期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
An improved Mahalanobis distance-based colour segmentation method for rural building recognition 被引量:1
1
作者 XIE Jia-li LI Yong-shu +2 位作者 CAI Guo-lin WANG Feng LI He-chao 《Journal of Mountain Science》 SCIE CSCD 2018年第7期1460-1470,共11页
Aiming at the rapid identification of rural buildings in complex environments from high-spatialresolution images, an improved Mahalanobis distance colour segmentation method(IMDCSM) is proposed and realised in Red, Gr... Aiming at the rapid identification of rural buildings in complex environments from high-spatialresolution images, an improved Mahalanobis distance colour segmentation method(IMDCSM) is proposed and realised in Red, Green and Blue(RGB) space. Vector sets of a lower discrete degree are obtained by filtering the colour vector sets of the building samples, and a standard ellipsoid equation can be constructed based on these vector sets. The threshold of interested colour range can be flexibly and intuitively selected by changing the shape and size of this ellipsoid. Then, according to the relationship between the location of the image pixel colour vector and the ellipsoid, all building information can be extracted quickly. To verify the effectiveness of the proposed method, unmanned aerial vehicle(UAV) images of two areas in the suburbs of Chengdu city and Deyang city were utilised as experimental data for image segmentation, and the existing colour segmentation method based on the Mahalanobis distance was selected as an indicator to assess the effectiveness of this method. The experimental results demonstrate that the completeness and correctness of this method reached 95% and 83.0%, respectively, values that are higher than those of the Mahalanobis distance colour segmentation method(MDCSM). In general, this method is suitable for the rapid extraction of rural building information, and provides a new threshold selection method for classification. 展开更多
关键词 Mahalanobis distance RED Green and Blue vector Colour image segmentation Rural buildings recognition
下载PDF
Building Indoor Dangerous Behavior Recognition Based on LSTM-GCN with Attention Mechanism 被引量:1
2
作者 Qingyue Zhao Qiaoyu Gu +2 位作者 Zhijun Gao Shipian Shao Xinyuan Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第11期1773-1788,共16页
Building indoor dangerous behavior recognition is a specific application in the field of abnormal human recognition.A human dangerous behavior recognition method based on LSTM-GCN with attention mechanism(GLA)model wa... Building indoor dangerous behavior recognition is a specific application in the field of abnormal human recognition.A human dangerous behavior recognition method based on LSTM-GCN with attention mechanism(GLA)model was proposed aiming at the problem that the existing human skeleton-based action recognition methods cannot fully extract the temporal and spatial features.The network connects GCN and LSTMnetwork in series,and inputs the skeleton sequence extracted by GCN that contains spatial information into the LSTM layer for time sequence feature extraction,which fully excavates the temporal and spatial features of the skeleton sequence.Finally,an attention layer is designed to enhance the features of key bone points,and Softmax is used to classify and identify dangerous behaviors.The dangerous behavior datasets are derived from NTU-RGB+D and Kinetics data sets.Experimental results show that the proposed method can effectively identify some dangerous behaviors in the building,and its accuracy is higher than those of other similar methods. 展开更多
关键词 Human skeleton building indoor dangerous behaviors recognition graph convolution network long short term memory network attention mechanism
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部