High-mobility group box 1 was first discovered in the calf thymus as a DNA-binding nuclear protein and has been widely studied in diverse fields,including neurology and neuroscience.High-mobility group box 1 in the ex...High-mobility group box 1 was first discovered in the calf thymus as a DNA-binding nuclear protein and has been widely studied in diverse fields,including neurology and neuroscience.High-mobility group box 1 in the extracellular space functions as a pro-inflammatory damage-associated molecular pattern,which has been proven to play an important role in a wide variety of central nervous system disorders such as ischemic stroke,Alzheimer’s disease,frontotemporal dementia,Parkinson’s disease,multiple sclerosis,epilepsy,and traumatic brain injury.Several drugs that inhibit high-mobility group box 1 as a damage-associated molecular pattern,such as glycyrrhizin,ethyl pyruvate,and neutralizing anti-high-mobility group box 1 antibodies,are commonly used to target high-mobility group box 1 activity in central nervous system disorders.Although it is commonly known for its detrimental inflammatory effect,high-mobility group box 1 has also been shown to have beneficial pro-regenerative roles in central nervous system disorders.In this narrative review,we provide a brief summary of the history of high-mobility group box 1 research and its characterization as a damage-associated molecular pattern,its downstream receptors,and intracellular signaling pathways,how high-mobility group box 1 exerts the repair-favoring roles in general and in the central nervous system,and clues on how to differentiate the pro-regenerative from the pro-inflammatory role.Research targeting high-mobility group box 1 in the central nervous system may benefit from differentiating between the two functions rather than overall suppression of high-mobility group box 1.展开更多
MADS-box转录因子广泛存在于植物中,在生长发育和次生代谢过程中发挥重要作用。为探究MADS-box转录因子家族在辣椒素不同积累时期的表达情况。利用辣椒素不同积累时期转录组数据,鉴定辣椒MADS-box转录因子家族成员,并进行亚细胞定位、...MADS-box转录因子广泛存在于植物中,在生长发育和次生代谢过程中发挥重要作用。为探究MADS-box转录因子家族在辣椒素不同积累时期的表达情况。利用辣椒素不同积累时期转录组数据,鉴定辣椒MADS-box转录因子家族成员,并进行亚细胞定位、保守基序、系统进化树和染色体定位分析,对其功能进行初步分析。结果表明,在辣椒转录组数据中共鉴定出95个MADS-box转录因子;含有105~395个氨基酸;分子质量为11.55~44.46 ku;理论等电点为5.16~10.01;主要在细胞核表达,均含有MADS保守结构域,系统发育分析表明,MADS蛋白可分为8个亚家族。有73条CaMADS家族成员定位到12条染色体上。差异表达的MADS-box基因有26个,其中6个基因在C1 vs C2时期上调,在C2 vs C3时期下调。基于KEGG富集和蛋白互作预测到CaMADS13可能参与辣椒中木质素的合成。CaMADS24可能参与辣椒素和木质素合成前体香豆酰辅酶A的合成。利用生物信息学分析,鉴定了辣椒MADS-box家族转录因子,为深入研究辣椒素次生代谢中的分子调控机制提供理论基础。展开更多
基金supported by a grant of the M.D.-Ph.D./Medical Scientist Training Program through the Korea Health Industry Development Institute(KHIDI)funded by the Ministry of Health&Welfare,Republic of Korea(to HK)+3 种基金supported by National Research Foundation of Korea(NRF)grants funded by the Korean government(MSITMinistry of Science and ICT)(NRF2019R1A5A2026045 and NRF-2021R1F1A1061819)a grant from the Korean Health Technology R&D Project through the Korea Health Industry Development Institute(KHIDI),funded by the Ministry of Health&Welfare,Republic of Korea(HR21C1003)New Faculty Research Fund of Ajou University School of Medicine(to JYC)。
文摘High-mobility group box 1 was first discovered in the calf thymus as a DNA-binding nuclear protein and has been widely studied in diverse fields,including neurology and neuroscience.High-mobility group box 1 in the extracellular space functions as a pro-inflammatory damage-associated molecular pattern,which has been proven to play an important role in a wide variety of central nervous system disorders such as ischemic stroke,Alzheimer’s disease,frontotemporal dementia,Parkinson’s disease,multiple sclerosis,epilepsy,and traumatic brain injury.Several drugs that inhibit high-mobility group box 1 as a damage-associated molecular pattern,such as glycyrrhizin,ethyl pyruvate,and neutralizing anti-high-mobility group box 1 antibodies,are commonly used to target high-mobility group box 1 activity in central nervous system disorders.Although it is commonly known for its detrimental inflammatory effect,high-mobility group box 1 has also been shown to have beneficial pro-regenerative roles in central nervous system disorders.In this narrative review,we provide a brief summary of the history of high-mobility group box 1 research and its characterization as a damage-associated molecular pattern,its downstream receptors,and intracellular signaling pathways,how high-mobility group box 1 exerts the repair-favoring roles in general and in the central nervous system,and clues on how to differentiate the pro-regenerative from the pro-inflammatory role.Research targeting high-mobility group box 1 in the central nervous system may benefit from differentiating between the two functions rather than overall suppression of high-mobility group box 1.
文摘MADS-box转录因子广泛存在于植物中,在生长发育和次生代谢过程中发挥重要作用。为探究MADS-box转录因子家族在辣椒素不同积累时期的表达情况。利用辣椒素不同积累时期转录组数据,鉴定辣椒MADS-box转录因子家族成员,并进行亚细胞定位、保守基序、系统进化树和染色体定位分析,对其功能进行初步分析。结果表明,在辣椒转录组数据中共鉴定出95个MADS-box转录因子;含有105~395个氨基酸;分子质量为11.55~44.46 ku;理论等电点为5.16~10.01;主要在细胞核表达,均含有MADS保守结构域,系统发育分析表明,MADS蛋白可分为8个亚家族。有73条CaMADS家族成员定位到12条染色体上。差异表达的MADS-box基因有26个,其中6个基因在C1 vs C2时期上调,在C2 vs C3时期下调。基于KEGG富集和蛋白互作预测到CaMADS13可能参与辣椒中木质素的合成。CaMADS24可能参与辣椒素和木质素合成前体香豆酰辅酶A的合成。利用生物信息学分析,鉴定了辣椒MADS-box家族转录因子,为深入研究辣椒素次生代谢中的分子调控机制提供理论基础。