinese food which has a history of more than two hundred years.At the very beginning,it was offered to customers as a kind of fast food.After two centuries’development,it has become a cultural symbol of Guangdong region.In other words,the significance of sliced boiled chicken has transcended the food itself.It is an essential part of Cantonese life.Because it is a dish that is relatively easy to cook,we can see sliced boiled chicken everywhere in Guangdong Province,China.No matter in the city or in the countryside,in upscale restaurants or in fast food restaurants,if you want,you can easily find a place to enjoy the delicacy of sliced boiled chicken.However,most of the people just know to eat sliced boiled chicken.Only a small part of them will notice the history behind this dish.At the same time,though this dish is seen as a cultural symbol,most people just see it as a money making tool which greatly disturbs its development.
文摘Changes in tissue structures, rheological properties of cross- and vertical section boiled abalone meat were studied in relation to boiling time. The adductor muscle of abalone Haliotis discus which was removed from the shell, was boiled for 1, 2, and 3 h, respectively. Then it was cut up and separated into cross- and vertical section meat. When observed by a light microscope and a scanning electron microscope, structural changes in the myofibrils were greatest in the cross section meat compared with the vertical section meat. When boiling time was increased from 1 h to 3 h, the instantaneous modulus E 0 and rupture strength of both section meat decreased gradually with increased boiling time, and no significant differences were observed between these two section meat for the same boiling time. When boiled for 1 h, the relaxation time of cross section meat was much longer than that of vertical section meat. There were no significant changes in the relaxation time of vertical section for different boiling time, but the relaxation time of cross section meat was reduced gradually with increasing boiling time. These results confirmed that the difference in rheological properties between the cross- and vertical section meat was mainly due to the denaturation level of myofibrils when heated for 1 h, as well as due to the changes in the amount of denatured proteins, and the manner in which the inner denatured protein components weve exchanged after boiling time was increased from 1 h to 3 h.
文摘Evaluation of dietary fiber and fatty acid composition of boiled, roasted, fermented and germinated breadnut seed flour was investigated. The seeds were dehulled and washed. It was divided into four equal parts for different processing techniques: boiled, roasted, germinated and fermented. They were analyzed for dietary fibre and fatty acid composition using standard methods. Data were subjected to statistical analysis using Statistical Product for Service Solution (SPSS) version 23.0. Values were expressed as means and standard deviation, Duncan multiple range test was used in separating the means at 95% confidence interval. Dietary fibre composition showed that breadnut seed flours range from 4.94%(fermented breadnut seed flour) to 5.42%(roasted breadnut seed flour). Fatty acid profile showed that breadnut seed flours contain a greater amount of non-essential fatty acids which were highly significant (p < 0.05) in oleic acid (57.93%) for roasted breadnut seed flour followed by linoleic acid (25.76%) in fermented breadnut flour. Stearic acid was the only prominent non-essential fatty acid in the breadnut seed flour and ranged from 4.40%(fermented breadnut seed flour) to 6.27%(germinated breadnut seed flour). The study revealed that all the processed breadnut seed flours have appreciable quantities of dietary fibre and essential fatty acids than non-essential fatty acids. Breadnut seed should be recommended in wheat substitution in bakery industry and culinary uses. It is also recommended for weight loss program.
基金supported by the National Natural Science Foundation of China(Project Nos.12272270,11972261).
文摘Flash boiling atomization(FBA)is a promising approach for enhancing spray atomization,which can generate a fine and more evenly distributed spray by increasing the fuel injection temperature or reducing the ambient pressure.However,when the outlet speed of the nozzle exceeds 400 m/s,investigating high-speed flash boiling atomization(HFBA)becomes quite challenging.This difficulty arises fromthe involvement ofmany complex physical processes and the requirement for a very fine mesh in numerical simulations.In this study,an HFBA model for gasoline direct injection(GDI)is established.This model incorporates primary and secondary atomization,as well as vaporization and boilingmodels,to describe the development process of the flash boiling spray.Compared to lowspeed FBA,these physical processes significantly impact HFBA.In this model,the Eulerian description is utilized for modeling the gas,and the Lagrangian description is applied to model the droplets,which effectively captures the movement of the droplets and avoids excessive mesh in the Eulerian coordinates.Under various conditions,numerical solutions of the Sauter mean diameter(SMD)for GDI show good agreement with experimental data,validating the proposed model’s performance.Simulations based on this HFBA model investigate the influences of fuel injection temperature and ambient pressure on the atomization process.Numerical analyses of the velocity field,temperature field,vapor mass fraction distribution,particle size distribution,and spray penetration length under different superheat degrees reveal that high injection temperature or low ambient pressure significantly affects the formation of small and dispersed droplet distribution.This effect is conducive to the refinement of spray particles and enhances atomization.
基金supported by the Ministry of Science and High Education of Russia(Theme No.121031700169-1).
文摘The regime of horizontal subcooled film boiling is characterized by the formation of a thin layer of vapor coveringthe surface of a flat horizontal heater. Based on the equations of motion of a viscous incompressible fluid and theequation of heat transfer, the stability of such a vapor film is investigated. The influence of the modulation of thegravity field caused by vertical vibrations of the heater of finite frequency, as well as a constant electric fieldapplied normal to the surface of the heater, is taken into account. It is shown that in the case of a thick vaporfilm, the phase transition has a little effect on the thresholds for the occurrence of parametric instability in thesystem and its transformation into the most dangerous one. At the same time, the electric field contributes toan increase in these thresholds. It was found that the effect of vibrations on the stabilization of non-parametricinstability in the system is possible only in a narrow region of the parameter space where long-wave damped disturbances exist and consists of reducing the critical heat flux of stabilization. A vapor film stabilized in this waycan be destroyed due to the development of parametric instability. In contrast to the case of a thick vapor layer,the threshold for the onset of parametric instability for thin films largely depends on the value of subcooling in thesystem. In addition, this threshold decreases with increasing electric field strength. For a vapor film ten micronsthick, the instability threshold can be reduced by a factor of three or more by applying an electric field of aboutthree million volts per meter.
基金financially supported by the project of the China Geological Survey(DD20230292,DD20242591)。
文摘The Dongping deposit is the largest alkalic-hosted gold deposit in China containing>100 t of Au.This paper presents a new understanding for Dongping ore system,based on the previous studies.The mineralization originally occurred at 400-380 Ma,simultaneous with emplacement of the Shuiquangou alkaline complex,and was overprinted by the hydrothermal activity in the Yanshanian.Isotope compositions of ores indicate metals of the deposit are mainly provided by the Shuiquangou complex.Ore-forming fluids are characterized by increasing oxygen fugacity and decreasing sulfur fugacity,while tellurium fugacity increased in the Stage II-2 and decreased in Stage II-3.These systematic changes are closely related to the processes of mineral precipitation and fluid evolution.Sulfide precipitation from Stage Ⅰ to Stage Ⅱ was triggered by fluid boiling,which leads to the precipitation of Pb-Bi-Te,due to decrement of sulfur fugacity.Condensation of gas phase containing high concentration of H_2Te leads to precipitation of Te-Au-Ag minerals and native tellurium.Based on these hypotheses,this paper present a polyphase metallogenic model as follow.During the Devonian,fluids were released from alkaline magmas,which carried ore-forming materials form the surrounding rocks and precipitate the early ores.During the Jurassic-Cretaceous,fluorine-rich fluids exsolved from highly factionated Shangshuiquan granite,which extracted and concentrated Au from the Shuiquangou complex and the Sanggan Group metamorphic rocks,and finally formed the Dongping gold deposit.
文摘NO one can precisely describe Beijing with a single word or sentence due to its extreme complexity.Every passenger who arrives in Beijing by plane is welcomed by an ocean of light.The light resembles boiling magma,flowing along a layout of the city in an orderly manner.If Chang’an Avenue,Sanlitun,China World Trade Center,and National Olympic Sports Center are highlights of Beijing,the hutong s(lanes)distributed along the Central Axis represent the other side of the capital city.They tell the stories of this city and its citizens with a subtler voice.In these places where the city’s neon lights cannot reach,the essence of the city’s daily life exists in a small restaurant,a tanghulu(a traditional Chinese snack of candied fruit),or even a bowl of fermented soybean drink.
文摘Ingredients: 125 grams of chicken breast meat, 125 grams of pork tenderloin, edible fungus, tremella, winter bamboo shoots and cucumbers, 100 grams of edible oil, 100 grams of corn starch and an optional amount of soy sauce, cooking wine, vinegar, salt and MSG, soup stock, eggs, water soaked from Chinese prickly ashes, soya bean paste, scallions, ginger roots and garlic to taste. Directions: 1. Slice the chicken breast meat, the pork tenderloin, bamboo shoots and cucumbers. Add the chicken meat, egg whites and corn starch. Marinate the tenderloin in the Chinese prickly
文摘This is a story of a young man named Owen, who lived in a faraway country, and a king, who was getting old and needed to find a successor(1). The king had thought of a way to find a successor who would have courage and be honest.
文摘Research reactors with neutron fluxes higher than 10^(14) n cm^(−2) s^(−1) are widely used in nuclear fuel and material irradiation,neutron-based scientific research,and medical and industrial isotope production.Such high flux research reactors are not only important scientific research facilities for the development of nuclear energy but also represent the national comprehensive technical capability.China has several high flux research reactors that do not satisfy the requirements of nuclear energy development.A high flux research reactor has the following features:a compact core arrangement,high power density,plate-type fuel elements,a short refueling cycle,and high coolant velocity in the core.These characteristics make it difficult to simultaneously realize high neutron flux and optimal safety margin.A new multi-mission high flux research reactor was designed by the Institute of Nuclear and New Energy Technology at Tsinghua University in China;the reactor can simul-taneously realize an average neutron flux higher than 2.0×10^(15) n cm^(−2) s^(−1) and fulfill the current safety criterion.This high flux research reactor features advanced design concepts and has sufficient safety margins according to the preliminary safety analysis.Based on the analysis of the station blackout accident,loss of coolant accident,and reactivity accident of a single-control drum rotating out accidently,the maximum temperature of the cladding surface,minimum departure from nucleate boiling ratio,and temperature difference to the onset of nucleate boiling temperature satisfy the design limits.
基金supported by the National Natural Science Foundation of China (Nos.52201021 and 52101099)Key Research and Development Program of Shaanxi (2021GY-249,2021GY-233)+1 种基金Natural Science Basic Research Program of Shaanxi (No.2020JC-50)Shaanxi Provincial Natural Science Youth Foundation (2022JQ-410).
文摘A Zr-Gd alloy with neutron poisoning properties and resistance to boiling concentrated HNO3 corrosion was developed based on a corrosion-resistant Zr-702 alloy to meet the demand for neutron shielding in the closed-loop treatment of spent fuel and the nuclear chemical industry.In this study,1 wt.%,3 wt.%,5 wt.%,7 wt.%,and 9 wt.%Zr-Gd alloys were designed and fabricated with Zr-702 as the control element.The electrochemical behavior of the Zr-Gd alloys in boiling concentrated HNO3 was investigated,and the neutron shielding effect on plate thickness and Gd content was simulated.The experimental results demonstrate that the corrosion resistance of the alloy decreased slightly before~7-9 wt.%with increasing Gd content;this is the inflection point of its corrosion resistance.The alloy uniformly dissolved the Gd content that could not be dissolved in the Zr lattice,resulting in numerous micropores on the passivation coating,which deteriorated and accelerated the corrosion rate.The MCNP simulation demonstrated that when the Gd content was increased to 5 wt.%,a 2-mm-thick plate can shield 99.9%neutrons;an alloy with a Gd content≥7 wt.%required only a 1-mm-thick plate,thereby showing that the addition of Gd provides an excellent neutron poisoning effect.Thus,the corrosion resistance and neutron shielding performance of the Zr-Gd alloy can meet the harsh service requirements of the nuclear industry.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.52161002,51661020,and11364024)the Postdoctoral Science Foundation of China(Grant No.2014M560371)the Funds for Distinguished Young Scientists of Lanzhou University of Technology of China(Grant No.J201304)。
文摘We use the phase field method to track the gas-liquid interface based on the gas-liquid two-phase flow in the pool boiling process,and study the bubble nucleation,growth,deformation,departure and other dynamic behaviors on the heating surface under microgravity.By simulating the correlation between liquid undercooling and bubble dynamics,we find that the bubble growth time increases with the increase of liquid undercooling,but the effect of liquid undercooling on bubble height is not significant.Meanwhile,the gas-liquid-solid three-phase contact angle and the gravity level will also have an effect on the bubble growth time and bubble height.With the increase of the contact angle,the bubble growth time and bubble height when the bubble departs also increase.While the effect of gravity level is on the contrary,the smaller the gravity level is,the larger the bubble height and bubble growth time when the bubble separates.
基金supported by the National Natural Science Foundation of China Youth Program(Grant No.51905328).
文摘Computational fluid dynamics was used and a numerical simulation analysis of boiling heat transfer in microchannels with three depths and three cross-sectional profiles was conducted.The heat transfer coefficient and bubble generation process of three microchannel structures with a width of 80μm and a depth of 40,60,and 80μm were compared during the boiling process,and the factors influencing bubble generation were studied.A visual test bench was built,and test substrates of different sizes were prepared using a micro-nano laser.During the test,the behavior characteristics of the bubbles on the boiling surface and the temperature change of the heated wall were collected with a high-speed camera and a temperature sensor.It was found that the microchannel with a depth of 80μm had the largest heat transfer coefficient and shortest bubble growth period,the rectangular channel had a larger peak heat transfer coefficient and a lower frequency of bubble occurrence,while the V-shaped channel had the shortest growth period,i.e.,the highest frequency of bubble occurrence,but its heat transfer coefficient was smaller than that of the rectangular channel.
基金Project supported by the National Natural Science Foundation of China(Nos.11872083,12172017,12202021)。
文摘The boiling heat transfer technology with cavity surfaces can provide higher heat flux under lower wall superheat,which is of great significance for the cooling of electronic chips and microelectromechanical devices.In this paper,the boiling characteristics of the cavity surfaces are investigated based on the lattice Boltzmann(LB)method,focusing on the effects of cavity shapes,sizes,and heater thermal conductivity on the heat transfer performance.The results show that the triangular cavity has the best boiling performance since it has less residual vapor and higher bubble departure frequency than those of the trapezoidal and rectangular cavities.As the cavity size increases,the enhancement of heat transfer by the cavity mouth is suppressed by the heat accumulation effect at the heater bottom.The liquid rewetting process during bubble departure is the reason for the fluctuation of the space-averaged heat flux,and the heater thermal conductivity determines the fluctuation amplitude.The evaporation of liquid in the cavity with high thermal conductivity walls is more intense,resulting in shorter waiting time and higher bubble departure frequency.
文摘Various enhanced surfaces have been proposed over the years to improve boiling heat transfer. This paper introduces an experimental setup designed for boiling demonstration in the graduate-level Heat Transfer course. The pool boiling performance of water under atmospheric pressure of 1.025 bar is investigated by using several structured surfaces at heat fluxes of 28 and 35 kW/m<sup>2</sup>. Surfaces with holes, rectangular grooves, and mushroom fins are manufactured by an NC-controlled vertical milling machine. The heat flux versus excess temperature graph is plotted by using thermocouple measurements of water and base temperatures of the boiling vessel. The separation, rise, and growth of individual vapor bubbles from the surface during boiling were recorded with a digital camera. The results for the plain surface are compared to the Rohsenow correlation. The enhancement of heat transfer coefficient (h) ranged between 15% - 44.5% for all structured surfaces. The highest heat transfer coefficient enhancement is observed between 41% - 56.5% for holed surface-3 (405 holes) compared to the plain surface. The excess temperature dropped around 29% - 34% for holed surface-3 (405 holes) compared to the plain surface. The heat transfer coefficient increases as the spacing between channels or holes decreases. While the bubbles on holed and mushroomed surfaces were spherical, the bubbles on the flat and grooved surfaces were observed as formless. The suggested economical test design could be appropriate to keep students focused and participating in the classroom.
文摘Phong,a 42-year-old Vietnamese motorcyclist begins his busy day at 5 a.m.In Hanoi,light motorcycles are an important mode of transportation.Countless motorcycles shuttle through the streets and alleys of the city,transporting parcels,goods,and passengers to various destinations.Phong usually works for 12 hours straight with little rest.However,the unprecedented heat waves this summer had often pushed daytime temperatures to above 40 degrees Celsius,making it extremely difficult for Phong to complete his daily routine.Phong prepared a hat,a wet handkerchief,and more drinking water.He even installed a small umbrella above his mobile phone rack to prevent the phone from overheating in the sun because it is his only source of work.Despite all the equipment,he is still worried.“If I suffer heat stroke or anything else,I will be unable to work,”he said.“I can’t afford it.”
基金Project (51171104) supported by the National Natural Science Foundation of China
文摘Combining with the low temperature material properties and the boiling heat transfer coefficient of specimen immersed in the liquid nitrogen, a numerical model based on metallo-thermo-mechanical couple theory was established to reproduce the deep cryogenic treatment (DCT) process of a newly developed cold work die steel Cr8Mo2SiV (SDC99). Moreover, an experimental setup for rapid temperature measurement was designed to validate the simulation results. The investigation suggests that the differences in temperature and cooling rate between the surface and core of specimen are very significant. However, it should be emphasized that the acute temperature and cooling rate changes during DCT are mainly concentrated on the specimen surface region about 1/3 of the sample thickness. Subjected to DCT, the retained austenite of quenched specimen continues to transform to martensite and finally its phase volume fraction reduces to 2.3%. The predicted results are coincident well with the experimental data, which demonstrates that the numerical model employed in this study can accurately capture the variation characteristics of temperature and microstructure fields during DCT and provide a theoretical guidance for making the reasonable DCT procedure.
基金The National Natural Science Foundation of China(No.50776055,51076084)
文摘Based on the superposition principle of the nucleate boiling and convective heat transfer terms,a new correlation is developed for flow boiling heat transfer characteristics in helically coiled tubes.The effects of the geometric and system parameters on heat transfer characteristics in helically coiled tubes are investigated by collecting large amounts of experimental data and analyzing the heat transfer mechanisms. The existing correlations are divided into two categories,and they are calculated with the experimental data.The Dn factor is introduced to take into account the effect of a complex geometrical structure on flow boiling heat transfer.A new correlation is developed for predicting the flow boiling heat transfer coefficients in the helically coiled tubes,which is validated by the experimental data of R134a flow boiling heat transfer in them;and the average relative error and root mean square error of the new correlation are calculated.The results show that the new correlation agrees well with the experimental data,indicating that the new correlation can be used for predicting flow boiling heat transfer characteristics in the helically coiled tubes.
基金Projects(50436010,50930005)supported by the National Natural Science Foundation of ChinaProject(U0834002)supported by the Joint Fund of NSFC-Guangdong of China
文摘A novel phase change heat sink was fabricated for packaging cooling of high power light emitting diode (LED). 3D structures as enhanced boiling structure in the evaporation surface were composed of a spiral micro-groove along circumferential direction and radial micro-grooves which were processed by ploughing-extrusion (P-E) and stamping, respectively. Meanwhile, the cycle power of refrigerant was supplied by wick of sintered copper powder on internal surface of phase change heat sink. Operational characteristics were tested under different heat loads and refrigerants. The experimental results show that phase change heat sink is provided with a good heat transfer capability and the temperature of phase change heat sink reaches 86.8 ℃ under input power of 10 W LED at ambient temperature of 20 ℃.