Under investigation in this paper is a complex modified Korteweg–de Vries(KdV) equation, which describes the propagation of short pulses in optical fibers. Bilinear forms and multi-soliton solutions are obtained thro...Under investigation in this paper is a complex modified Korteweg–de Vries(KdV) equation, which describes the propagation of short pulses in optical fibers. Bilinear forms and multi-soliton solutions are obtained through the Hirota method and symbolic computation. Breather-like and bound-state solitons are constructed in which the signs of the imaginary parts of the complex wave numbers and the initial separations of the two parallel solitons are important factors for the interaction patterns. The periodic structures and position-induced phase shift of some solutions are introduced.展开更多
The influence of power-low long-range interactions (LRI) and helicoidal coupling (HC) on the properties of localized solitons in a DNA molecule when a ribonucleic acid polymerase (RNAP) binds to it at the physio...The influence of power-low long-range interactions (LRI) and helicoidal coupling (HC) on the properties of localized solitons in a DNA molecule when a ribonucleic acid polymerase (RNAP) binds to it at the physiological temperature is analytically and numerically investigated in this paper. We have made an analogy with the Heisenberg model Hamiltonian of an anisotropic spin ladder with ferromagnetic legs and anti-ferromagnetic rung coupling. When we limit ourselves to the second-order terms in the Taylor expansion, the DNA dynamics is found to be governed by a completely integrable nonlinear Schr?dinger (NLS) equation. In this case, results show that increasing the value of HC force or LRI parameter enhances the bubble height and reduces the number of base pairs which form the bubble. For the fourth-order terms in a Taylor expansion, results are closely resembling those of second-order terms, and are confirmed by numerical investigation. These results match with some experimental data and thus provide a better representation of the base pairs opening in DNA which is essential for the transcription process.展开更多
This paper studies a discrete one-dimensional monatomic Klein Gordon chain with only quartic nearest-neighbour interactions, in which the compact-like discrete breathers can be explicitly constructed by an exact separ...This paper studies a discrete one-dimensional monatomic Klein Gordon chain with only quartic nearest-neighbour interactions, in which the compact-like discrete breathers can be explicitly constructed by an exact separation of their time and space dependence. Introducing the trying method, it proves that compact-like discrete breathers exist in this nonlinear system. It also discusses the linear stability of the compact-like discrete breathers, when the coefficient (β) of quartic on-site potential and the coupling constant (K4) of quartic interactive potential satisfy the given conditions, they are linearly stable.展开更多
We study the Peregrine rogue waves within the framework of Derivative Nonlinear Schrödinger equation, which is used to describe the propagation of Alfven waves in plasma physics and sub-picosecond or femtosecond ...We study the Peregrine rogue waves within the framework of Derivative Nonlinear Schrödinger equation, which is used to describe the propagation of Alfven waves in plasma physics and sub-picosecond or femtosecond pulses in nonlinear optics. The interaction and degeneration of two soliton-like solutions and its relations for the breather solution have been analyzed. The Peregrine rogue waves have been considered from the two kinds of formation processes: it can be generated through the limitation of the infinitely large period of the breather solutions, and it can be interpreted as the soliton-like solutions with different polarities. As a special example, a special Peregrine rogue wave is generated by a breather solution and phase solution, which is given by the trivial seed (zero solution).展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 12161061)the Fundamental Research Funds for the Inner Mongolia University of Finance and Economics (Grant No. NCYWT23036)+2 种基金the Young Innovative and Entrepreneurial Talents of the Inner Mongolia Grassland Talents Project in 2022,Autonomous Region “Five Major Tasks” Research Special Project for the Inner Mongolia University of Finance and Economics in 2024 (Grant No. NCXWD2422)High Quality Research Achievement Cultivation Fund for the Inner Mongolia University of Finance and Economics in 2024 (Grant No. GZCG2426)the Talent Development Fund of Inner Mongolia Autonomous Region, China。
文摘Under investigation in this paper is a complex modified Korteweg–de Vries(KdV) equation, which describes the propagation of short pulses in optical fibers. Bilinear forms and multi-soliton solutions are obtained through the Hirota method and symbolic computation. Breather-like and bound-state solitons are constructed in which the signs of the imaginary parts of the complex wave numbers and the initial separations of the two parallel solitons are important factors for the interaction patterns. The periodic structures and position-induced phase shift of some solutions are introduced.
文摘The influence of power-low long-range interactions (LRI) and helicoidal coupling (HC) on the properties of localized solitons in a DNA molecule when a ribonucleic acid polymerase (RNAP) binds to it at the physiological temperature is analytically and numerically investigated in this paper. We have made an analogy with the Heisenberg model Hamiltonian of an anisotropic spin ladder with ferromagnetic legs and anti-ferromagnetic rung coupling. When we limit ourselves to the second-order terms in the Taylor expansion, the DNA dynamics is found to be governed by a completely integrable nonlinear Schr?dinger (NLS) equation. In this case, results show that increasing the value of HC force or LRI parameter enhances the bubble height and reduces the number of base pairs which form the bubble. For the fourth-order terms in a Taylor expansion, results are closely resembling those of second-order terms, and are confirmed by numerical investigation. These results match with some experimental data and thus provide a better representation of the base pairs opening in DNA which is essential for the transcription process.
基金Project supported by the National Natural Science Foundation of China (Grant No 10574011)Natural Science Foundation of Heilongjiang Province, China (Grant No A200506)
文摘This paper studies a discrete one-dimensional monatomic Klein Gordon chain with only quartic nearest-neighbour interactions, in which the compact-like discrete breathers can be explicitly constructed by an exact separation of their time and space dependence. Introducing the trying method, it proves that compact-like discrete breathers exist in this nonlinear system. It also discusses the linear stability of the compact-like discrete breathers, when the coefficient (β) of quartic on-site potential and the coupling constant (K4) of quartic interactive potential satisfy the given conditions, they are linearly stable.
文摘We study the Peregrine rogue waves within the framework of Derivative Nonlinear Schrödinger equation, which is used to describe the propagation of Alfven waves in plasma physics and sub-picosecond or femtosecond pulses in nonlinear optics. The interaction and degeneration of two soliton-like solutions and its relations for the breather solution have been analyzed. The Peregrine rogue waves have been considered from the two kinds of formation processes: it can be generated through the limitation of the infinitely large period of the breather solutions, and it can be interpreted as the soliton-like solutions with different polarities. As a special example, a special Peregrine rogue wave is generated by a breather solution and phase solution, which is given by the trivial seed (zero solution).