With the continuous improvement of urban residents’lives,the demand for of urban infrastructure construction increases,requiring more and more advanced engineering technology.We should not only speed up the progress ...With the continuous improvement of urban residents’lives,the demand for of urban infrastructure construction increases,requiring more and more advanced engineering technology.We should not only speed up the progress of the project,but also reduce the impact of the construction on the surrounding environment.Our company has had several achievements in this regard,and prefabricated open caisson construction process is one of them.In this paper,the application of prefabricated caisson construction method is analyzed in depth according to the actual situation of the rain sewage reconstruction treatment project of Minghe ecological water system in Dancheng County.Through practice,it is concluded that this construction method greatly improves the construction efficiency,shortens the overall construction process,reduces the construction cost,and effectively improves environmental quality of the construction site,which has good reference value.展开更多
This paper presents failure mechanisms of the soil at the caisson-tip with fillet during suction-assisted penetration of suction caissons in undrained clay.Theoretical solutions of resistance factor N_c of the caisson...This paper presents failure mechanisms of the soil at the caisson-tip with fillet during suction-assisted penetration of suction caissons in undrained clay.Theoretical solutions of resistance factor N_c of the caisson-tip are obtained in terms of the caisson-tip geometry ratio of the flat section of the caisson-tip to the caisson wall thickness m/t and adhesion factorsα_i along inside of caisson wall andα_b at the base of the caisson-tip.It is indicated that the factor N_c increases with the increase of m/t,α_i and a_b.The resistance factors N_c for the rough base(α_b=1)are larger by 0.57than that for the smooth base(α_b=0).Besides,the factors N_c of caisson-tip with flat base(m=t)are larger by 1.14 than that with full internal fillet(m=0).The required suction to penetrate suction caissons with various fillets is obtained in terms of the force equilibrium in vertical direction.The finite element limit analysis and centrifuge model test results are used to verify the rationality of the presented failure mechanisms and theoretical predictions.展开更多
Suction caissons are widely used for anchoring floating platform and offshore wind turbines.Penetration of the suction caisson into the desired position under the combination of its self-weight and applied suction res...Suction caissons are widely used for anchoring floating platform and offshore wind turbines.Penetration of the suction caisson into the desired position under the combination of its self-weight and applied suction resulted from pumping out the encased water is integral to practical engineering.Model tests were carried out to investigate the suctionassisted installation of suction caissons in clay under various undrained shear strengths.It was found that there exists a critical penetration depth value.When the penetration depth is smaller than the critical value,the soil plug undrained shear strength is higher than intact clay(i.e.,clay prior to installation).However,when the penetration depth is greater than the critical penetration depth,the undrained shear strength of soil plug is lower than intact clay.The critical value decreases with the increasing consolidation time and undrained shear strength of clay.During suction-assisted installation,cracks occur around suction caissons.The installation way has little effect on the crack formation.The influence range(i.e.,the maximum distance between the crack and the suction caisson edge)was found to increase with the increasing friction coefficient of interface between the suction caisson wall and soil and decreases with the increasing soil undrained shear strength.In addition,the drained condition of the clay during installation is dominated by the caisson aspect ratio,the undrained shear strength and the friction coefficient between the caisson wall and clay.Equations to estimate the penetration resistance and the required suction to install the suction caisson are summarized.展开更多
Suction caissons have been widely used as anchors and foundations for floating and fixed offshore platforms. The pull-out performance of conventional suction caissons (with upright walls) has been investigated by a ...Suction caissons have been widely used as anchors and foundations for floating and fixed offshore platforms. The pull-out performance of conventional suction caissons (with upright walls) has been investigated by a number of researchers. However, no attention has been paid to tapered suction caissons. This paper deals with the performance of tapered suction caissons under vertical pull-out loads. A numerical approach is used for this purpose. The numerical model is first verified against test data available for common upright caissons. The verified model is then used to study the pullout performance of tapered suction caissons. It is noticed that the pull-out capacities exhibited by tapered suction caissons are in general considerably higher than those from their corresponding traditional upright caissons. To obtain an insight into this superior behaviour, effects from certain soil/caisson/drainage parameters on the pull-out capacity of tapered suction caissons are studied. Soil cohesion is noticed to have a linear improving effect on the capacity of both upright and ta- pered suction caissons. The soil internal friction angle is noticed to have an exponential increasing effect on the pull-out capacity. With a constant caisson diameter, an increase in the aspect ratio is seen to particularly influence the pull-out capacity. With a constant caisson length, an increase in the aspect ratio is discovered to result in non-linear decrease in the pull-out capacity. Under undrained conditions, tapered models generally show less sensitivity to above mentioned soil/caisson parameters as compared with those under drained conditions.展开更多
To overcome the problems in design methodologies and construction control measures for the large open caisson, systematic research was conducted on the side friction calculation mode of the large open caisson. Based o...To overcome the problems in design methodologies and construction control measures for the large open caisson, systematic research was conducted on the side friction calculation mode of the large open caisson. Based on the field monitoring data of lateral soil pressure on the side wall of the open caisson for the southern anchorage of the Maanshan Yangtze River Highway Bridge, the statistical result of the side friction under different buried depths of the cutting edge of the open caisson was back-analyzed; and the side friction distribution of the large open caisson was underlined. The analysis results indicate that when the buried depth of the cutting edge is smaller than a certain depth H0, the side friction linearly increases with the increase in the buffed depth. However, as the buffed depth of the cutting edge is larger than H0, the side friction shows a distribution with small at both ends and large in the middle. The top of the distribution can be regarded as a linear curve, while the bottom as a hyperbolic curve. As the buffed depth of cutting edge increases continuously, the peak value of the side friction linearly increases and the location of the peak value gradually moves down. Based on the aforementioned conclusions, a revised calculation mode of the large open caisson is presented. Then, the calculated results are compared with the field monitoring data, which verifies the feasibility of the proposed revised calculation mode.展开更多
An experimental investigation of irregular wave forces on quasi-ellipse caisson structures is presented. Irregular waves were generated based on the Jonswap spectrum with two significant wave heights, and the spectrum...An experimental investigation of irregular wave forces on quasi-ellipse caisson structures is presented. Irregular waves were generated based on the Jonswap spectrum with two significant wave heights, and the spectrum peak periods range from 1.19 s to 1.81 s. Incident wave directions relative to the centre line of the multiple caissons are from 0° to 22.5°. The spacing between caissons ranges from 2 to 3 times that of the width of the caisson. The effects of these parameters on the wave forces of both the perforated and non-perforated caissons were compared and analyzed. It was found that the perforated caisson can reduce wave forces, especially in the transverse direction. Furthermore, the relative interval and incident wave direction have significant effects on the wave forces in the case of multiple caissons.展开更多
Monotonic lateral load model tests were carried out on steel skirted suction caissons embedded in the saturated medium sand to study the bearing capacity. A three-dimensional continuum finite element model was develop...Monotonic lateral load model tests were carried out on steel skirted suction caissons embedded in the saturated medium sand to study the bearing capacity. A three-dimensional continuum finite element model was developed with Z_SOIL software. The numerical model was calibrated against experimental results. Soil deformation and earth pressures on skirted caissons were investigated by using the finite element model to extend the model tests. It shows that the "skirted" structure can significantly increase the lateral capacity and limit the deflection, especially suitable for offshore wind turbines, compared with regular suction caissons without the "skirted" at the same load level. In addition, appropriate determination of rotation centers plays a crucial role in calculating the lateral capacity by using the analytical method. It was also found that the rotation center is related to dimensions of skirted suction caissons and loading process, i.e. the rotation center moves upwards with the increase of the "skirted" width and length; moreover, the rotation center moves downwards with the increase of loading and keeps constant when all the sand along the caisson's wall yields. It is so complex that we cannot simply determine its position like the regular suction caisson commonly with a specified position to the length ratio of the caisson.展开更多
This paper presents a series of monotonically combined lateral loading tests to investigate the bearing capacity of the MSCs (modified suction caissons) in the saturated marine fine sand. The lateral loads were appl...This paper presents a series of monotonically combined lateral loading tests to investigate the bearing capacity of the MSCs (modified suction caissons) in the saturated marine fine sand. The lateral loads were applied under load- and displacement-controlled methods at the loading eccentricity ratios of 1.5, 2.0 and 2.5. Results show that, in the displacement-controlled test, the deflection-softening behavior of load-deflection curves for MSCs was observed, and the softening degree of the load-deflection response increased with the increasing external skirt length or the decreasing loading eccentricity. It was also found that the rotation center of the MSC at failure determined by the load-controlled method is slightly lower than that by the displacement-controlled method. The calculated MSC capacity based on the rotation center position in serviceability limit state is relatively conservative, compared with the calculated capacity based on the rotation center position in the ultimate limit state. In the limit state, the passive earth pressures opposite the loading direction under load- and displacement-controlled methods decrease by 46% and 74% corresponding to peak values, respectively; however, the passive earth pressures in the loading direction at failure only decrease by approximately 3% and 7%, compared with their peak values.展开更多
The total horizontal and vertical forces acting on a partially-perforated caisson breakwater and their phase difference are investigated in this study. The perforated breakwater sits on the rubble tilled foundation, a...The total horizontal and vertical forces acting on a partially-perforated caisson breakwater and their phase difference are investigated in this study. The perforated breakwater sits on the rubble tilled foundation, and has a rock-filled core. An analytical solution is developed based on the eigenfunction expansion and matching method to solve the wave field around the breakwater. The finite element method is used for simulating the wave-induced tlow in the rabble-filled foundation. Experiments are also conducted to study the wave forces on the perforated caissons. Numerical predictions of the present model are compared with experimental resuhs. The phase differences between the total horizontal and vertical forces are particularly analyzed by means of experimental and numerical results. The major factors that affect the wave forces are examined.展开更多
The volume of fluid (VOF) method is presented to determine the reflection coefficient of and the total horizontal wave force on perforated caisson breakwaters. The present numerical model is compared with a linear ana...The volume of fluid (VOF) method is presented to determine the reflection coefficient of and the total horizontal wave force on perforated caisson breakwaters. The present numerical model is compared with a linear analytic solution obtained by Sahoo et al. (2000). Also this model is verified with the authors′ laboratory data. It is found that the numerical model is in good agreement with the regression equations obtained from the experimental data. The present numerical method is further discussed to relate porosity, the relative wave absorbing chamber depth, the reflection coefficient of perforated caissons and the total horizontal force on them.展开更多
In order to suit the condition that the wave uplift is correlated with the horizontal wave load acting on a vertical breakwater, a generally used method for determining the reliability index β of the breakwater, i.e....In order to suit the condition that the wave uplift is correlated with the horizontal wave load acting on a vertical breakwater, a generally used method for determining the reliability index β of the breakwater, i.e. the Hasofer-Lind method, is extended in a generalized stochastic space for correlative variables. The computational results for a caisson breakwater indicate that the value of β for the case of correlated variables is obviously smaller than that for the case of independent variables.展开更多
Corresponding to the sliding and the overturning failure,the elementary motion modes of caisson breakwater include the horizontal-rotational oscillation coupled motion,the horizontal sliding-rotational oscillation cou...Corresponding to the sliding and the overturning failure,the elementary motion modes of caisson breakwater include the horizontal-rotational oscillation coupled motion,the horizontal sliding-rotational oscillation coupled motion,the horizontal vibrating-uplift rocking coupled motion,and the horizontal sliding-uplift rocking coupled motion.The motion mode of a caisson will transform from one to another depending on the wave forces and the motion behaviors of the caisson.The numerical models of four motion modes of caisson are developed,and the numerical simulation procedure for joint motion process of various modes of caisson breakwater under wave excitation is presented and tested by a physical model experiment.It is concluded that the simulation procedure is reliable and can be applied to the dynamic stability analysis of caisson breakwaters.展开更多
An analytical method to study the seismic response of a bridge pier supported on a rigid caisson foundation embedded in a deep soil stratum underlain by a homogeneous half space is developed. The method reproduces the...An analytical method to study the seismic response of a bridge pier supported on a rigid caisson foundation embedded in a deep soil stratum underlain by a homogeneous half space is developed. The method reproduces the kinematic and inertial responses, using translational and rotational distributed Winkler springs and dashpots to simulate the soil-caisson interaction. Closed-form solutions are given in the frequency domain for vertical harmonic S-wave excitation. Comparison with results from finite element (FE) analysis and other available solutions demonstrates the reliability of the model. Results from parametric studies are given for the kinematic and inertial responses. The modification of the fundamental period and damping ratio of the bridge due to soil-structure interaction is graphically illustrated.展开更多
The modified suction caisson(MSC) adds a short-skirted structure around the regular suction caissons to increase the lateral bearing capacity and limit the deflection. The MSC is suitable for acting as the offshore wi...The modified suction caisson(MSC) adds a short-skirted structure around the regular suction caissons to increase the lateral bearing capacity and limit the deflection. The MSC is suitable for acting as the offshore wind turbine foundation subjected to larger lateral loads compared with the imposed vertical loads. Determination of the lateral bearing capacity is a key issue for the MSC design. The formula estimating the lateral bearing capacity of the MSC was proposed in terms of the limit equilibrium method and was verified by the test results. Parametric studies on the lateral bearing capacity were also carried out. It was found that the lateral bearing capacity of the MSC increases with the increasing length and radius of the external skirt, and the lateral bearing capacity increases linearly with the increasing coefficient of subgrade reaction. The maximum lateral bearing capacity of the MSC is attained when the ratio of the radii of the internal compartment to the external skirt equals 0.82 and the ratio of the lengths of the external skirt to the internal compartment equals 0.48, provided that the steel usage of the MSC is kept constant.展开更多
This study develops an analytical solution for oblique wave interaction with a comb-type caisson breakwater based on linear potential theory. The fluid domain is divided into inner and outer regions according to the g...This study develops an analytical solution for oblique wave interaction with a comb-type caisson breakwater based on linear potential theory. The fluid domain is divided into inner and outer regions according to the geometrical shape of breakwater. By using periodic boundary condition and separation of variables, series solutions of velocity potentials in inner and outer regions are developed. Unknown expansion coefficients in series solutions are determined by matching velocity and pressure of continuous conditions on the interface between two regions. Then, hydrodynamic quantities involving reflection coefficients and wave forces acting on breakwater are estimated. Analytical solution is validated by a multi-domain boundary element method solution for the present problem. Diffusion reflection due to periodic variations in breakwater shape and corresponding surface elevations around the breakwater are analyzed. Numerical examples are also presented to examine effects of caisson parameters on total wave forces acting on caissons and total wave forces acting on side plates. Compared with a traditional vertical wall breakwater, the wave force acting on a suitably designed comb-type caisson breakwater can be significantly reduced. This study can give a better understanding of the hydrodynamic performance of comb-type caisson breakwaters.展开更多
It is assumed that, during the design period, the waves acting on breakwaters are divided into three types: standing wave, broken wave and breaking wave,and the wave heights fit the Rayleigh distribution while the wa...It is assumed that, during the design period, the waves acting on breakwaters are divided into three types: standing wave, broken wave and breaking wave,and the wave heights fit the Rayleigh distribution while the water depths, wave periods and duration of breaking wave impact force fit normal distribution. Based on the random samples of water depths, wave heights, wave periods and duration of breaking wave impact force, the types of waves acting on breakwaters are distinguished and the time-history model of the wave force is determined. The motions of caisson breakwaters under the wave force are simulated by a dynamic numerical model and the statistic characteristics of the dynamic responses are analyzed with the Monte Carlo method. A probabilistic procedure to analyze the motion of the breakwater is developed therein. The procedure is illustrated by an example.展开更多
The reflection coefficient and the total horizontal forces of regular waves acting on theperforated caisson are experimentally investigated. The empirical relationship between reflection coefficient and the ratio of t...The reflection coefficient and the total horizontal forces of regular waves acting on theperforated caisson are experimentally investigated. The empirical relationship between reflection coefficient and the ratio of the total horizontal forces acting on the perforated caisson to those on solid vertical walls with the relative chamber width, relative water depth and porosity of perforated wall, etc. are given. Moreover, the results of the ratio of the total horizontal forces are also compared with formulas given by Chinese Harbour Design Criteria and Takahashi, which may be useful for the practical engineering application.展开更多
The modified suction caisson(MSC) is a novel type of foundation for ocean engineering, consisting of a short external closed-top cylinder-shaped structure surrounding the upper part of the regular suction caisson(RSC)...The modified suction caisson(MSC) is a novel type of foundation for ocean engineering, consisting of a short external closed-top cylinder-shaped structure surrounding the upper part of the regular suction caisson(RSC). The MSC can provide larger lateral bearing capacity and limit the deflection compared with the RSC. Therefore, the MSC can be much more appropriate to use as an offshore wind turbine foundation. Model tests on the MSC in saturated sand subjected to monotonic lateral loading were carried out to investigate the effects of external structure sizes on the sand surface deformation and the earth pressure distribution along the embedded depth. Test results show that the deformation range of the sand surface increases with the increasing width and length of the external structure. The magnitude of sand upheaval around the MSC is smaller than that of the RSC and the sand upheaval value around the MSC in the loading direction decreases with the increasing external structure dimensions. The net earth pressure in the loading direction acting on the internal compartment of the MSC is smaller than that of the RSC at the same embedded depth. The maximum net earth pressure acting on the external structure outer wall in the loading direction is larger than that of the internal compartment, indicating that a considerable amount of the lateral load and moment is resisted by the external skirt structure.展开更多
The possible motions of a caisson breakwater under dynamic load excitation include vibrating, vibrating-sliding and vibrating- rocking motions. The models of vibrating motion and vibrating-sliding motion have been pro...The possible motions of a caisson breakwater under dynamic load excitation include vibrating, vibrating-sliding and vibrating- rocking motions. The models of vibrating motion and vibrating-sliding motion have been proposed in an early paper. In this paper, a model of vibrating- rocking motion of caisson breakwaters under breaking wave impact is presented, which can be used to simulate the histories of vibrating-rocking motion of caisson breakwaters. The effect of rocking motion on the displacement, rotation, sliding force and overturning moment of breakwaters is investigated, In case the overturning moment exceeds the stability moment of a caisson, the caisson may only rock. The caisson overturns only in case the rocking angle exceeds the critical angle, It is shown that the sliding force and overturning moment of breakwaters can be reduced effectively due to the rocking motion, It is proposed that some rocking motion should be allowed in breakwater design.展开更多
文摘With the continuous improvement of urban residents’lives,the demand for of urban infrastructure construction increases,requiring more and more advanced engineering technology.We should not only speed up the progress of the project,but also reduce the impact of the construction on the surrounding environment.Our company has had several achievements in this regard,and prefabricated open caisson construction process is one of them.In this paper,the application of prefabricated caisson construction method is analyzed in depth according to the actual situation of the rain sewage reconstruction treatment project of Minghe ecological water system in Dancheng County.Through practice,it is concluded that this construction method greatly improves the construction efficiency,shortens the overall construction process,reduces the construction cost,and effectively improves environmental quality of the construction site,which has good reference value.
基金financially supported by the National Natural Science Foundation of China (Grant No.51879044)the Youth Foundation of Shandong Natural Science Foundation (Grant No.ZR2020QE258)+1 种基金Qingdao Postdoctoral Applied Research Project (Grant No.ZX20220202)SDUST Research Fund (Grant No.2015KYJH104)。
文摘This paper presents failure mechanisms of the soil at the caisson-tip with fillet during suction-assisted penetration of suction caissons in undrained clay.Theoretical solutions of resistance factor N_c of the caisson-tip are obtained in terms of the caisson-tip geometry ratio of the flat section of the caisson-tip to the caisson wall thickness m/t and adhesion factorsα_i along inside of caisson wall andα_b at the base of the caisson-tip.It is indicated that the factor N_c increases with the increase of m/t,α_i and a_b.The resistance factors N_c for the rough base(α_b=1)are larger by 0.57than that for the smooth base(α_b=0).Besides,the factors N_c of caisson-tip with flat base(m=t)are larger by 1.14 than that with full internal fillet(m=0).The required suction to penetrate suction caissons with various fillets is obtained in terms of the force equilibrium in vertical direction.The finite element limit analysis and centrifuge model test results are used to verify the rationality of the presented failure mechanisms and theoretical predictions.
基金financially supported by the National Natural Science Foundation of China (Grant Nos.52371301,51879044 and 51808325)the Shandong Natural Fund (Grant No.ZR2020QE258)。
文摘Suction caissons are widely used for anchoring floating platform and offshore wind turbines.Penetration of the suction caisson into the desired position under the combination of its self-weight and applied suction resulted from pumping out the encased water is integral to practical engineering.Model tests were carried out to investigate the suctionassisted installation of suction caissons in clay under various undrained shear strengths.It was found that there exists a critical penetration depth value.When the penetration depth is smaller than the critical value,the soil plug undrained shear strength is higher than intact clay(i.e.,clay prior to installation).However,when the penetration depth is greater than the critical penetration depth,the undrained shear strength of soil plug is lower than intact clay.The critical value decreases with the increasing consolidation time and undrained shear strength of clay.During suction-assisted installation,cracks occur around suction caissons.The installation way has little effect on the crack formation.The influence range(i.e.,the maximum distance between the crack and the suction caisson edge)was found to increase with the increasing friction coefficient of interface between the suction caisson wall and soil and decreases with the increasing soil undrained shear strength.In addition,the drained condition of the clay during installation is dominated by the caisson aspect ratio,the undrained shear strength and the friction coefficient between the caisson wall and clay.Equations to estimate the penetration resistance and the required suction to install the suction caisson are summarized.
文摘Suction caissons have been widely used as anchors and foundations for floating and fixed offshore platforms. The pull-out performance of conventional suction caissons (with upright walls) has been investigated by a number of researchers. However, no attention has been paid to tapered suction caissons. This paper deals with the performance of tapered suction caissons under vertical pull-out loads. A numerical approach is used for this purpose. The numerical model is first verified against test data available for common upright caissons. The verified model is then used to study the pullout performance of tapered suction caissons. It is noticed that the pull-out capacities exhibited by tapered suction caissons are in general considerably higher than those from their corresponding traditional upright caissons. To obtain an insight into this superior behaviour, effects from certain soil/caisson/drainage parameters on the pull-out capacity of tapered suction caissons are studied. Soil cohesion is noticed to have a linear improving effect on the capacity of both upright and ta- pered suction caissons. The soil internal friction angle is noticed to have an exponential increasing effect on the pull-out capacity. With a constant caisson diameter, an increase in the aspect ratio is seen to particularly influence the pull-out capacity. With a constant caisson length, an increase in the aspect ratio is discovered to result in non-linear decrease in the pull-out capacity. Under undrained conditions, tapered models generally show less sensitivity to above mentioned soil/caisson parameters as compared with those under drained conditions.
基金Project supported by China Communications Construction Company Limited(No.2008-ZJKJ-11)
文摘To overcome the problems in design methodologies and construction control measures for the large open caisson, systematic research was conducted on the side friction calculation mode of the large open caisson. Based on the field monitoring data of lateral soil pressure on the side wall of the open caisson for the southern anchorage of the Maanshan Yangtze River Highway Bridge, the statistical result of the side friction under different buried depths of the cutting edge of the open caisson was back-analyzed; and the side friction distribution of the large open caisson was underlined. The analysis results indicate that when the buried depth of the cutting edge is smaller than a certain depth H0, the side friction linearly increases with the increase in the buffed depth. However, as the buffed depth of the cutting edge is larger than H0, the side friction shows a distribution with small at both ends and large in the middle. The top of the distribution can be regarded as a linear curve, while the bottom as a hyperbolic curve. As the buffed depth of cutting edge increases continuously, the peak value of the side friction linearly increases and the location of the peak value gradually moves down. Based on the aforementioned conclusions, a revised calculation mode of the large open caisson is presented. Then, the calculated results are compared with the field monitoring data, which verifies the feasibility of the proposed revised calculation mode.
基金Foundation item: Supported by the National Natural Science Foundation of China under Grant No. 51109032, and the National Natural Science Foundation of China under Grant No. 50921001.
文摘An experimental investigation of irregular wave forces on quasi-ellipse caisson structures is presented. Irregular waves were generated based on the Jonswap spectrum with two significant wave heights, and the spectrum peak periods range from 1.19 s to 1.81 s. Incident wave directions relative to the centre line of the multiple caissons are from 0° to 22.5°. The spacing between caissons ranges from 2 to 3 times that of the width of the caisson. The effects of these parameters on the wave forces of both the perforated and non-perforated caissons were compared and analyzed. It was found that the perforated caisson can reduce wave forces, especially in the transverse direction. Furthermore, the relative interval and incident wave direction have significant effects on the wave forces in the case of multiple caissons.
基金financially supported by the National Natural Science Foundation of China(Grant No.51078227)Shandong Natural Science Foundation(Grant No.ZR2009FM003)
文摘Monotonic lateral load model tests were carried out on steel skirted suction caissons embedded in the saturated medium sand to study the bearing capacity. A three-dimensional continuum finite element model was developed with Z_SOIL software. The numerical model was calibrated against experimental results. Soil deformation and earth pressures on skirted caissons were investigated by using the finite element model to extend the model tests. It shows that the "skirted" structure can significantly increase the lateral capacity and limit the deflection, especially suitable for offshore wind turbines, compared with regular suction caissons without the "skirted" at the same load level. In addition, appropriate determination of rotation centers plays a crucial role in calculating the lateral capacity by using the analytical method. It was also found that the rotation center is related to dimensions of skirted suction caissons and loading process, i.e. the rotation center moves upwards with the increase of the "skirted" width and length; moreover, the rotation center moves downwards with the increase of loading and keeps constant when all the sand along the caisson's wall yields. It is so complex that we cannot simply determine its position like the regular suction caisson commonly with a specified position to the length ratio of the caisson.
基金supported by the National Natural Science Foundation of China(Grant Nos.51379118 and 51639002)SDUST Scientific Found(Grant No.2015KYTD104)
文摘This paper presents a series of monotonically combined lateral loading tests to investigate the bearing capacity of the MSCs (modified suction caissons) in the saturated marine fine sand. The lateral loads were applied under load- and displacement-controlled methods at the loading eccentricity ratios of 1.5, 2.0 and 2.5. Results show that, in the displacement-controlled test, the deflection-softening behavior of load-deflection curves for MSCs was observed, and the softening degree of the load-deflection response increased with the increasing external skirt length or the decreasing loading eccentricity. It was also found that the rotation center of the MSC at failure determined by the load-controlled method is slightly lower than that by the displacement-controlled method. The calculated MSC capacity based on the rotation center position in serviceability limit state is relatively conservative, compared with the calculated capacity based on the rotation center position in the ultimate limit state. In the limit state, the passive earth pressures opposite the loading direction under load- and displacement-controlled methods decrease by 46% and 74% corresponding to peak values, respectively; however, the passive earth pressures in the loading direction at failure only decrease by approximately 3% and 7%, compared with their peak values.
文摘The total horizontal and vertical forces acting on a partially-perforated caisson breakwater and their phase difference are investigated in this study. The perforated breakwater sits on the rubble tilled foundation, and has a rock-filled core. An analytical solution is developed based on the eigenfunction expansion and matching method to solve the wave field around the breakwater. The finite element method is used for simulating the wave-induced tlow in the rabble-filled foundation. Experiments are also conducted to study the wave forces on the perforated caissons. Numerical predictions of the present model are compared with experimental resuhs. The phase differences between the total horizontal and vertical forces are particularly analyzed by means of experimental and numerical results. The major factors that affect the wave forces are examined.
文摘The volume of fluid (VOF) method is presented to determine the reflection coefficient of and the total horizontal wave force on perforated caisson breakwaters. The present numerical model is compared with a linear analytic solution obtained by Sahoo et al. (2000). Also this model is verified with the authors′ laboratory data. It is found that the numerical model is in good agreement with the regression equations obtained from the experimental data. The present numerical method is further discussed to relate porosity, the relative wave absorbing chamber depth, the reflection coefficient of perforated caissons and the total horizontal force on them.
文摘In order to suit the condition that the wave uplift is correlated with the horizontal wave load acting on a vertical breakwater, a generally used method for determining the reliability index β of the breakwater, i.e. the Hasofer-Lind method, is extended in a generalized stochastic space for correlative variables. The computational results for a caisson breakwater indicate that the value of β for the case of correlated variables is obviously smaller than that for the case of independent variables.
基金supported by the National Natural Science Foundation of China(Grant No.50979069)the Science and Technology Project of West China Traffic Construction(Grant No.200632800003-06)
文摘Corresponding to the sliding and the overturning failure,the elementary motion modes of caisson breakwater include the horizontal-rotational oscillation coupled motion,the horizontal sliding-rotational oscillation coupled motion,the horizontal vibrating-uplift rocking coupled motion,and the horizontal sliding-uplift rocking coupled motion.The motion mode of a caisson will transform from one to another depending on the wave forces and the motion behaviors of the caisson.The numerical models of four motion modes of caisson are developed,and the numerical simulation procedure for joint motion process of various modes of caisson breakwater under wave excitation is presented and tested by a physical model experiment.It is concluded that the simulation procedure is reliable and can be applied to the dynamic stability analysis of caisson breakwaters.
基金U.S. Federal Highway Administration Under Grant No. DTFH61-98-C-00094U.S. National Science Foundation Under Grant No. EEC-9701471
文摘An analytical method to study the seismic response of a bridge pier supported on a rigid caisson foundation embedded in a deep soil stratum underlain by a homogeneous half space is developed. The method reproduces the kinematic and inertial responses, using translational and rotational distributed Winkler springs and dashpots to simulate the soil-caisson interaction. Closed-form solutions are given in the frequency domain for vertical harmonic S-wave excitation. Comparison with results from finite element (FE) analysis and other available solutions demonstrates the reliability of the model. Results from parametric studies are given for the kinematic and inertial responses. The modification of the fundamental period and damping ratio of the bridge due to soil-structure interaction is graphically illustrated.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51639002 and 51379118)Shandong University of Science and Technology Scientific Found(Grant No.2015TDJH104)
文摘The modified suction caisson(MSC) adds a short-skirted structure around the regular suction caissons to increase the lateral bearing capacity and limit the deflection. The MSC is suitable for acting as the offshore wind turbine foundation subjected to larger lateral loads compared with the imposed vertical loads. Determination of the lateral bearing capacity is a key issue for the MSC design. The formula estimating the lateral bearing capacity of the MSC was proposed in terms of the limit equilibrium method and was verified by the test results. Parametric studies on the lateral bearing capacity were also carried out. It was found that the lateral bearing capacity of the MSC increases with the increasing length and radius of the external skirt, and the lateral bearing capacity increases linearly with the increasing coefficient of subgrade reaction. The maximum lateral bearing capacity of the MSC is attained when the ratio of the radii of the internal compartment to the external skirt equals 0.82 and the ratio of the lengths of the external skirt to the internal compartment equals 0.48, provided that the steel usage of the MSC is kept constant.
基金supported by the National Natural Science Foundation of China(Nos.51490675,51322903 and 51279224)
文摘This study develops an analytical solution for oblique wave interaction with a comb-type caisson breakwater based on linear potential theory. The fluid domain is divided into inner and outer regions according to the geometrical shape of breakwater. By using periodic boundary condition and separation of variables, series solutions of velocity potentials in inner and outer regions are developed. Unknown expansion coefficients in series solutions are determined by matching velocity and pressure of continuous conditions on the interface between two regions. Then, hydrodynamic quantities involving reflection coefficients and wave forces acting on breakwater are estimated. Analytical solution is validated by a multi-domain boundary element method solution for the present problem. Diffusion reflection due to periodic variations in breakwater shape and corresponding surface elevations around the breakwater are analyzed. Numerical examples are also presented to examine effects of caisson parameters on total wave forces acting on caissons and total wave forces acting on side plates. Compared with a traditional vertical wall breakwater, the wave force acting on a suitably designed comb-type caisson breakwater can be significantly reduced. This study can give a better understanding of the hydrodynamic performance of comb-type caisson breakwaters.
基金This studyis supported bythe National Natural Science Foundation of China (Grant No.50579046) the ScienceFoundation of Tianjin Municipal Commission of Science and Technology (Grant No.043114711)
文摘It is assumed that, during the design period, the waves acting on breakwaters are divided into three types: standing wave, broken wave and breaking wave,and the wave heights fit the Rayleigh distribution while the water depths, wave periods and duration of breaking wave impact force fit normal distribution. Based on the random samples of water depths, wave heights, wave periods and duration of breaking wave impact force, the types of waves acting on breakwaters are distinguished and the time-history model of the wave force is determined. The motions of caisson breakwaters under the wave force are simulated by a dynamic numerical model and the statistic characteristics of the dynamic responses are analyzed with the Monte Carlo method. A probabilistic procedure to analyze the motion of the breakwater is developed therein. The procedure is illustrated by an example.
基金The present work was financially supported by the Joint Fund of the National Natural Science Foundation of China the Hong Kong Science Research Bureau under contract No.49910161985 the Research Fund for the Development of Harbor Engineering Desig
文摘The reflection coefficient and the total horizontal forces of regular waves acting on theperforated caisson are experimentally investigated. The empirical relationship between reflection coefficient and the ratio of the total horizontal forces acting on the perforated caisson to those on solid vertical walls with the relative chamber width, relative water depth and porosity of perforated wall, etc. are given. Moreover, the results of the ratio of the total horizontal forces are also compared with formulas given by Chinese Harbour Design Criteria and Takahashi, which may be useful for the practical engineering application.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51639002 and 51379118)the SDUST Research Fund(Grant No.2015KYTD104)
文摘The modified suction caisson(MSC) is a novel type of foundation for ocean engineering, consisting of a short external closed-top cylinder-shaped structure surrounding the upper part of the regular suction caisson(RSC). The MSC can provide larger lateral bearing capacity and limit the deflection compared with the RSC. Therefore, the MSC can be much more appropriate to use as an offshore wind turbine foundation. Model tests on the MSC in saturated sand subjected to monotonic lateral loading were carried out to investigate the effects of external structure sizes on the sand surface deformation and the earth pressure distribution along the embedded depth. Test results show that the deformation range of the sand surface increases with the increasing width and length of the external structure. The magnitude of sand upheaval around the MSC is smaller than that of the RSC and the sand upheaval value around the MSC in the loading direction decreases with the increasing external structure dimensions. The net earth pressure in the loading direction acting on the internal compartment of the MSC is smaller than that of the RSC at the same embedded depth. The maximum net earth pressure acting on the external structure outer wall in the loading direction is larger than that of the internal compartment, indicating that a considerable amount of the lateral load and moment is resisted by the external skirt structure.
基金Extended work of the project"Dynamic Responses of Composite Breakwaters to Breaking Wave Impact"financially supported by the Ministry of Transport Exchange Fund,Japan
文摘The possible motions of a caisson breakwater under dynamic load excitation include vibrating, vibrating-sliding and vibrating- rocking motions. The models of vibrating motion and vibrating-sliding motion have been proposed in an early paper. In this paper, a model of vibrating- rocking motion of caisson breakwaters under breaking wave impact is presented, which can be used to simulate the histories of vibrating-rocking motion of caisson breakwaters. The effect of rocking motion on the displacement, rotation, sliding force and overturning moment of breakwaters is investigated, In case the overturning moment exceeds the stability moment of a caisson, the caisson may only rock. The caisson overturns only in case the rocking angle exceeds the critical angle, It is shown that the sliding force and overturning moment of breakwaters can be reduced effectively due to the rocking motion, It is proposed that some rocking motion should be allowed in breakwater design.