The angle α between the fault strike and the axial direction of the roadway produces different damage characteristics. In this paper, the research methodology includes theoretical analyses, numerical simulations and ...The angle α between the fault strike and the axial direction of the roadway produces different damage characteristics. In this paper, the research methodology includes theoretical analyses, numerical simulations and field experiments in the context of the Daqiang coal mine located in Shenyang, China. The stability control countermeasure of "pre-splitting cutting roof + NPR anchor cable"(PSCR-NPR) is simultaneously proposed. According to the different deformation characteristics of the roadway, the faults are innovatively classified into three types, with α of type I being 0°-30°, α of type II being 30°-60°, and α of type III being 60°-90°. The full-cycle stress evolution paths during mining roadway traverses across different types of faults are investigated by numerical simulation. Different pinch angles α lead to high stress concentration areas at different locations in the surrounding rock. The non-uniform stress field formed in the shallow surrounding rock is an important reason for the instability of the roadway. The pre-cracked cut top shifted the high stress region to the deep rock mass and formed a low stress region in the shallow rock mass. The high prestressing NPR anchor cable transforms the non-uniform stress field of the shallow surrounding rock into a uniform stress field. PSCR-NPR is applied in the fault-through roadway of Daqiang mine. The low stress area of the surrounding rock was enlarged by 3-7 times, and the cumulative convergence was reduced by 45%-50%. It provides a reference for the stability control of the deep fault-through mining roadway.展开更多
The control of large deformation problems in layered soft rock tunnels needs to solve urgently.The roof problem is particularly severe among the deformation issues in tunnels.This study first analyzes the asymmetric d...The control of large deformation problems in layered soft rock tunnels needs to solve urgently.The roof problem is particularly severe among the deformation issues in tunnels.This study first analyzes the asymmetric deformation modes in layered soft rock tunnels with large deformations.Subsequently,we construct a mechanical model under ideal conditions for controlling the roof of layered soft rock tunnels through high preload with the support of NPR anchor cables.The prominent roles of long and short NPR anchor cables in the support system are also analyzed.The results indicate the significance of high preload in controlling the roof of layered soft rock tunnels.The short NPR anchor cables effectively improve the integrity of the stratified soft rock layers,while the long NPR anchor cables effectively mobilize the self-bearing capacity of deep-stable rock layers.Finally,the high-preload support method with NPR anchor cables is validated to have a good effect on controlling large deformations in layered soft rock tunnels through field monitoring data.展开更多
A study was conducted to analyze the deformation mechanism of strongly weathered quartz schist in the Daliangshan Tunnel,located in the western Transverse Mountain area.A large deformation problem was experienced duri...A study was conducted to analyze the deformation mechanism of strongly weathered quartz schist in the Daliangshan Tunnel,located in the western Transverse Mountain area.A large deformation problem was experienced during the tunnel construction.To mitigate this problem,a support system was designed incorporating negative Poisson ratio(NPR)anchor cables with negative Poisson ratio effect.Physical model experiments,field experiments,and numerical simulation experiments were conducted to investigate the compensation mechanical behavior of NPR anchor cables.The large deformations of soft rocks in the Daliangshan Tunnel are caused by a high ground stress,a high degree of joint fracture development,and a high degree of surrounding rock fragmentation.A compensation mechanics support system combining long and short NPR anchor cables was suggested to provide sufficient counter-support force(approximately 350 kN)for the surrounding rock inside the tunnel.Comparing the NPR anchor cable support system with the original support system used in the Daliangshan tunnel showed that an NPR anchor cable support system,combining cables of 6.3 m and 10.3 m in length,effectively prevented convergence of surrounding rock deformation,and the integrated settlement convergence value remained below 300 mm.This study provides an effective scientific basis for resolving large deformation problems in deeply buried soft rocks in western transverse mountain areas.展开更多
High stress in surrounding rock will lead to serious problems,e.g.,rock burst in hard rock and large deformation in soft rock.The applied support system under high in-situ stress conditions should be able to carry hig...High stress in surrounding rock will lead to serious problems,e.g.,rock burst in hard rock and large deformation in soft rock.The applied support system under high in-situ stress conditions should be able to carry high load and also accommodate large deformation without experiencing severe damage.In this paper,a specially designed energy-absorbing component for rock bolt and cable that can solve the above problems was proposed.The energy-absorbing component can provide support resistance by plastic deformation of the metal including constraint annulus and compression pipe.For practical engineering,two forms were proposed.One was installed in the surrounding rock by reaming,and the other was installed directly outside the surrounding rock.During the dilation of the surrounding rock,the relative displacement of constraint annulus and compression pipe occurs,resulting in deformation resistance.Deformation resistance is transmitted to the rock bolt or cable,providing support resistance.The lab test and numerical simulation showed that the energy-absorbing component can perfectly achieve the large deformation effect,the deformation amount is as high as 694 mm,and the bearing capacity is stable at 367 kN.The field application tests were carried out in the mining roadway of Xinjulong coal mine,and the results showed that the new type of cable can ensure itself not to break under the condition of large deformation of the surrounding rock.The energy-absorbing component has the superiorities of performing large constant resistance and controllable deformation to effectively control the unpredictable disasters such as large deformation in soft rock and rock burst in hard rock encountered in deep strata.展开更多
The umbilical cable is a vital component of subsea production systems that provide power,chemical agents,control signals et al.,and its requirement for reliability is exceedingly high.However,as the umbilical cable is...The umbilical cable is a vital component of subsea production systems that provide power,chemical agents,control signals et al.,and its requirement for reliability is exceedingly high.However,as the umbilical cable is a composite structure comprising multiple functional units,the reliability analysis of such cables involves numerous parameters that can impact calculation efficiency.In this paper,the reliability analysis of a new kind of umbilical cable with carbon fiber rod under tension is analyzed.The global dynamic analytical model is first established to determine the maximum tension load,then the local analytical model of umbilical cable including each unit are constructed by finite element method(FEM).Based on the mechanical analytical model,the reliability of umbilical cable under tension load is studied using response surface method(RSM)and Monte Carlo method.During the calculation process,a new tangent plane sampling method to calculate the response surface function(RSF)is proposed in this paper,which could make sampling points faster come close to the RSF curve,and it is proved that the calculation efficiency increases about 33%comparing with traditional method.展开更多
Earthquake-induced slope failures are common occurrences in engineering practice and pre-stressed anchor cables are an effective technique in maintaining slope stability,especially in areas that are prone to earthquak...Earthquake-induced slope failures are common occurrences in engineering practice and pre-stressed anchor cables are an effective technique in maintaining slope stability,especially in areas that are prone to earthquakes.Furthermore,the soil at typical engineering sites also exhibit unsaturated features.Explicit considerations of these factors in slope stability estimations are crucial in producing accurate results.In this study,the seismic responses of expansive soil slopes stabilized by anchor cables is studied in the realm of kinematic limit analysis.A modified horizontal slice method is proposed to semi-analytically formulate the energy balance equation.An illustrative slope is studied to demonstrate the influences of suction,seismic excitations and anchor cables on the slope stability.The results indicate that the stabilizing effect of soil suction relates strongly to the seismic excitation and presents a sine shape as the seismic wave propagates.In higher and steeper slopes,the stabilizing effect of suction is more evident.The critical slip surface tends to be much more shallow as the seismic wave approaches the peak and vice versa.展开更多
Only simplified two-dimensional model and a single failure mode are adopted to calculate the ultimate pullout capacity(UPC)of anchor cables in most previous research.This study focuses on a more comprehensive combinat...Only simplified two-dimensional model and a single failure mode are adopted to calculate the ultimate pullout capacity(UPC)of anchor cables in most previous research.This study focuses on a more comprehensive combination failure mode that consists of bond failure of an anchorage body and failure of an anchored rock mass.The three-dimensional ultimate pullout capacity of the anchor cables is calculated based on the Hoek-Brown failure criterion and variation analysis method.The numerical solution for the curvilinear function in fracture plane is obtained based on the finite difference theory,which more accurately reflects the failure state of the anchor cable,as opposed to that being assumed in advance.The results reveal that relying solely on a single failure mode for UPC calculations has limitations,as changes in parameter values not only directly impact the UPC value but also can alter the failure model and thus the calculation method.展开更多
The Submerged Floating Tunnel(SFT)relies on a tensioned mooring system for precise positioning.The sudden breakage of a single cable can trigger an immediate alteration in the constraint conditions of the tube,inducin...The Submerged Floating Tunnel(SFT)relies on a tensioned mooring system for precise positioning.The sudden breakage of a single cable can trigger an immediate alteration in the constraint conditions of the tube,inducing a transient heave response within the structure along with a transient increase in cable tension experienced by adjacent cables.In more severe cases,this may even lead to a progressive failure culminating in the global destruction of the SFT.This study used ANSYS/AQWA to establish a numerical model of the entire length SFT for the hydrodynamic response analysis,and conducted a coupled calculation of the dynamic responses of the SFT-mooring line model based on Orca Flex to study the global dynamic responses of the SFT at the moment of cable breakage and the redistribution of cable internal forces.The most unfavorable position for SFT cable breakage was identified,the influence mechanism of cable breakage at different positions on the global dynamic response was revealed,and the progressive chain failure pattern caused by localized cable breakage are also clarified.展开更多
This study aims to develop an analytical model based on the curve beam theory to capture the mechanical response of a multihelix cable considering the internal contact displacements.Accordingly,a double-helix cable su...This study aims to develop an analytical model based on the curve beam theory to capture the mechanical response of a multihelix cable considering the internal contact displacements.Accordingly,a double-helix cable subjected to axial tension and torsion is analyzed,and both the line and point contacts between the neighboring wires and strands are considered via an equivalent homogenized approach.Then,the proposed theoretical model is extended to a hierarchical multihelix cable with mutual contact displacements by constructing a recursive relationship between the high-and low-level multihelix structures.The global tensile stiffness and torsional stiffness of the double-helix cable are successfully evaluated.The results are validated by a finite element(FE)model,and are found to be consistent with the findings of previous studies.It is shown that the contact deformations in multihelix cables significantly affect their equivalent mechanical stiffness,and the contact displacements are remarkably enhanced as the helix angles increase.This study provides insights into the interwire/interstrand mutual contact effects on global and local responses.展开更多
It is inevitable to encounter fault zones in tunnel construction.These faults can lead to significant deformations and potential collapses of the surrounding rock in the tunnel.Therefore,it is crucial to study the inf...It is inevitable to encounter fault zones in tunnel construction.These faults can lead to significant deformations and potential collapses of the surrounding rock in the tunnel.Therefore,it is crucial to study the influence of different fault angles on tunnel deformation.The Tabaiyi Tunnel,located in Yunnan Province of China passes through a multi-stage fault zone.The dynamic response characteristics of the surrounding rock in the Tabaiyi Tunnel were studied under various fault dip angles and the most unfavorable angle was identified.Physical model tests were conducted using two types of anchor cables with specific parameters.Additionally,a relationship between the engineering rock mass and energy absorption by the anchor cables was established,demonstrating the advantages of negative Poisson's ratio(NPR)anchor cables.Experimental results indicate that stress concentration tends to occur at the junctions between faults and the surrounding rock mass.Tunnels supported by NPR anchor cables effectively mitigate amplification effects,achieving energy absorption increases of up to 87%compared to positive Poisson's ratio(PR)anchor cables.Furthermore,the highest acceleration amplification was observed at a fault dip angle of 45°,with peak acceleration reaching twice that of the original input wave,indicating that this angle should be avoided in tunnel design.These findings provide valuable insights for the safe management of tunnels traversing fault zones.展开更多
Excavating super-large-span tunnels in soft rock masses presents significant challenges.To ensure safety,the sequential excavation method is commonly adopted.It utilizes internal temporary supports to spatially partit...Excavating super-large-span tunnels in soft rock masses presents significant challenges.To ensure safety,the sequential excavation method is commonly adopted.It utilizes internal temporary supports to spatially partition the tunnel face and divide the excavation into multiple stages.However,these internal supports generally impose spatial constraints,limiting the use of large-scale excavation equipment and reducing construction efficiency.To address this constraint,this study adopts the“Shed-frame”principle to explore the feasibility of an innovative support system,which aims to replace internal supports with prestressed anchor cables and thus provide a more spacious working space with fewer internal obstructions.To evaluate its effectiveness,a field case involving the excavation of a 24-m span tunnel in soft rock is presented,and an analysis of extensive field data is conducted to study the deformation characteristics of the surrounding rock and the mechanical behavior of the support system.The results revealed that prestressed anchor cables integrated the initial support with the shed,creating an effective“shed-frame”system,which successively maintained tunnel deformation and frame stress levels within safe regulatory bounds.Moreover,the prestressed anchor cables bolstered the surrounding rock effectively and reduced the excavation-induced disturbance zone significantly.In summary,the proposed support system balances construction efficiency and safety.These field experiences may offer valuable insights into the popularization and further development of prestressed anchor cable support systems.展开更多
Purpose–The purpose of this study is to address the deficiency in safety monitoring technology for 27.5 kV high-voltage cables within the railway traction power supply by analyzing the grounding methods employed in h...Purpose–The purpose of this study is to address the deficiency in safety monitoring technology for 27.5 kV high-voltage cables within the railway traction power supply by analyzing the grounding methods employed in high-speed railways and developing an effective monitoring solution.Design/methodology/approach–Through establishing a mathematical model of induced potential in the cable sheath and analyzing its influencing factors,the principle of grounding current monitoring is proposed.Furthermore,the accuracy of data collection and alarm function of the monitoring equipment were verified through laboratory simulation experiments.Finally,through practical application in the traction substation of the railway bureau on site,a large amount of data were collected to verify the stability and reliability of the monitoring system in actual environments.Findings–The experimental results show that the designed monitoring system can effectively monitor the grounding current of high-voltage cables and respond promptly to changes in cable insulation status.The system performs excellently in terms of data collection accuracy,real-time performance and reliability of alarm functions.In addition,the on-site trial results further confirm the accuracy and reliability of the monitoring system in practical applications,providing strong technical support for the safe operation of highspeed railway traction power supply systems.Originality/value–This study innovatively develops a 27.5kV high-voltage cable grounding current monitoring system,which provides a new technical means for evaluating the insulation status of cables by accurately measuring the grounding current.The design,experimental verification and application of this system in high-speed railway traction power supply systems have demonstrated significant academic value and practical significance,contributing innovative solutions to the field of railway power supply safety monitoring.展开更多
Indoor heating with an electrical heating cable,which has no harmful emissions to the environment,is an attractive way for radiant floor heating.To improve the heat transfer efficiency,a novel structure of the heating...Indoor heating with an electrical heating cable,which has no harmful emissions to the environment,is an attractive way for radiant floor heating.To improve the heat transfer efficiency,a novel structure of the heating cable was designed by proposing the concept of the aluminum finned sheath.The transient heat transfer model from the embedded heating cables to the floor is established to validate the feasibility of this novel cable.The effects of the fin number and shape on the cable’s temperature and heat flux distribution were analyzed.The results show that,with the specific volume of the sheath,increasing the number of fins can enhance the thermal diffusion capacity of the heating cable and reduce its temperature.Rectangular fins exhibit higher performance for heat dissipation than triangular fins due to their larger surface area.The simulation result shows that the floor temperature above the cable rises from 5°C to 22.5°C after a 2-h heating process,which was validated with experimental results.The results and suggestions can provide reference to guide the design of the heating cable.展开更多
The precise control of the shape of transversely stiffened suspended cable systems is crucial. However, existing form-finding methods primarily rely on iterative calculations that treat loads as fixed known conditions...The precise control of the shape of transversely stiffened suspended cable systems is crucial. However, existing form-finding methods primarily rely on iterative calculations that treat loads as fixed known conditions. These methods are inefficient and fail to accurately control shape results. In this study, we propose a form-finding method that analyzes the load response of models under different sag and stress levels, taking into account the construction process. To analyze the system, a structural finite element model was established in ANSYS, and geometric nonlinear analysis was conducted using the Newton-Raphson method. The form-finding analysis results demonstrate that the proposed method achieves precise control of shape, with a maximum shape error ranging from 0.33% to 0.98%. Furthermore, the relationships between loads and tension forces are influenced by the deformed shape of the structures, exhibiting significant geometric nonlinear characteristics. Meanwhile, the load response analysis reveals that the stress level of the self-equilibrium state in the transversely stiffened suspended cable system is primarily governed by strength criteria, while shape is predominantly controlled by stiffness criteria. Importantly, by simulating the initial tensioning process as an initial condition, this method solves for a counterweight that satisfies the requirements and achieves a self-equilibrium state with the desired shape. The shape of the self-equilibrium state is precisely controlled by simulating the construction process. Overall, this work presents a new method for analyzing the form-finding process of large-span transversely stiffened suspended cable system, considering the construction process which was often overlooked in previous studies.展开更多
With the rapid development of electrical power systems,ensuring the accuracy and reliability of power transmis-sion has become particularly crucial.The secondary cable line calibrator for current transformers(CT)plays...With the rapid development of electrical power systems,ensuring the accuracy and reliability of power transmis-sion has become particularly crucial.The secondary cable line calibrator for current transformers(CT)plays an essential role in calibrating electrical power systems.It is not only related to the safe operation of the system but also directly im-pacts the accuracy of energy metering.This study aims to design and analyze an efficient CT secondary cable line calibra-tor to explore its application effects in the power system.By thoroughly analyzing the characteristics of CT secondary ca-ble lines and the design requirements of the calibrator,this paper proposes an innovative design scheme for the calibrator.This device demonstrates significant effects in enhancing the accuracy and stability of power system calibration,providing robust technical support for the optimization and upgrade of the power system.This research not only offers a theoretical basis and practical guidance for the design and application of CT secondary cable line calibrators but also contributes new ideas and methods for the precise calibration and efficient management of the power system.展开更多
A suitable bearing capacity of foundation is critical for the safety of civil structures.Sometimes foundation reinforcement is necessary and an effective and environmentally friendly method would be the preferred choi...A suitable bearing capacity of foundation is critical for the safety of civil structures.Sometimes foundation reinforcement is necessary and an effective and environmentally friendly method would be the preferred choice.In this study,the potential application of enzyme-induced carbonate precipitation(EICP)was investigated for reinforcing a 0.6 m bedding layer on top of clay to improve the bearing capacity of the foundation underneath an underground cable duct.Laboratory experiments were conducted to determine the optimal operational parameters for the extraction of crude urease liquid and optimal grain size range of sea sands to be used to construct the bedding layer.Field tests were planned based on orthogonal experimental design to study the factors that would significantly affect the biocementation effect on site.The dynamic deformation modulus,calcium carbonate content and longterm ground stress variations were used to evaluate the bio-cementation effect and the long-term performance of the EICP-treated bedding layer.The laboratory test results showed that the optimal duration for the extraction of crude urease liquid is 1 h and the optimal usage of soybean husk powder in urease extraction solution is 100 g/L.The calcium carbonate production rate decreases significantly when the concentration of cementation solution exceeds 0.5 mol/L.The results of site trial showed that the number of EICP treatments has the most significant impact on the effectiveness of EICP treatment and the highest dynamic deformation modulus(Evd)of EICP-treated bedding layer reached 50.55 MPa.The area with better bio-cementation effect was found to take higher ground stress which validates that the EICP treatment could improve the bearing capacity of foundation by reinforcing the bedding layer.The field trial described and the analysis introduced in this paper can provide a practical basis for applying EICP technology to the reinforcement of bedding layer in poor ground conditions.展开更多
The Gaoloushan Tunnel in Longnan City,Gansu Province,China,frequently experiences rockburst disasters due to high in-situ stress.Managing rockburst in deep-buried tunnels remains a challenging issue.This paper employs...The Gaoloushan Tunnel in Longnan City,Gansu Province,China,frequently experiences rockburst disasters due to high in-situ stress.Managing rockburst in deep-buried tunnels remains a challenging issue.This paper employs RFPA(Rock Failure Process Analysis)software to establish a calculation model of constant resistance and large deformation(CRLD)anchorages and analyzes the effects of different support methods and pre-stress levels on rockburst.We simulate the process of tunnel rockburst disasters and find that ordinary anchor support incurs rockburst on the right arch waist and arch top,forming a V-shaped explosion pit.CRLD anchor support has several advantages in rockburst control,such as more uniform stress distribution in the surrounding rock,a uniform distribution of plastic zones,less noticeable damage to the tunnel,and effective control of the arch top displacement.The effectiveness of the CRLD anchor support under varying pre-stress conditions shows that a higher prestress results in a smaller plastic zone of the surrounding rock and arch top displacement and a lower number of acoustic emission signals,which better explains the excavation compensation effect.Moreover,adding long anchorages in the deep surrounding rock area can better control rockburst and reduce surrounding rock deformation.Based on these findings,we propose a comprehensive control system that combines long and short anchorages and provides the optimal scheme based on calculations.Therefore,by using high-prestress CRLD anchor support and the combination of long and short anchorages at critical positions,we can enhance the integrity of the surrounding rock,effectively absorb the energy released by the surrounding rock deformation,and reduce the incidence of rockburst disasters.展开更多
Cables composed of rare-earth barium copper oxide(REBCO)tapes have been extensively used in various superconducting devices.In recent years,conductor on round core(CORC)cable has drawn the attention of researchers wit...Cables composed of rare-earth barium copper oxide(REBCO)tapes have been extensively used in various superconducting devices.In recent years,conductor on round core(CORC)cable has drawn the attention of researchers with its outstanding current-carrying capacity and mechanical properties.The REBCO tapes are wound spirally on the surface of CORC cable.Under extreme loadings,the REBCO tapes with layered composite structures are vulnerable,which can lead to degradation of critical current and even quenching of superconducting devices.In this paper,we simulate the deformation of CORC cable under external loads,and analyze the damage inside the tape with the cohesive zone model(CZM).Firstly,the fabrication and cabling of CORC are simulated,and the stresses and strains generated in the tape are extracted as the initial condition of the next step.Then,the tension and bending loads are applied to CORC cable,and the damage distribution inside the tape is presented.In addition,the effects of some parameters on the damage are discussed during the bending simulations.展开更多
A new algorithm is proposed to solve the problems of shape-finding of suspension bridge with spatial cables what include tedious iteration,slow convergence speed and even no convergent under some circumstances.In this...A new algorithm is proposed to solve the problems of shape-finding of suspension bridge with spatial cables what include tedious iteration,slow convergence speed and even no convergent under some circumstances.In this paper,the stress analysis of the main cable is carried out,and the relationship between the slope change and the coordinate change is found.This paper also discussed how to find the minimum slope point of symmetrical or asymmetric main cable,and the deformation compatibility equation is established and solved to obtain the shape of main cable.The algorithm in this paper can ensure the convergence of the solution for the suspension bridge with spatial cables.The calculation accuracy is high through the demonstration of the calculation examples.展开更多
基金funded by the National Natural Science Foundation of China (52174096, 52304110)the Fundamental Research Funds for the Central Universities (2022YJSSB03)the Scientific and Technological Projects of Henan Province (232102320238)。
文摘The angle α between the fault strike and the axial direction of the roadway produces different damage characteristics. In this paper, the research methodology includes theoretical analyses, numerical simulations and field experiments in the context of the Daqiang coal mine located in Shenyang, China. The stability control countermeasure of "pre-splitting cutting roof + NPR anchor cable"(PSCR-NPR) is simultaneously proposed. According to the different deformation characteristics of the roadway, the faults are innovatively classified into three types, with α of type I being 0°-30°, α of type II being 30°-60°, and α of type III being 60°-90°. The full-cycle stress evolution paths during mining roadway traverses across different types of faults are investigated by numerical simulation. Different pinch angles α lead to high stress concentration areas at different locations in the surrounding rock. The non-uniform stress field formed in the shallow surrounding rock is an important reason for the instability of the roadway. The pre-cracked cut top shifted the high stress region to the deep rock mass and formed a low stress region in the shallow rock mass. The high prestressing NPR anchor cable transforms the non-uniform stress field of the shallow surrounding rock into a uniform stress field. PSCR-NPR is applied in the fault-through roadway of Daqiang mine. The low stress area of the surrounding rock was enlarged by 3-7 times, and the cumulative convergence was reduced by 45%-50%. It provides a reference for the stability control of the deep fault-through mining roadway.
基金financial support from the Second Tibetan Plateau Scientific Expedition and Research Program(STEP)(No.2019QZKK0708)the National Natural Science Foundation of China(No.41941018)the Special Fund of Yueqi Scholars(No.800015Z1207).
文摘The control of large deformation problems in layered soft rock tunnels needs to solve urgently.The roof problem is particularly severe among the deformation issues in tunnels.This study first analyzes the asymmetric deformation modes in layered soft rock tunnels with large deformations.Subsequently,we construct a mechanical model under ideal conditions for controlling the roof of layered soft rock tunnels through high preload with the support of NPR anchor cables.The prominent roles of long and short NPR anchor cables in the support system are also analyzed.The results indicate the significance of high preload in controlling the roof of layered soft rock tunnels.The short NPR anchor cables effectively improve the integrity of the stratified soft rock layers,while the long NPR anchor cables effectively mobilize the self-bearing capacity of deep-stable rock layers.Finally,the high-preload support method with NPR anchor cables is validated to have a good effect on controlling large deformations in layered soft rock tunnels through field monitoring data.
基金Project(41941018)supported by the National Natural Science Foundation of China for the Special Project FundingProject(22-JKCF-08)supported by the Study on in-situ Stress Database and 3D in-situ Stress Inversion Technology of Highway Tunnel in Shanxi Province,China+1 种基金Project(2022-JKKJ-6)supported by the Study on Disaster Mechanism and NPR Anchor Cable Prevention and Control of Coal Mining Caving Subsidence in Operating Tunnel in Mountainous Area,ChinaProject(BBJ2024032)supported by the Fundamental Research Funds for the Central Universities(PhD Top Innovative Talents Fund of CUMTB),China。
文摘A study was conducted to analyze the deformation mechanism of strongly weathered quartz schist in the Daliangshan Tunnel,located in the western Transverse Mountain area.A large deformation problem was experienced during the tunnel construction.To mitigate this problem,a support system was designed incorporating negative Poisson ratio(NPR)anchor cables with negative Poisson ratio effect.Physical model experiments,field experiments,and numerical simulation experiments were conducted to investigate the compensation mechanical behavior of NPR anchor cables.The large deformations of soft rocks in the Daliangshan Tunnel are caused by a high ground stress,a high degree of joint fracture development,and a high degree of surrounding rock fragmentation.A compensation mechanics support system combining long and short NPR anchor cables was suggested to provide sufficient counter-support force(approximately 350 kN)for the surrounding rock inside the tunnel.Comparing the NPR anchor cable support system with the original support system used in the Daliangshan tunnel showed that an NPR anchor cable support system,combining cables of 6.3 m and 10.3 m in length,effectively prevented convergence of surrounding rock deformation,and the integrated settlement convergence value remained below 300 mm.This study provides an effective scientific basis for resolving large deformation problems in deeply buried soft rocks in western transverse mountain areas.
基金partially funded by National Natural Science Foundation of China(Nos.52179098 and 41907251).
文摘High stress in surrounding rock will lead to serious problems,e.g.,rock burst in hard rock and large deformation in soft rock.The applied support system under high in-situ stress conditions should be able to carry high load and also accommodate large deformation without experiencing severe damage.In this paper,a specially designed energy-absorbing component for rock bolt and cable that can solve the above problems was proposed.The energy-absorbing component can provide support resistance by plastic deformation of the metal including constraint annulus and compression pipe.For practical engineering,two forms were proposed.One was installed in the surrounding rock by reaming,and the other was installed directly outside the surrounding rock.During the dilation of the surrounding rock,the relative displacement of constraint annulus and compression pipe occurs,resulting in deformation resistance.Deformation resistance is transmitted to the rock bolt or cable,providing support resistance.The lab test and numerical simulation showed that the energy-absorbing component can perfectly achieve the large deformation effect,the deformation amount is as high as 694 mm,and the bearing capacity is stable at 367 kN.The field application tests were carried out in the mining roadway of Xinjulong coal mine,and the results showed that the new type of cable can ensure itself not to break under the condition of large deformation of the surrounding rock.The energy-absorbing component has the superiorities of performing large constant resistance and controllable deformation to effectively control the unpredictable disasters such as large deformation in soft rock and rock burst in hard rock encountered in deep strata.
基金Financial support for this research was provided by the National Natural Science Foundation of China (Grant No.52222111)。
文摘The umbilical cable is a vital component of subsea production systems that provide power,chemical agents,control signals et al.,and its requirement for reliability is exceedingly high.However,as the umbilical cable is a composite structure comprising multiple functional units,the reliability analysis of such cables involves numerous parameters that can impact calculation efficiency.In this paper,the reliability analysis of a new kind of umbilical cable with carbon fiber rod under tension is analyzed.The global dynamic analytical model is first established to determine the maximum tension load,then the local analytical model of umbilical cable including each unit are constructed by finite element method(FEM).Based on the mechanical analytical model,the reliability of umbilical cable under tension load is studied using response surface method(RSM)and Monte Carlo method.During the calculation process,a new tangent plane sampling method to calculate the response surface function(RSF)is proposed in this paper,which could make sampling points faster come close to the RSF curve,and it is proved that the calculation efficiency increases about 33%comparing with traditional method.
基金National Natural Science Foundation of China under Grant Nos.52208345,52008124,52268054the Opening Fund of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection under Grant No.SKLGP2022K002+1 种基金the Natural Science Foundation of Jiangsu Province under Grant No.BK20210479the Fundamental Research Funds for the Central Universities under Grant No.JUSRP121055。
文摘Earthquake-induced slope failures are common occurrences in engineering practice and pre-stressed anchor cables are an effective technique in maintaining slope stability,especially in areas that are prone to earthquakes.Furthermore,the soil at typical engineering sites also exhibit unsaturated features.Explicit considerations of these factors in slope stability estimations are crucial in producing accurate results.In this study,the seismic responses of expansive soil slopes stabilized by anchor cables is studied in the realm of kinematic limit analysis.A modified horizontal slice method is proposed to semi-analytically formulate the energy balance equation.An illustrative slope is studied to demonstrate the influences of suction,seismic excitations and anchor cables on the slope stability.The results indicate that the stabilizing effect of soil suction relates strongly to the seismic excitation and presents a sine shape as the seismic wave propagates.In higher and steeper slopes,the stabilizing effect of suction is more evident.The critical slip surface tends to be much more shallow as the seismic wave approaches the peak and vice versa.
基金supported by the Natural Science Foundation of Hunan Province(2023JJ40078)the Scientific Research Project of Hunan Provincial Education Department(No.22C0573)+2 种基金the National Natural Science Foundation of China(51478477,51878668)Guizhou Provincial Department of Transportation Foundation(2017-122058)Foundation of Guizhou Provincial Science and Technology Department([2018]2815).
文摘Only simplified two-dimensional model and a single failure mode are adopted to calculate the ultimate pullout capacity(UPC)of anchor cables in most previous research.This study focuses on a more comprehensive combination failure mode that consists of bond failure of an anchorage body and failure of an anchored rock mass.The three-dimensional ultimate pullout capacity of the anchor cables is calculated based on the Hoek-Brown failure criterion and variation analysis method.The numerical solution for the curvilinear function in fracture plane is obtained based on the finite difference theory,which more accurately reflects the failure state of the anchor cable,as opposed to that being assumed in advance.The results reveal that relying solely on a single failure mode for UPC calculations has limitations,as changes in parameter values not only directly impact the UPC value but also can alter the failure model and thus the calculation method.
基金financially supported by the National Key Research and Development Program of China(Grant No.2022YFB2602800)Science and Technology Projects of Liaoning Province(Grant No.2023011352-JH1/110)。
文摘The Submerged Floating Tunnel(SFT)relies on a tensioned mooring system for precise positioning.The sudden breakage of a single cable can trigger an immediate alteration in the constraint conditions of the tube,inducing a transient heave response within the structure along with a transient increase in cable tension experienced by adjacent cables.In more severe cases,this may even lead to a progressive failure culminating in the global destruction of the SFT.This study used ANSYS/AQWA to establish a numerical model of the entire length SFT for the hydrodynamic response analysis,and conducted a coupled calculation of the dynamic responses of the SFT-mooring line model based on Orca Flex to study the global dynamic responses of the SFT at the moment of cable breakage and the redistribution of cable internal forces.The most unfavorable position for SFT cable breakage was identified,the influence mechanism of cable breakage at different positions on the global dynamic response was revealed,and the progressive chain failure pattern caused by localized cable breakage are also clarified.
基金Project supported by the National Natural Science Foundation of China(Nos.11932008 and 12102380)the Natural Science Foundation of Jiangsu Province of China(No.BK20180894)。
文摘This study aims to develop an analytical model based on the curve beam theory to capture the mechanical response of a multihelix cable considering the internal contact displacements.Accordingly,a double-helix cable subjected to axial tension and torsion is analyzed,and both the line and point contacts between the neighboring wires and strands are considered via an equivalent homogenized approach.Then,the proposed theoretical model is extended to a hierarchical multihelix cable with mutual contact displacements by constructing a recursive relationship between the high-and low-level multihelix structures.The global tensile stiffness and torsional stiffness of the double-helix cable are successfully evaluated.The results are validated by a finite element(FE)model,and are found to be consistent with the findings of previous studies.It is shown that the contact deformations in multihelix cables significantly affect their equivalent mechanical stiffness,and the contact displacements are remarkably enhanced as the helix angles increase.This study provides insights into the interwire/interstrand mutual contact effects on global and local responses.
基金funded by the National Natural Science Foundation of China(Grant No.42377154).
文摘It is inevitable to encounter fault zones in tunnel construction.These faults can lead to significant deformations and potential collapses of the surrounding rock in the tunnel.Therefore,it is crucial to study the influence of different fault angles on tunnel deformation.The Tabaiyi Tunnel,located in Yunnan Province of China passes through a multi-stage fault zone.The dynamic response characteristics of the surrounding rock in the Tabaiyi Tunnel were studied under various fault dip angles and the most unfavorable angle was identified.Physical model tests were conducted using two types of anchor cables with specific parameters.Additionally,a relationship between the engineering rock mass and energy absorption by the anchor cables was established,demonstrating the advantages of negative Poisson's ratio(NPR)anchor cables.Experimental results indicate that stress concentration tends to occur at the junctions between faults and the surrounding rock mass.Tunnels supported by NPR anchor cables effectively mitigate amplification effects,achieving energy absorption increases of up to 87%compared to positive Poisson's ratio(PR)anchor cables.Furthermore,the highest acceleration amplification was observed at a fault dip angle of 45°,with peak acceleration reaching twice that of the original input wave,indicating that this angle should be avoided in tunnel design.These findings provide valuable insights for the safe management of tunnels traversing fault zones.
基金supported by the National Natural Science Foundation of China through Grant No.51978523.
文摘Excavating super-large-span tunnels in soft rock masses presents significant challenges.To ensure safety,the sequential excavation method is commonly adopted.It utilizes internal temporary supports to spatially partition the tunnel face and divide the excavation into multiple stages.However,these internal supports generally impose spatial constraints,limiting the use of large-scale excavation equipment and reducing construction efficiency.To address this constraint,this study adopts the“Shed-frame”principle to explore the feasibility of an innovative support system,which aims to replace internal supports with prestressed anchor cables and thus provide a more spacious working space with fewer internal obstructions.To evaluate its effectiveness,a field case involving the excavation of a 24-m span tunnel in soft rock is presented,and an analysis of extensive field data is conducted to study the deformation characteristics of the surrounding rock and the mechanical behavior of the support system.The results revealed that prestressed anchor cables integrated the initial support with the shed,creating an effective“shed-frame”system,which successively maintained tunnel deformation and frame stress levels within safe regulatory bounds.Moreover,the prestressed anchor cables bolstered the surrounding rock effectively and reduced the excavation-induced disturbance zone significantly.In summary,the proposed support system balances construction efficiency and safety.These field experiences may offer valuable insights into the popularization and further development of prestressed anchor cable support systems.
基金the China Railway Wuhan Bureau Group Co.,Ltd.under the 2023 Science and Technology Research and Development Plan(Second Batch)(Wuhan Railway Science and Information Letter[2023]No.269),classification code 23GD07.
文摘Purpose–The purpose of this study is to address the deficiency in safety monitoring technology for 27.5 kV high-voltage cables within the railway traction power supply by analyzing the grounding methods employed in high-speed railways and developing an effective monitoring solution.Design/methodology/approach–Through establishing a mathematical model of induced potential in the cable sheath and analyzing its influencing factors,the principle of grounding current monitoring is proposed.Furthermore,the accuracy of data collection and alarm function of the monitoring equipment were verified through laboratory simulation experiments.Finally,through practical application in the traction substation of the railway bureau on site,a large amount of data were collected to verify the stability and reliability of the monitoring system in actual environments.Findings–The experimental results show that the designed monitoring system can effectively monitor the grounding current of high-voltage cables and respond promptly to changes in cable insulation status.The system performs excellently in terms of data collection accuracy,real-time performance and reliability of alarm functions.In addition,the on-site trial results further confirm the accuracy and reliability of the monitoring system in practical applications,providing strong technical support for the safe operation of highspeed railway traction power supply systems.Originality/value–This study innovatively develops a 27.5kV high-voltage cable grounding current monitoring system,which provides a new technical means for evaluating the insulation status of cables by accurately measuring the grounding current.The design,experimental verification and application of this system in high-speed railway traction power supply systems have demonstrated significant academic value and practical significance,contributing innovative solutions to the field of railway power supply safety monitoring.
文摘Indoor heating with an electrical heating cable,which has no harmful emissions to the environment,is an attractive way for radiant floor heating.To improve the heat transfer efficiency,a novel structure of the heating cable was designed by proposing the concept of the aluminum finned sheath.The transient heat transfer model from the embedded heating cables to the floor is established to validate the feasibility of this novel cable.The effects of the fin number and shape on the cable’s temperature and heat flux distribution were analyzed.The results show that,with the specific volume of the sheath,increasing the number of fins can enhance the thermal diffusion capacity of the heating cable and reduce its temperature.Rectangular fins exhibit higher performance for heat dissipation than triangular fins due to their larger surface area.The simulation result shows that the floor temperature above the cable rises from 5°C to 22.5°C after a 2-h heating process,which was validated with experimental results.The results and suggestions can provide reference to guide the design of the heating cable.
文摘The precise control of the shape of transversely stiffened suspended cable systems is crucial. However, existing form-finding methods primarily rely on iterative calculations that treat loads as fixed known conditions. These methods are inefficient and fail to accurately control shape results. In this study, we propose a form-finding method that analyzes the load response of models under different sag and stress levels, taking into account the construction process. To analyze the system, a structural finite element model was established in ANSYS, and geometric nonlinear analysis was conducted using the Newton-Raphson method. The form-finding analysis results demonstrate that the proposed method achieves precise control of shape, with a maximum shape error ranging from 0.33% to 0.98%. Furthermore, the relationships between loads and tension forces are influenced by the deformed shape of the structures, exhibiting significant geometric nonlinear characteristics. Meanwhile, the load response analysis reveals that the stress level of the self-equilibrium state in the transversely stiffened suspended cable system is primarily governed by strength criteria, while shape is predominantly controlled by stiffness criteria. Importantly, by simulating the initial tensioning process as an initial condition, this method solves for a counterweight that satisfies the requirements and achieves a self-equilibrium state with the desired shape. The shape of the self-equilibrium state is precisely controlled by simulating the construction process. Overall, this work presents a new method for analyzing the form-finding process of large-span transversely stiffened suspended cable system, considering the construction process which was often overlooked in previous studies.
文摘With the rapid development of electrical power systems,ensuring the accuracy and reliability of power transmis-sion has become particularly crucial.The secondary cable line calibrator for current transformers(CT)plays an essential role in calibrating electrical power systems.It is not only related to the safe operation of the system but also directly im-pacts the accuracy of energy metering.This study aims to design and analyze an efficient CT secondary cable line calibra-tor to explore its application effects in the power system.By thoroughly analyzing the characteristics of CT secondary ca-ble lines and the design requirements of the calibrator,this paper proposes an innovative design scheme for the calibrator.This device demonstrates significant effects in enhancing the accuracy and stability of power system calibration,providing robust technical support for the optimization and upgrade of the power system.This research not only offers a theoretical basis and practical guidance for the design and application of CT secondary cable line calibrators but also contributes new ideas and methods for the precise calibration and efficient management of the power system.
基金The authors gratefully acknowledge the financial support of National Natural Science Foundation of China(Grant No.41972276)Natural Science Foundation of Fujian Province(Grant No.2020J06013)“Foal Eagle Program”Youth Top-notch Talent Project of Fujian Province,China(Grant No.00387088).
文摘A suitable bearing capacity of foundation is critical for the safety of civil structures.Sometimes foundation reinforcement is necessary and an effective and environmentally friendly method would be the preferred choice.In this study,the potential application of enzyme-induced carbonate precipitation(EICP)was investigated for reinforcing a 0.6 m bedding layer on top of clay to improve the bearing capacity of the foundation underneath an underground cable duct.Laboratory experiments were conducted to determine the optimal operational parameters for the extraction of crude urease liquid and optimal grain size range of sea sands to be used to construct the bedding layer.Field tests were planned based on orthogonal experimental design to study the factors that would significantly affect the biocementation effect on site.The dynamic deformation modulus,calcium carbonate content and longterm ground stress variations were used to evaluate the bio-cementation effect and the long-term performance of the EICP-treated bedding layer.The laboratory test results showed that the optimal duration for the extraction of crude urease liquid is 1 h and the optimal usage of soybean husk powder in urease extraction solution is 100 g/L.The calcium carbonate production rate decreases significantly when the concentration of cementation solution exceeds 0.5 mol/L.The results of site trial showed that the number of EICP treatments has the most significant impact on the effectiveness of EICP treatment and the highest dynamic deformation modulus(Evd)of EICP-treated bedding layer reached 50.55 MPa.The area with better bio-cementation effect was found to take higher ground stress which validates that the EICP treatment could improve the bearing capacity of foundation by reinforcing the bedding layer.The field trial described and the analysis introduced in this paper can provide a practical basis for applying EICP technology to the reinforcement of bedding layer in poor ground conditions.
基金funded by the National Natural Science Foundation of China(52174096,42277174)the Fundamental Research Funds for the Central Universities(2022YJSSB03)the Scientific and Technological Projects of Henan Province(232102320238)。
文摘The Gaoloushan Tunnel in Longnan City,Gansu Province,China,frequently experiences rockburst disasters due to high in-situ stress.Managing rockburst in deep-buried tunnels remains a challenging issue.This paper employs RFPA(Rock Failure Process Analysis)software to establish a calculation model of constant resistance and large deformation(CRLD)anchorages and analyzes the effects of different support methods and pre-stress levels on rockburst.We simulate the process of tunnel rockburst disasters and find that ordinary anchor support incurs rockburst on the right arch waist and arch top,forming a V-shaped explosion pit.CRLD anchor support has several advantages in rockburst control,such as more uniform stress distribution in the surrounding rock,a uniform distribution of plastic zones,less noticeable damage to the tunnel,and effective control of the arch top displacement.The effectiveness of the CRLD anchor support under varying pre-stress conditions shows that a higher prestress results in a smaller plastic zone of the surrounding rock and arch top displacement and a lower number of acoustic emission signals,which better explains the excavation compensation effect.Moreover,adding long anchorages in the deep surrounding rock area can better control rockburst and reduce surrounding rock deformation.Based on these findings,we propose a comprehensive control system that combines long and short anchorages and provides the optimal scheme based on calculations.Therefore,by using high-prestress CRLD anchor support and the combination of long and short anchorages at critical positions,we can enhance the integrity of the surrounding rock,effectively absorb the energy released by the surrounding rock deformation,and reduce the incidence of rockburst disasters.
基金Project supported by the National Natural Science Foundation of China(Nos.U2241267,1217215511872195)。
文摘Cables composed of rare-earth barium copper oxide(REBCO)tapes have been extensively used in various superconducting devices.In recent years,conductor on round core(CORC)cable has drawn the attention of researchers with its outstanding current-carrying capacity and mechanical properties.The REBCO tapes are wound spirally on the surface of CORC cable.Under extreme loadings,the REBCO tapes with layered composite structures are vulnerable,which can lead to degradation of critical current and even quenching of superconducting devices.In this paper,we simulate the deformation of CORC cable under external loads,and analyze the damage inside the tape with the cohesive zone model(CZM).Firstly,the fabrication and cabling of CORC are simulated,and the stresses and strains generated in the tape are extracted as the initial condition of the next step.Then,the tension and bending loads are applied to CORC cable,and the damage distribution inside the tape is presented.In addition,the effects of some parameters on the damage are discussed during the bending simulations.
文摘A new algorithm is proposed to solve the problems of shape-finding of suspension bridge with spatial cables what include tedious iteration,slow convergence speed and even no convergent under some circumstances.In this paper,the stress analysis of the main cable is carried out,and the relationship between the slope change and the coordinate change is found.This paper also discussed how to find the minimum slope point of symmetrical or asymmetric main cable,and the deformation compatibility equation is established and solved to obtain the shape of main cable.The algorithm in this paper can ensure the convergence of the solution for the suspension bridge with spatial cables.The calculation accuracy is high through the demonstration of the calculation examples.