Using environment-friendly and low-cost biowaste adsorbents as toxic metal ion removal substrates from aqueous solutions has a great economic advantage. This work evaluated pumpkin and potato peel biowastes for the ad...Using environment-friendly and low-cost biowaste adsorbents as toxic metal ion removal substrates from aqueous solutions has a great economic advantage. This work evaluated pumpkin and potato peel biowastes for the adsorption of cadmium ions. The biowastes were treated with acid or base. Batch experiments were carried out by introducing a known concentration of metal ion solution into the biowaste sorbent at various pH levels. The pH and metal ion concentration was monitored with pH and cadmium ion-selective electrode continuously for two hours, and the final concentration for the metal ion after 24 hours was measured with the cadmium electrode and then confirmed with ICP-OES. L-type isotherms were obtained that fit to Freundlich model. Adsorption isotherms showed chemical adsorption and the kinetics following the second order model. Equilibrium adsorption capacity is higher than 29 mg/g at pH 5.6 when the initial concentration is 220 ppm. Dynamic cadmium adsorption capacity is 17 mg/g from aqueous solution when the feed solution is 220 ppm with pumpkin peel biowaste sorbent. The biowaste materials can be regenerated with acid washing.展开更多
This article reports a preliminary research on silicate-incorporated hydroxyapatite as a new environmental mineral used to remove cadmium ions from aqueous solutions. The silicate-incorporated hydroxyapatite was prepa...This article reports a preliminary research on silicate-incorporated hydroxyapatite as a new environmental mineral used to remove cadmium ions from aqueous solutions. The silicate-incorporated hydroxyapatite was prepared by coprecipitation and calcining, and silicate was incorporated into the crystal lattice of hydroxyapatite by partial substitution of phosphate. The amount of cadmium ions removed by silicate-incorporated hydroxyapatite was significantly elevated, which was 76% higher than that of pure hydroxyapatite. But the sorption behavior of cadmium ions on silicate-incorporated hydroxyapatite was similar to that of pure hydroxyapatite. Morphological study revealed that silicate incorporation confined the crystal growth and increased the specific surface area of hydroxyapatite, which were in favor of enhancing the cadmium ion sorption capacity of the samples. Incorporation of silicate into hydroxyapatite seems to be an effective approach to improve the environmental property of hydroxyapatite on removal of aqueous cadmium ions.展开更多
Eleven chelating agents were studied for their capabilities to mobilize the cadmium bound tp bovine serum albumin(BSA).The parameter F,which is defined as the ratio between the percentages of cadmium bound to BSA in t...Eleven chelating agents were studied for their capabilities to mobilize the cadmium bound tp bovine serum albumin(BSA).The parameter F,which is defined as the ratio between the percentages of cadmium bound to BSA in the presence and absence of chelating agents,can be used as the criterion to evaluate the mobilizing capability of chelating agent.The F values determined experimentally lead to a mobilizing capability order:DTPA>EDTA>EGTA>NTA>TR1EN>PEN>CYS>HIS>SAThe polyaminopolycarboxylate type chelators mobilize cadmium effectively.A linear relationship was found between 1gF and lg k'CdL (conditional stability constant of the cadmium chelate).展开更多
To separate cadmium ions from aqueous solution efficiently, micellar-enhanced ultrafiltration(MEUF) of hollow ultrafiltration membrane was used, with sodium dodecyl benzene sulfonate (SDBS) and sodium dodecyl (sulfate...To separate cadmium ions from aqueous solution efficiently, micellar-enhanced ultrafiltration(MEUF) of hollow ultrafiltration membrane was used, with sodium dodecyl benzene sulfonate (SDBS) and sodium dodecyl (sulfate) (SDS) as surfactants. The important parameters affecting the rejection of cadmium, the permeate flux and the secondary resistance were investigated, including surfactant species, surfactant concentration, operating time, trans-membrane pressure, the addition of electrolyte and solution pH. The results show that the rejection rate of cadmium reaches 97.8%. Trans-membrane pressure and the addition of electrolyte (NaCl) are less influential while surfactant species, surfactant concentration and pH value are important for micellar-enhanced ultrafiltration. The optimum concentration of surfactant is the critical micelle concentration, and SDBS is better than SDS. (Micellar-)(enhanced) ultrafiltration with SDBS can separate cadmium ions from aqueous solution efficiently.展开更多
The present research study is focused on green fabrication of superparamagnetic Phytogenic Magnetic Nanoparticles(PMNPs), and then its surface functionalization with 3-Mercaptopropionic acid(3-MPA). The resulting mate...The present research study is focused on green fabrication of superparamagnetic Phytogenic Magnetic Nanoparticles(PMNPs), and then its surface functionalization with 3-Mercaptopropionic acid(3-MPA). The resulting material(i.e. 3-MPA@PMNPs) characterized by FTIR, powder XRD, SEM, TEM, EDX, VSM, BET and TGA techniques and then further employed for the investigation of the adsorptive removal of lead(Pb^2+) and cadmium(Cd^2+) ions from aqueous solutions in single and binary systems. The material showed fastest adsorptive rate(98.23%) for Pb^2+ and(96.5%) Cd2+within the contact time of 60 min at pH 6.5 in the single system. The experimental data were fitted well to Langmuir isotherm, indicated monolayer adsorption of both metal ions onto 3-MPA@PMNPs and an estimated comparable adsorptive capacity of 68.41 mg·g^-1(Pb2+) and 79.8 mg·g^-1(Cd2+) at p H 6.5. However, kinetic data agreed well with pseudo-second-order model, and indicated that the removal mainly supported chemisorption and/or ion-exchange mechanism. Thermodynamic parameters such asΔGo,ΔHo, and ΔSo, were-3259.20, 119.35 and 20.73 for Pb^2+, and-1491.10, 45.441 and 7.87 for Cd^2+ at temperature 298.15 K, confirmed that adsorption was endothermic, spontaneous and favorable. The material demonstrated higher selectivity of Pb2+ and its removal efficiency was(98.20 ± 0.3)% in binary system experiments. The material persisted performance up-to seven(07) consecutive treatment cycles without losing their stability and offered comparable fastest magnetic separation(35 s) from aqueous solutions. Therefore, it is recommended that the prepared material can be employed to remove toxic heavy metal ions from water/wastewaters and this "green" method can easily be implemented at large scale in low economy countries.展开更多
Magnetic alumina nano composite (MANC) was prepared for combination of the adsorption features of nano activated alumina with the magnetic properties of iron oxides to produce a nano magnetic adsorbent, which can be s...Magnetic alumina nano composite (MANC) was prepared for combination of the adsorption features of nano activated alumina with the magnetic properties of iron oxides to produce a nano magnetic adsorbent, which can be separated from the medium by a simple magnetic process after adsorption. MANC was characterized using XRD, SEM, TEM, EDX and surface area (BET). Quantum design SQUID magnetometer was used to study the magnetic measurement. The present study was conducted to evaluate the feasibility of MANC for the removal of cadmium ions from aqueous solutions through batch adsorption technique. The effects of pH, adsorbent dose, temperature, contact time and initial Cd2+ concentration on cadmium ions adsorption were studied. Equilibrium data were fitted to Langmuir, Freundlich and Temkin isotherms. The equilibrium data were best represented by the Langmuir isotherm. The kinetic data were fitted to pseudo-first-order, pseudo-second-order, Elovich and intraparticle diffusion models, and it was found to follow closely the pseudo-second-order model. Thermodynamic parameters were calculated for the Cd2+ ion-MANC system and the positive value of ΔH° showed that the adsorption was endothermic in nature. Furthermore, a single-stage batch adsorber was designed for the removal of Cd2+ ions by MANC based on the equilibrium data obtained.展开更多
In this study,the potential of a low-cost bio-adsorbent,taken directly from Date Palm Trunk Fibers(DPTF)agricultural wastes,for cadmium ions removal from wastewaters is examined.The performances of this adsorbent are ...In this study,the potential of a low-cost bio-adsorbent,taken directly from Date Palm Trunk Fibers(DPTF)agricultural wastes,for cadmium ions removal from wastewaters is examined.The performances of this adsorbent are evaluated by building breakthrough curves at different bed heights and flow rates while keeping other parameters,such as the initial feed concentration,pH,and particle size,constant.The results indicate that the maximum cadmium adsorption capacity of DTPF can be obtained from the Thomas model as 51.5 mg/g with the most extended mass transfer zone of 83 min at the lowest flow rate at 5 ml/min.The saturation concentrations(NO)and the rate constant(kab)obtained from the BDST(bed depth service time)model are 7022.16 mg/l and 0.0536 l/mg.min,respectively.Using the Yon-Nelsen Model,it is found that operating at a lower flow rate leads to a larger value of the elapsed needed time to reach a 50%breakthrough.The Wolborska model indicates that the bed capacity increases with decreasing the flow rate,and the adsorbent can achieve a greater external mass transfer kinetic coefficient(2.271/min)at a higher flow rate.展开更多
This work reports the mechanism of benzimidazoledithi(BDT) derivatives’ selective pre-enrichment of Cd2+under the stimulation of glutathione(GSH). The geometric and electronic properties of five BDT-M2+complexes(M = ...This work reports the mechanism of benzimidazoledithi(BDT) derivatives’ selective pre-enrichment of Cd2+under the stimulation of glutathione(GSH). The geometric and electronic properties of five BDT-M2+complexes(M = Cd, Cu, Hg, Pb, Co) have been investigated using density functional theory(DFT) at the B3 LYP/6-311 G(d,p) level with the GAUSSIAN 09 package program. The results show that BDT ligand exhibits alternative behaviors to different metal ions with the binding affinity in the order of Cu2+> Cd2+> Pb2+> Hg2+> Co2+. After adding the BDT-M2+complex into the GSH solution, the new S–S bonds can be formed, resulting with benzimidazole-metal ions(MBI-M2+) falling off into the GSH solution. Furthermore, the weak interaction between the new glutathione derivative(GSHD) and MBI-M2+were found. However, the strong chelation was detected between GSHD and MBI-M2+(M = Cu, Pb, Hg, Co) to hinder the adsorbed Cu2+, Pb2+and Hg2+, Co2+completely falling into the GSH solution, which suggests porous silicon composite modified by BDT has a certain selective pre-enrichment of Cd2+ion.展开更多
Sorption characteristics of both an organic pollutant (phenol) and a heavy metal (cadmium ion) on the clay layer of a Lou soil (Eum-orthic Anthrosol in Chinese Soil Taxonomy) along with the sorption mechanism were inv...Sorption characteristics of both an organic pollutant (phenol) and a heavy metal (cadmium ion) on the clay layer of a Lou soil (Eum-orthic Anthrosol in Chinese Soil Taxonomy) along with the sorption mechanism were investigated using three soil treatments: modification with a cationic surfactant cetyltrimethylammonium bromide added at an amount equivalent to 50% and 100% of the soil CEC (50%CB and 100%CB), modification with an amphoteric surface-modifying agent dodecyldimethylbetaine (commercially known as BS-12) added at an amount equivalent to 50% and 100% of the soil CEC (50% BS and 100%BS), and an unmodified control (CK). Results showed that the BS soil treatments increased sorption of both the heavy metal Cd2+ and the organic pollutant phenol. The equilibrium sorption amount of Cd2+ decreased in the order: 50%BS > 100%BS > CK > 50%CB > 100%CB, with the BS soil treatments being about 1.3 to 1.8 times higher and the CB soil treatments about 23% to 41% lower than CK. Both the single-site and two-site Langmuir models could be applied to describe the sorption of Cd2+ in each soil treatment. The equilibrium sorption amount of phenol on the soil samples decreased in the order: 100%CB > 50%CB > 100%BS > 50%BS > CK, with the CB soil treatments being 41.0 to 79.6 times higher and the BS soil treatments 4.0 to 8.3 times higher than CK. The Freundlich equation could also be used to describe the sorption characteristics of phenol. In the BS soil treatments, both an organophobic long carbon chain and hydrophilic charged groups resulted in a relatively strong sorption ability for both heavy metals and organic pollutants. In addition, the sorption ratio K, the ratio of phenol sorption amount of the modified soil to that of CK, increased initially and decreased later with the amount of phenol added, and the critical sorption ratio KC, the peak value of the sorption ratio curve plotted against the added phenol concentration, was a good index for evaluating the sorption ability of phenol in the soil.展开更多
文摘Using environment-friendly and low-cost biowaste adsorbents as toxic metal ion removal substrates from aqueous solutions has a great economic advantage. This work evaluated pumpkin and potato peel biowastes for the adsorption of cadmium ions. The biowastes were treated with acid or base. Batch experiments were carried out by introducing a known concentration of metal ion solution into the biowaste sorbent at various pH levels. The pH and metal ion concentration was monitored with pH and cadmium ion-selective electrode continuously for two hours, and the final concentration for the metal ion after 24 hours was measured with the cadmium electrode and then confirmed with ICP-OES. L-type isotherms were obtained that fit to Freundlich model. Adsorption isotherms showed chemical adsorption and the kinetics following the second order model. Equilibrium adsorption capacity is higher than 29 mg/g at pH 5.6 when the initial concentration is 220 ppm. Dynamic cadmium adsorption capacity is 17 mg/g from aqueous solution when the feed solution is 220 ppm with pumpkin peel biowaste sorbent. The biowaste materials can be regenerated with acid washing.
文摘This article reports a preliminary research on silicate-incorporated hydroxyapatite as a new environmental mineral used to remove cadmium ions from aqueous solutions. The silicate-incorporated hydroxyapatite was prepared by coprecipitation and calcining, and silicate was incorporated into the crystal lattice of hydroxyapatite by partial substitution of phosphate. The amount of cadmium ions removed by silicate-incorporated hydroxyapatite was significantly elevated, which was 76% higher than that of pure hydroxyapatite. But the sorption behavior of cadmium ions on silicate-incorporated hydroxyapatite was similar to that of pure hydroxyapatite. Morphological study revealed that silicate incorporation confined the crystal growth and increased the specific surface area of hydroxyapatite, which were in favor of enhancing the cadmium ion sorption capacity of the samples. Incorporation of silicate into hydroxyapatite seems to be an effective approach to improve the environmental property of hydroxyapatite on removal of aqueous cadmium ions.
文摘Eleven chelating agents were studied for their capabilities to mobilize the cadmium bound tp bovine serum albumin(BSA).The parameter F,which is defined as the ratio between the percentages of cadmium bound to BSA in the presence and absence of chelating agents,can be used as the criterion to evaluate the mobilizing capability of chelating agent.The F values determined experimentally lead to a mobilizing capability order:DTPA>EDTA>EGTA>NTA>TR1EN>PEN>CYS>HIS>SAThe polyaminopolycarboxylate type chelators mobilize cadmium effectively.A linear relationship was found between 1gF and lg k'CdL (conditional stability constant of the cadmium chelate).
基金Project (50225926) supported by the National Foundation for Distinguished Young Scholars Project (20020532017)supported by the Doctoral Foundation of Ministry of Education of China Project (2003AA644010) supported by the National High techResear
文摘To separate cadmium ions from aqueous solution efficiently, micellar-enhanced ultrafiltration(MEUF) of hollow ultrafiltration membrane was used, with sodium dodecyl benzene sulfonate (SDBS) and sodium dodecyl (sulfate) (SDS) as surfactants. The important parameters affecting the rejection of cadmium, the permeate flux and the secondary resistance were investigated, including surfactant species, surfactant concentration, operating time, trans-membrane pressure, the addition of electrolyte and solution pH. The results show that the rejection rate of cadmium reaches 97.8%. Trans-membrane pressure and the addition of electrolyte (NaCl) are less influential while surfactant species, surfactant concentration and pH value are important for micellar-enhanced ultrafiltration. The optimum concentration of surfactant is the critical micelle concentration, and SDBS is better than SDS. (Micellar-)(enhanced) ultrafiltration with SDBS can separate cadmium ions from aqueous solution efficiently.
基金Supported by the State Key Laboratory of Environmental Criteria and Risk Assessment(No.SKLECRA 2013FP12)Shandong Province Key Research and Development Program(2016GSF115040)the financial support by the Chinese Scholarship Council,China(CSC No:2016GXYO20)
文摘The present research study is focused on green fabrication of superparamagnetic Phytogenic Magnetic Nanoparticles(PMNPs), and then its surface functionalization with 3-Mercaptopropionic acid(3-MPA). The resulting material(i.e. 3-MPA@PMNPs) characterized by FTIR, powder XRD, SEM, TEM, EDX, VSM, BET and TGA techniques and then further employed for the investigation of the adsorptive removal of lead(Pb^2+) and cadmium(Cd^2+) ions from aqueous solutions in single and binary systems. The material showed fastest adsorptive rate(98.23%) for Pb^2+ and(96.5%) Cd2+within the contact time of 60 min at pH 6.5 in the single system. The experimental data were fitted well to Langmuir isotherm, indicated monolayer adsorption of both metal ions onto 3-MPA@PMNPs and an estimated comparable adsorptive capacity of 68.41 mg·g^-1(Pb2+) and 79.8 mg·g^-1(Cd2+) at p H 6.5. However, kinetic data agreed well with pseudo-second-order model, and indicated that the removal mainly supported chemisorption and/or ion-exchange mechanism. Thermodynamic parameters such asΔGo,ΔHo, and ΔSo, were-3259.20, 119.35 and 20.73 for Pb^2+, and-1491.10, 45.441 and 7.87 for Cd^2+ at temperature 298.15 K, confirmed that adsorption was endothermic, spontaneous and favorable. The material demonstrated higher selectivity of Pb2+ and its removal efficiency was(98.20 ± 0.3)% in binary system experiments. The material persisted performance up-to seven(07) consecutive treatment cycles without losing their stability and offered comparable fastest magnetic separation(35 s) from aqueous solutions. Therefore, it is recommended that the prepared material can be employed to remove toxic heavy metal ions from water/wastewaters and this "green" method can easily be implemented at large scale in low economy countries.
文摘Magnetic alumina nano composite (MANC) was prepared for combination of the adsorption features of nano activated alumina with the magnetic properties of iron oxides to produce a nano magnetic adsorbent, which can be separated from the medium by a simple magnetic process after adsorption. MANC was characterized using XRD, SEM, TEM, EDX and surface area (BET). Quantum design SQUID magnetometer was used to study the magnetic measurement. The present study was conducted to evaluate the feasibility of MANC for the removal of cadmium ions from aqueous solutions through batch adsorption technique. The effects of pH, adsorbent dose, temperature, contact time and initial Cd2+ concentration on cadmium ions adsorption were studied. Equilibrium data were fitted to Langmuir, Freundlich and Temkin isotherms. The equilibrium data were best represented by the Langmuir isotherm. The kinetic data were fitted to pseudo-first-order, pseudo-second-order, Elovich and intraparticle diffusion models, and it was found to follow closely the pseudo-second-order model. Thermodynamic parameters were calculated for the Cd2+ ion-MANC system and the positive value of ΔH° showed that the adsorption was endothermic in nature. Furthermore, a single-stage batch adsorber was designed for the removal of Cd2+ ions by MANC based on the equilibrium data obtained.
文摘In this study,the potential of a low-cost bio-adsorbent,taken directly from Date Palm Trunk Fibers(DPTF)agricultural wastes,for cadmium ions removal from wastewaters is examined.The performances of this adsorbent are evaluated by building breakthrough curves at different bed heights and flow rates while keeping other parameters,such as the initial feed concentration,pH,and particle size,constant.The results indicate that the maximum cadmium adsorption capacity of DTPF can be obtained from the Thomas model as 51.5 mg/g with the most extended mass transfer zone of 83 min at the lowest flow rate at 5 ml/min.The saturation concentrations(NO)and the rate constant(kab)obtained from the BDST(bed depth service time)model are 7022.16 mg/l and 0.0536 l/mg.min,respectively.Using the Yon-Nelsen Model,it is found that operating at a lower flow rate leads to a larger value of the elapsed needed time to reach a 50%breakthrough.The Wolborska model indicates that the bed capacity increases with decreasing the flow rate,and the adsorbent can achieve a greater external mass transfer kinetic coefficient(2.271/min)at a higher flow rate.
基金supported by the National Natural Science Foundation of China(No.51504117,61764009,51762043)Yunnan Youth Fund Project(2016FD037)+1 种基金Talent Development Program of KUST(KKSY201563032)the Program for Innovative Research Team in University of Ministry of Education of China(No.IRT_17R48)
文摘This work reports the mechanism of benzimidazoledithi(BDT) derivatives’ selective pre-enrichment of Cd2+under the stimulation of glutathione(GSH). The geometric and electronic properties of five BDT-M2+complexes(M = Cd, Cu, Hg, Pb, Co) have been investigated using density functional theory(DFT) at the B3 LYP/6-311 G(d,p) level with the GAUSSIAN 09 package program. The results show that BDT ligand exhibits alternative behaviors to different metal ions with the binding affinity in the order of Cu2+> Cd2+> Pb2+> Hg2+> Co2+. After adding the BDT-M2+complex into the GSH solution, the new S–S bonds can be formed, resulting with benzimidazole-metal ions(MBI-M2+) falling off into the GSH solution. Furthermore, the weak interaction between the new glutathione derivative(GSHD) and MBI-M2+were found. However, the strong chelation was detected between GSHD and MBI-M2+(M = Cu, Pb, Hg, Co) to hinder the adsorbed Cu2+, Pb2+and Hg2+, Co2+completely falling into the GSH solution, which suggests porous silicon composite modified by BDT has a certain selective pre-enrichment of Cd2+ion.
基金Project supported by the National Natural Science Foundation of China (No. 40301021).
文摘Sorption characteristics of both an organic pollutant (phenol) and a heavy metal (cadmium ion) on the clay layer of a Lou soil (Eum-orthic Anthrosol in Chinese Soil Taxonomy) along with the sorption mechanism were investigated using three soil treatments: modification with a cationic surfactant cetyltrimethylammonium bromide added at an amount equivalent to 50% and 100% of the soil CEC (50%CB and 100%CB), modification with an amphoteric surface-modifying agent dodecyldimethylbetaine (commercially known as BS-12) added at an amount equivalent to 50% and 100% of the soil CEC (50% BS and 100%BS), and an unmodified control (CK). Results showed that the BS soil treatments increased sorption of both the heavy metal Cd2+ and the organic pollutant phenol. The equilibrium sorption amount of Cd2+ decreased in the order: 50%BS > 100%BS > CK > 50%CB > 100%CB, with the BS soil treatments being about 1.3 to 1.8 times higher and the CB soil treatments about 23% to 41% lower than CK. Both the single-site and two-site Langmuir models could be applied to describe the sorption of Cd2+ in each soil treatment. The equilibrium sorption amount of phenol on the soil samples decreased in the order: 100%CB > 50%CB > 100%BS > 50%BS > CK, with the CB soil treatments being 41.0 to 79.6 times higher and the BS soil treatments 4.0 to 8.3 times higher than CK. The Freundlich equation could also be used to describe the sorption characteristics of phenol. In the BS soil treatments, both an organophobic long carbon chain and hydrophilic charged groups resulted in a relatively strong sorption ability for both heavy metals and organic pollutants. In addition, the sorption ratio K, the ratio of phenol sorption amount of the modified soil to that of CK, increased initially and decreased later with the amount of phenol added, and the critical sorption ratio KC, the peak value of the sorption ratio curve plotted against the added phenol concentration, was a good index for evaluating the sorption ability of phenol in the soil.