A Double Shear Model(DSM) was used in a numerical simulation on bolted rock joint shearing performance.An entire bolt deformed as the letter'U'under a shear load between two joints.Near the bolt-joint intersec...A Double Shear Model(DSM) was used in a numerical simulation on bolted rock joint shearing performance.An entire bolt deformed as the letter'U'under a shear load between two joints.Near the bolt-joint intersection,the bolt partly deformed as the letter'Z'.There were two critical points along the bolt:one was at the bolt-joint intersection with zero bending moment and the other at the maximum bending moment(plastic hinge) with zero shear stress.The blocks on two sides slid along the bolt as it deformed. A separation area was found between the two joint contact surfaces of the middle rock block and sided block.This area of separation was related to bolt diameter and external forces.We assume that this area is related to the work of external forces.Further research is needed.展开更多
Designing reliable yielding support system to mitigate the effect of the kinetic energy in burst-prone conditions in mining and tunneling excavations is one of the challenges for geotechnical engineers. A combination ...Designing reliable yielding support system to mitigate the effect of the kinetic energy in burst-prone conditions in mining and tunneling excavations is one of the challenges for geotechnical engineers. A combination of the support elements can be used to increase rock strength and minimise the displacement of unstable rock mass. It is important to understand how the support system works to ensure the stability of underground excavations. Cable bolts have been commonly used as an effective underground support system and an element of reinforcement to improve rock stability. Cable bolts are usually considered to be subjected to static loads under relatively low stress environments, however, in burst-prone conditions, they might be subjected to dynamic loads. Cable bolts as well as other support elements are used in burst-prone conditions to absorb the kinetic energy of the removed rock to avoid sudden and violent failures. This paper develops numerical and a novel analytical simulation technique for cable bolts to assess their structural behaviour under static and dynamic loading conditions. The numerical and analytical models are then validated against experimental observations reported in the literature, which demonstrates the reliability of the proposed models.展开更多
A new method was developed to apply pull-and-shear loads to the bolt specimen in order to evaluate theanchorage performance of the rebar bolt and the D-Bolt. In the tests, five displacing angles (0°, 20°, 4...A new method was developed to apply pull-and-shear loads to the bolt specimen in order to evaluate theanchorage performance of the rebar bolt and the D-Bolt. In the tests, five displacing angles (0°, 20°, 40°,60°, and 90°), two joint gaps (0 mm and 30 mm), and three kinds of host rock materials (weak concrete,strong concrete, and concrete-granite) were considered, and stressestrain measurements were conducted.Results show that the ultimate loads of both the D-Bolt and the rebar bolt remained constantwith any displacing angles. The ultimate displacement of the D-Bolt changed from 140 mm at the0 displacing angle (pure pull) to approximately 70 mm at a displacing angle greater than 40. Thedisplacement capacity of the D-Bolt is approximately 3.5 times that of the rebar bolt under pure pull and50% higher than that of the rebar bolt under pure shear. The compressive stress exists at 50 mm from thebolt head, and the maximum bending moment value rises with the increasing displacing angle. The rebarbolt mobilises greater applied load than the D-Bolt when subjected to the maximum bending. Theyielding length (at 0) of the D-Bolt is longer than that of the rebar bolt. The displacement capacity of thebolts increased with the joint gap. The bolt subjected to joint gap effect yields more quickly with greaterbending moment and smaller applied load. The displacement capacities of the D-Bolt and the rebar boltare greater in the weak host rock than that in the hard host rock. In pure shear condition, the ultimateload of the bolts slightly decreases in the hard rock. The yielding speed in the hard rock is higher thanthat in the weak rock. 2014 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.展开更多
To study the seismic performance and load-transferring mechanism of an innovative precast shear wall(IPSW) involving vertical joints, an experimental investigation and theoretical analysis were successively conducted ...To study the seismic performance and load-transferring mechanism of an innovative precast shear wall(IPSW) involving vertical joints, an experimental investigation and theoretical analysis were successively conducted on two test walls. The test results confirm the feasibility of the novel joints as well as the favorable seismic performance of the walls, even though certain optimization measures should be taken to improve the ductility. The load-transferring mechanism subsequently is theoretically investigated based on the experimental study. The theoretical results show the load-transferring route of the novel joints is concise and definite. During the elastic stage, the vertical shear stress in the connecting steel frame(CSF) distributes uniformly; and each high-strength bolt(HSB)primarily delivers vertical shear force. However, the stress in the CSF redistributes when the walls develop into the elastic-plastic stage. At the ultimate state, the vertical shear stress and horizontal normal stress in the CSF distribute linearly; and the HSBs at both ends of the CSF transfer the maximum shear forces.展开更多
基金Financial support from the National Natural Science Foundation of China(No.50978251)the National Government Building High-Level University Graduate Programs of the China Scholarship Council
文摘A Double Shear Model(DSM) was used in a numerical simulation on bolted rock joint shearing performance.An entire bolt deformed as the letter'U'under a shear load between two joints.Near the bolt-joint intersection,the bolt partly deformed as the letter'Z'.There were two critical points along the bolt:one was at the bolt-joint intersection with zero bending moment and the other at the maximum bending moment(plastic hinge) with zero shear stress.The blocks on two sides slid along the bolt as it deformed. A separation area was found between the two joint contact surfaces of the middle rock block and sided block.This area of separation was related to bolt diameter and external forces.We assume that this area is related to the work of external forces.Further research is needed.
文摘Designing reliable yielding support system to mitigate the effect of the kinetic energy in burst-prone conditions in mining and tunneling excavations is one of the challenges for geotechnical engineers. A combination of the support elements can be used to increase rock strength and minimise the displacement of unstable rock mass. It is important to understand how the support system works to ensure the stability of underground excavations. Cable bolts have been commonly used as an effective underground support system and an element of reinforcement to improve rock stability. Cable bolts are usually considered to be subjected to static loads under relatively low stress environments, however, in burst-prone conditions, they might be subjected to dynamic loads. Cable bolts as well as other support elements are used in burst-prone conditions to absorb the kinetic energy of the removed rock to avoid sudden and violent failures. This paper develops numerical and a novel analytical simulation technique for cable bolts to assess their structural behaviour under static and dynamic loading conditions. The numerical and analytical models are then validated against experimental observations reported in the literature, which demonstrates the reliability of the proposed models.
基金financially supported by Luossavaara-Kiirunavaara AB and Boliden Mineral AB,Sweden
文摘A new method was developed to apply pull-and-shear loads to the bolt specimen in order to evaluate theanchorage performance of the rebar bolt and the D-Bolt. In the tests, five displacing angles (0°, 20°, 40°,60°, and 90°), two joint gaps (0 mm and 30 mm), and three kinds of host rock materials (weak concrete,strong concrete, and concrete-granite) were considered, and stressestrain measurements were conducted.Results show that the ultimate loads of both the D-Bolt and the rebar bolt remained constantwith any displacing angles. The ultimate displacement of the D-Bolt changed from 140 mm at the0 displacing angle (pure pull) to approximately 70 mm at a displacing angle greater than 40. Thedisplacement capacity of the D-Bolt is approximately 3.5 times that of the rebar bolt under pure pull and50% higher than that of the rebar bolt under pure shear. The compressive stress exists at 50 mm from thebolt head, and the maximum bending moment value rises with the increasing displacing angle. The rebarbolt mobilises greater applied load than the D-Bolt when subjected to the maximum bending. Theyielding length (at 0) of the D-Bolt is longer than that of the rebar bolt. The displacement capacity of thebolts increased with the joint gap. The bolt subjected to joint gap effect yields more quickly with greaterbending moment and smaller applied load. The displacement capacities of the D-Bolt and the rebar boltare greater in the weak host rock than that in the hard host rock. In pure shear condition, the ultimateload of the bolts slightly decreases in the hard rock. The yielding speed in the hard rock is higher thanthat in the weak rock. 2014 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.
基金Project(51078077)supported by the National Natural Science Foundation of China
文摘To study the seismic performance and load-transferring mechanism of an innovative precast shear wall(IPSW) involving vertical joints, an experimental investigation and theoretical analysis were successively conducted on two test walls. The test results confirm the feasibility of the novel joints as well as the favorable seismic performance of the walls, even though certain optimization measures should be taken to improve the ductility. The load-transferring mechanism subsequently is theoretically investigated based on the experimental study. The theoretical results show the load-transferring route of the novel joints is concise and definite. During the elastic stage, the vertical shear stress in the connecting steel frame(CSF) distributes uniformly; and each high-strength bolt(HSB)primarily delivers vertical shear force. However, the stress in the CSF redistributes when the walls develop into the elastic-plastic stage. At the ultimate state, the vertical shear stress and horizontal normal stress in the CSF distribute linearly; and the HSBs at both ends of the CSF transfer the maximum shear forces.