The characteristics of the simultaneous calcination/ sulfation of limestone under oxy-fuel fluidized bed combustion were studied and compared with those of the sulfation of precalcined CaO. During the calcination stag...The characteristics of the simultaneous calcination/ sulfation of limestone under oxy-fuel fluidized bed combustion were studied and compared with those of the sulfation of precalcined CaO. During the calcination stage, SO2 can react with product CaO and slow down the CaCO3 decomposition rate by the covering effect of the CaSO4 product. The sulfation rate of simultaneous calcinatiort/sulfation is slower than that of precalcined CaO, but with a long enough sulfation time, the calcium conversion of simultaneous calcination/sulfation is higher than that of the precalcined CaO. A grain-micrograin model is established to describe the simultaneous calcination, sintering and sulfation of limestone. The graln-micrograln model can reflect the true reaction process of the calcination and sulfation of limestone in oxy-fuel fluidized bed combustion.展开更多
The preparation of microsized hematite powder from ferrous sulfate using microwave calcination was investigated based on the TG/DTG curves. The decomposition of industrial ferrous sulfate under air atmosphere was divi...The preparation of microsized hematite powder from ferrous sulfate using microwave calcination was investigated based on the TG/DTG curves. The decomposition of industrial ferrous sulfate under air atmosphere was divided into three stages, and a ferrous sulfate sample added with 15% Fe_2O_3 could strongly absorb microwave energy. Therefore, preparing hematite powder from ferrous sulfate using microwave calcination was feasible. Hematite was obtained under the following optimized conditions: calcination temperature, 850 °C; microwave power, 650 W; and sample amount, 40 g. The obtained hematite satisfied the first-grade quality requirements. The total ferrum value was more than 58%, and the total sulfur and phosphorus contents were less than 0.5% and 0.2%, respectively. X-ray powder diffraction and scanning electron microscopy were used to characterize the structure and morphology of microsized hematite powder. The particles were non-spherical in shape, and the average particle size distribution was 10.45 μm. This work provides new potential applications for waste ferrous sulfate.展开更多
Activated carbons (ACs) calcined at 400˚C, 500˚C, and 600˚C (AC-400, AC-500, and AC-600) were prepared using palm nut shells from Gabon as raw material and zinc chloride (ZnCl2) as a chemical activating agent. Prepare...Activated carbons (ACs) calcined at 400˚C, 500˚C, and 600˚C (AC-400, AC-500, and AC-600) were prepared using palm nut shells from Gabon as raw material and zinc chloride (ZnCl2) as a chemical activating agent. Prepared ACs were characterized by physisorption of nitrogen (N2), determination of diode and methylene blue numbers for studies of porosity and by quantification and determination of surface functional groups and pH at point of zero charge (pHpzc) respectively, for studies of chemical properties of prepared ACs. Then, effects of calcination temperature (Tcal) on porosity and chemical properties of prepared ACs were studied. The results obtained showed that when the calcination temperature increases from 500˚C to 600˚C, the porosity and chemical properties of prepared ACs are modified. Indeed, the methylene blue and iodine numbers determined for activated carbons AC-400 (460 and 7.94 mg·g−1, respectively) and AC-500 (680 and 8.90 mg·g−1, respectively) are higher than those obtained for AC-600 (360 and 5.75 mg·g−1, respectively). Compared to the AC-500 adsorbent, specific surface areas (SBET) and microporous volume losses for AC-600 were estimated to 44.7% and 45.8%, respectively. Moreover, in our experimental conditions, the effect of Tcal on the quantities of acidic and basic functional groups on the surface of the ACs appears negligible. In addition, results of the pHpzc of prepared ACs showed that as Tcal increases, the pH of the adsorbents increases and tends towards neutrality. Indeed, a stronger acidity was determined on AC-400 (pHpzc = 5.60) compared to those on AC-500 and AC-600 (pHpzc = 6.85 and 6.70, respectively). Also according to the results of porosity and chemical characterizations, adsorption being a surface phenomenon, 500˚C appears to be the optimal calcination temperature for the preparation of activated carbons from palm nut shells in our experimental conditions.展开更多
The research involves the calcination of Sichuanshimian asbestos tailings with ammonium sulfate in order to extract magnesium. This paper studies the effect of different calcination conditions on the magnesium extract...The research involves the calcination of Sichuanshimian asbestos tailings with ammonium sulfate in order to extract magnesium. This paper studies the effect of different calcination conditions on the magnesium extraction rate, and it also studies the mechanism of calcination of asbestos tailings mixed with ammonium sulfate. The results were characterized by XRD, TGA and elemental analysis. The results showed that as the temperature rises the magnesium extraction rate first increases and then decreases. Optimal experimental conditions are calcination temperature of 600℃, calcination time of 1.5 h, the amount of sodium added of 20%, under which condition a magnesium extraction rate of 85.16% can be achieved.展开更多
Isosorbide is a multi-purpose chemical that can be produced from renewable resources.Specifically,it has been investigated as a replacement for toxic bisphenol A(BPA)in the production of polycarbonate(PC).In this stud...Isosorbide is a multi-purpose chemical that can be produced from renewable resources.Specifically,it has been investigated as a replacement for toxic bisphenol A(BPA)in the production of polycarbonate(PC).In this study,the synthesis of isosorbide by sorbitol dehydration using a cerium-based catalyst derived from calcined cerium(IV)sulfate(300°C,400°C,450°C,500°C,and 650°C)was investigated.The reaction occurred in a high-pressure reactor containing nitrogen gas.Advanced instrumental techniques were applied to analyze the characteristics of the calcined catalyst.The results showed that the calcined catalysts demonstrated different crystalline structures and sulfate species at different temperatures.However,the acidic properties(strength and amount)of the catalyst did not change with the calcination temperature.The cerium(IV)sulfate calcined at 400°C exhibited the best catalytic performance,achieving the highest isosorbide yield(55.7%)and complete conversion of sorbitol at 180°C,20 bar of N2,and 6 h using CeSO-400.The presence of a sulfate group on the catalyst was the most important factor in determining the catalytic performance of sorbitol dehydration to isosorbide.This work suggests that CeSO-400 catalysts may play an important role in reducing reaction conditions.展开更多
Parameters of technique to prepare vanadium pentoxide by calcination from ammonium metavanadate were optimized using central composite design of response surface methodology. A quadratic equation model for decompositi...Parameters of technique to prepare vanadium pentoxide by calcination from ammonium metavanadate were optimized using central composite design of response surface methodology. A quadratic equation model for decomposition rate was built and effects of main factors and their corresponding relationships were obtained. The results of the statistical analysis show that the decomposition rate of ammonium metavanadate is significantly affected by calcination temperature and calcination time. The optimized calcination conditions are as follows: calcination temperature 669.71 K, calcination time 35.9 min and sample mass 4.25 g. The decomposition rate of ammonium metavanadate is 99.71%,which coincides well with experimental value of 99.27% under the optimized conditions, suggesting that regressive equation fits the decomposition rates perfectly. XRD reveals that it is feasible to prepare the V2O5 by calcination from ammonium metavanadate using response surface methodology.展开更多
The effect of calcination temperature on the catalytic activity for the dimethyl ether (DME) carbonylation into methyl acetate (MA) was investigated over mordenite supported copper (Cu/HMOR) prepared by ion-exch...The effect of calcination temperature on the catalytic activity for the dimethyl ether (DME) carbonylation into methyl acetate (MA) was investigated over mordenite supported copper (Cu/HMOR) prepared by ion-exchange process. The results showed that the catalytic activity was obviously affected by the calcination temperature. The maximal DME conversion of 97.2% and the MA selectivity of 97.9% were obtained over the Cu/HMOR calcined at 430 ℃ under conditions of 210 ℃, 1.5 MPa, and GSHV of 4883 h^-1. The obtained Cu/HMOR catalysts were characterized by powder X-ray diffraction, N2 absorption, NH3 temperature program desorption, CO temperature program desorption, and Raman techniques. Proper calcination temperature was effective to promote copper ions migration and diffusion, and led the support HMOR to possess more acid activity sites, which exhibited the complete decomposing of copper nitrate, large surface area and optimum micropore structure, more amount of CO adsorption site and proper amount of weak acid centers.展开更多
A La-modified Al2O3 catalyst was prepared with deposition-precipitation method. The effect of calcination temperature on the reactivity for vapor phase hydrofluorination of acetylene to vinyl fluoride. The catalysts c...A La-modified Al2O3 catalyst was prepared with deposition-precipitation method. The effect of calcination temperature on the reactivity for vapor phase hydrofluorination of acetylene to vinyl fluoride. The catalysts calcined at different temperatures were characterized using NH3-TPD, pyridine-FTIR, X-ray diffraction, and Raman techniques. It was found that the calcination process could not only change the structure of these catalysts but also modify the amount of surface acidity on the catalysts. The catalyst calcined at 400 ℃ exhibited the highest conversion of acetylene (94.6%) and highest selectivity to vinyl fluoride (83.4%) and lower coke deposition selectivity (0.72%). The highest activity was related to the largest amount of surface acidity on the catalyst, and the coke deposition was also related to the total amount of surface acidic sites.展开更多
Abstract: Two Canadian limestones with different properties were tested to determine the effect of SO2 during the carbonation of sorbent on the CO2 capture performance in Ca- looping. When the reaction gas is mixed w...Abstract: Two Canadian limestones with different properties were tested to determine the effect of SO2 during the carbonation of sorbent on the CO2 capture performance in Ca- looping. When the reaction gas is mixed with SO2, the carbonation ratio of the sorbent is always lower than that without SO2 for each cycle under the same conditions, and the sulfation ratio increases almost linearly with the increase in the cycle times. At 650 ℃, there is little difference in the carbonation ratio of the sorbent during the first four cycles for the two carbonation time, 5 and 10 rain at 0. 18% SO2. The indirect sulfation reaction that occurs simultaneously with the carbonation of CaO is responsible for the degradation of the sorbent for CO2 capture, and the carbonation duration is not the main factor that affects the ability of the sorbent. 680℃ is the best carbonation temperature among the three tested temperatures and the highest carbonation ratio can be obtained. Also, the sulfation ratio is the highest. The probable cause is the different effects of temperature on the carbonation rate and sulfation rate. A higher SO2 concentration will decrease the carbonation ratio clearly, but the decrease in the carbonation capability of the sorbent is not proportional to the increase of the SO2 concentration in flue gases.展开更多
The effects of calcination temperature on the physicochemical properties of manganese oxide catalysts prepared by a precipitation method were assessed by X-ray diffraction,N2 adsorption-desorption,X-ray photoelectron ...The effects of calcination temperature on the physicochemical properties of manganese oxide catalysts prepared by a precipitation method were assessed by X-ray diffraction,N2 adsorption-desorption,X-ray photoelectron spectroscopy,H2 temperature-programmed reduction,O2 temperature-programmed desorption,and thermogravimetry-differential analysis.The catalytic performance of each of these materials during the selective oxidation of cyclohexane with oxygen in a solvent-free system was subsequently examined.It was found that the MnOx-500 catalyst,calcined at 500 °C,consisted of a Mn2O3 phase in addition to Mn5O8 and Mn3O4 phases and possessed a low surface area.Unlike MnOx-500,the MnOx-400 catalyst prepared at 400 °C was composed solely of Mn3O4 and Mn5O8 and had a higher surface area.The pronounced catalytic activity of this latter material for the oxidation of cyclohexene was determined to result from numerous factors,including a higher concentration of surface adsorbed oxygen,greater quantities of the surface Mn4+ ions that promote oxygen mobility and the extent of O2 adsorption and reducibility on the catalyst.The effects of various reaction conditions on the activity of the MnOx-400 during the oxidation of cyclohexane were also evaluated,such as the reaction temperature,reaction time,and initial oxygen pressure.Following a 4 h reaction at an initial O2 pressure of 0.5 MPa and 140 °C,an 8.0% cyclohexane conversion and 5.0% yield of cyclohexanol and cyclohexanone were achieved over the MnOx-400 catalyst.In contrast,employing MnOx-500 resulted in a 6.1% conversion of cyclohexane and 75% selectivity for cyclohexanol and cyclohexanone.After being recycled through 10 replicate uses,the catalytic activity of the MnOx-400 catalyst was unchanged,demonstrating its good stability.展开更多
Co3O4/SiO2 catalysts for CO oxidation were prepared by conventional incipient wetness impregnation followed by calcination at various temperatures. Their structures were char- acterized with X-ray diffraction (XRD),...Co3O4/SiO2 catalysts for CO oxidation were prepared by conventional incipient wetness impregnation followed by calcination at various temperatures. Their structures were char- acterized with X-ray diffraction (XRD), laser Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), temperature-programmed reduction (TPR) and X-ray absorption fine structure (XAFS) spectroscopy. Both XRD and Raman spectroscopy only detect the existence of Co3O4 crystallites in all catalysts. However, XPS results indicate that excess Co2+ ions are present on the surface of Co3O4 in Co3O4(200)/Si02 as compared with bulk Co3O4. Meanwhile, TPR results suggest the presence of surface oxygen vacancies on Co3O4 in Co3O4(200)/SiO2, and XAFS results demonstrate that Co3O4 in Co3O4(200)/SIO2 contains excess Co2+. Increasing calcination temperature results in oxidation of excess Co2+ and the decrease of the concentration of surface oxygen vacancies, consequently the for- mation of stoichiometric Co3O4 on supported catalysts. Among all Co3O4/SiO2 catalysts, Co3O4(200)/SiO2 exhibits the best catalytic performance towards CO oxidation, demonstrating that excess Co2+ and surface oxygen vacancies can enhance the catalytic activity of Co3O4 towards CO oxidation. These results nicely demonstrate the effect of calcination temperature on the structure and catalytic performance towards CO oxidation of silicasupported Co3O4 catalysts and highlight the important role of surface oxygen vacancies on Co3O4.展开更多
Muscovite mineral was roasted in different conditions.Rubidium leaching rate was a standard to examine the impact of various factors on calcination effect,including the agent types,roasting time,mass ratio,and roastin...Muscovite mineral was roasted in different conditions.Rubidium leaching rate was a standard to examine the impact of various factors on calcination effect,including the agent types,roasting time,mass ratio,and roasting temperature.The results indicate that the best agent is the combination of sodium chloride and calcium chloride,and its mass ratio of muscovite/NaCl/CaCl2is1.00:0.25:0.25.Calcined at 850℃ for 30 min,the rubidium leaching rate is up to 90.12%.The reaction of muscovite ore with the chlorinating agent CaCl2was studied by TG/DSC,and the surface morphology before and after leaching was characterized by SEM.Rubidium chloride products can be obtained using t-BAMBP extraction,hydrochloric acid re-extraction,and purification.展开更多
Calcination and acid leaching of coal kaolin were studied to determine an effective and economical preparation method of calcined kaolin. Thermogravimetric-differential thermal analysis (TG-DTA) and X-ray diffracti...Calcination and acid leaching of coal kaolin were studied to determine an effective and economical preparation method of calcined kaolin. Thermogravimetric-differential thermal analysis (TG-DTA) and X-ray diffraction (XRD) demonstrated that 900°C was the suitable temperature for the calcination. Leaching tests showed that hydrochloric acid was more effective for iron dissolution from raw coal kaolin (RCK), whereas oxalic acid was more effective on iron dissolution from calcined coal kaolin (CCK). The iron dissolution from CCK was 28.78wt%, which is far less effective than the 54.86wt% of RCK under their respective optimal conditions. Through analysis by using M?ssbauer spectroscopy, it is detected that nearly all of the structural ferrous ions in RCK were removed by hydrochloric acid. However, iron sites in CCK changed slightly by oxalic acid leaching because nearly all ferrous ions were transformed into ferric species after firing at 900°C. It can be concluded that it is difficult to remove the structural ferric ions and ferric oxides evolved from the structural ferrous ions. Thus, iron removal by acids should be conducted prior to calcination.展开更多
The catalytic performances of Co3O4/SiO2 catalysts prepared by incipient wetness impregnation for CO oxidation were investigated using three kinds of silica as carriers with different pore sizes of 7.7,14.0 and 27.0 n...The catalytic performances of Co3O4/SiO2 catalysts prepared by incipient wetness impregnation for CO oxidation were investigated using three kinds of silica as carriers with different pore sizes of 7.7,14.0 and 27.0 nm.The effects of calcination temperature on the catalyst surface and micro structure properties as well as catalytic performance for the oxidation of carbon monoxide were also studied.All catalysts were characterized by N2 adsorption-desorption,XRD,XPS,FTIR,H2-TPR and O2-TPD.It was found that the properties and crystal size of cobalt-containing species strongly depended on the pore size of silica carrier.While the silica pore size increased from 7.7 to 27.0 nm,the Co3O4 crystal size increased from 8.5 to 13.5 nm.Moreover,it was demonstrated that if the spinel crystal structure of Co3O4 was obtained at a calcination temperature as low as 150℃,the catalyst sample would have a high Co3O4 surface dispersion and an increase of surface active species,and thus exhibit a high activity for the oxidation of carbon monoxide.展开更多
The acidic modulations of a series of HZSM-5 catalysts were successfully made by calcination at different treatment temperatures, i.e. 500, 600, 650, 700 and 800 ℃, respectively. The results indicated that the total ...The acidic modulations of a series of HZSM-5 catalysts were successfully made by calcination at different treatment temperatures, i.e. 500, 600, 650, 700 and 800 ℃, respectively. The results indicated that the total acid amounts, their density and the amount of B-type acid of HZSM-5 catalysts rapidly decreased, while the amounts of L-type acid had almost no change and thus the ratio of L/B was obviously enhanced with the increase of calcination temperature (excluding 800 ℃). The catalytic performances of modified HZSM-5 catalysts for the cracking of n-butane were also investigated. The main properties of these catalysts were characterized by means of XRD, N2 adsorption at low temperature, NH3-TPD, FTIR of pyridine adsorption and BET surface area measurements. The results showed that HZSM-5 zeolite pretreated at 800 ℃ had very low catalytic activity for n-butane cracking. In the calcination temperature range of 500-700 ℃, the total selectivity to olefins, propylene and butene were increased with the increase of calcination temperature, while, the selectivity for arene decreased with the calcination temperature. The HZSM-5 zeolite calcined at 700 ℃ produced light olefins with high yield, at the reaction temperature of 650 ℃ the yields of total olefins and ethylene were 52.8% and 29.4%, respectively. Besides, the more important role is that high calcination temperature treatment improved the duration stability of HZSM-5 zeolites. The effect of calcination temperature on the physico-chemical properties and catalytic performance of HZSM-5 for cracking of n-butane was explored. It was found that the calcination temperature had large effects on the surface area, crystallinity and acid properties of HZSM-5 catalyst, which further affected the catalytic performance for n-butane cracking.展开更多
Nickel was recovered from nickel laterite using a sulfation-roasting-leaching process and the effects of operation parameters in- cluding acid addition, roasting temperature, and roasting time on nickel extraction and...Nickel was recovered from nickel laterite using a sulfation-roasting-leaching process and the effects of operation parameters in- cluding acid addition, roasting temperature, and roasting time on nickel extraction and iron dissolution were investigated using response sur- face methodology (RSM). Two second-order polynomial models of high significance were presented to show the relationship between the responses and the variables. The analysis of variance (ANOVA) showed high coefficients of determination (R2) of 0.894 and 0.980 for the two models, respectively. Optimum areas of 〉-80% Ni extraction and 〈5% Fe dissolution were obtained by the overlaid contours. Verification experiments in the optimum areas were conducted and the results indicate a close agreement with the predicted values obtained from the models.展开更多
This paper describes a novel, facile chemical pathway for preparing synthetic rutile from ilmenite. The pathway consists of two primary units, i.e., selectively sulfating ilmenite, which was realized via roasting ilme...This paper describes a novel, facile chemical pathway for preparing synthetic rutile from ilmenite. The pathway consists of two primary units, i.e., selectively sulfating ilmenite, which was realized via roasting ilmenite with(NH_4)_2SO_4followed by selective thermal decomposition of the sulfated ilmenite, and targeted leaching of the impurities. The effects of the process parameters were systematically investigated. The results showed that the optimum sulfation conditions were a mass ratio of(NH_4)_2SO_4to ilmenite of 14, temperature of 360 °C, and time of 120 min with a sulfation ratio of ~ 95%. The optimum thermal decomposition conditions were480 °C in N_2 atmosphere, and nearly all Ti OSO_4 were decomposed with co-decomposition of Fe SO_4 of 23%. For acid leaching, the optimum conditions were 2.5 wt% HCl, 98 °C and 120 min. Under those conditions, 94.2% iron was removed with a Ti O_2 dissolution loss b 1%. For alkali leaching, 67% Si O_2 was removed in 5 wt% Na OH at102 °C for 1 h. A synthetic rutile with a Ti O_2 content N 92 wt% and total Mg O + Ca O b 1.5 wt% was obtained.Based on these results, a schematic flowsheet was proposed. Additionally, it was found that the decomposition of Fe SO_4 mixed with Ti OSO_4 under N_2was inhibited due to its oxidation to a higher thermal stability Fe_2(SO_4)_3by oxygen emitted from the decomposition of Ti OSO_4. At the same time, Ti OSO_4 decomposition was promoted due to the immediate in situ consumption of oxygen by Fe SO_4. The synergetic effect might be responsible for the enhanced selectivity of sulfated ilmenite thermal decomposition.展开更多
SiO2-supported Ni-Mo bimetallic phosphides were prepared by temperature-programmed reduction (TPR) method from the phosphate precur- sors calcined at different temperatures. Their properties were characterized by me...SiO2-supported Ni-Mo bimetallic phosphides were prepared by temperature-programmed reduction (TPR) method from the phosphate precur- sors calcined at different temperatures. Their properties were characterized by means of ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS), H2 temperature-programmed reduction (H2-TPR), X-ray diffraction (XRD), transmission electron microscopy (TEM), CO chemisorption, H2 and NH3 temperature-programmed desorptions (H2-TPD and NH3-TPD). Their catalytic performances for the deoxygena- tion of methyl laurate were tested in a fixed-bed reactor. When the precursors were calcined at 400 and 500 ℃, respectively, NiMoP2 phase could be formed apart from Ni2P and MoP phases in the prepared C400 and C500 catalysts. However, when the precursors were calcined at 600, 700 and 800 ℃, respectively, only Ni2P and MoP phases could be detected in the prepared C600, C700 and C800 catalysts. Also, in C400, C500 and C600 catalysts, Mo atoms were found to be entered in the lattice of Ni2P phase, but the entering extent became less with the increase of calcination temperature. As the calcination temperature of the precursor increased, the interaction between Ni and Mo in the prepared catalysts decreased, and the phosphide crystallite size tended to increase, subsequently leading to the decrease in the surface metal site density and the acid amount. C600 catalyst showed the highest activity among the tested ones for the deoxygenation of methyl laurate. As the calcination temperature of the precursor increased, the selectivity to C12 hydrocarbons decreased while the selectivity to C11 hydrocarbons tended to increase. This can be mainly attributed to the decreased Ni-Mo interaction and the increased phosphide particle size. In sum, the structure and performance of Ni-Mo bimetallic phosphide catalyst can be tuned by the calcination temperature of precursor.展开更多
High purity polysaccharide of pachyman was isolated from the powder of Poria cocos sclerotium with an yield of 77.8%. The intrinsic viscosity of polysaccharide was found to be 78.95 mL/g in DMSO solution at 25℃. The ...High purity polysaccharide of pachyman was isolated from the powder of Poria cocos sclerotium with an yield of 77.8%. The intrinsic viscosity of polysaccharide was found to be 78.95 mL/g in DMSO solution at 25℃. The isolated polysaccharide was reacted with chlorosulfonic acid to obtain pachyman sulfate using the improved Wolfrom method. The results of the orthogonality experiment on the sulfation reaction identified that the effectiveness of the reaction conditions on the degree of sulfation and the value of intrinsic viscosity is in the following order: molar ratio of chlorosulfonic acid to glucoside (3-5) 〉 reaction temperature (60-80℃) 〉 reaction time (1 2 h), The kinetic studies of the pachyman sulfation indicated that the hydrolysis is accompanied with the sulfation process. The decrease in intrinsic viscosity of the sulfated pachyman is proportional to the increase in the degree of sulfation under the mild reaction conditions of 〈 80℃, chlorosulfonic acid/glucoside mole ratio 〈 5, and reaction time 〈 2 h. Beyond the above reaction conditions, excessive loss of --OH group occurs during hydrolysis. The NMR results indicated a complete sulfation on C-6 and a partial sulfation on the C-2 and C-4 of glucoside.展开更多
基金The National Natural Science Foundation of China(No.51276064)the Natural Science Foundation of Hebei Province(No.E2013502292)
文摘The characteristics of the simultaneous calcination/ sulfation of limestone under oxy-fuel fluidized bed combustion were studied and compared with those of the sulfation of precalcined CaO. During the calcination stage, SO2 can react with product CaO and slow down the CaCO3 decomposition rate by the covering effect of the CaSO4 product. The sulfation rate of simultaneous calcinatiort/sulfation is slower than that of precalcined CaO, but with a long enough sulfation time, the calcium conversion of simultaneous calcination/sulfation is higher than that of the precalcined CaO. A grain-micrograin model is established to describe the simultaneous calcination, sintering and sulfation of limestone. The graln-micrograln model can reflect the true reaction process of the calcination and sulfation of limestone in oxy-fuel fluidized bed combustion.
基金Project(2013AA064003)supported by the National Technology Research and Development Program of ChinaProject(51564033)supported by the National Natural Science Foundation of ChinaProject(2016FA023)supported by the Yunnan Applied Basic Research(CNMRCUXT1403)State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization,Kunming University of Science and Technology,China
文摘The preparation of microsized hematite powder from ferrous sulfate using microwave calcination was investigated based on the TG/DTG curves. The decomposition of industrial ferrous sulfate under air atmosphere was divided into three stages, and a ferrous sulfate sample added with 15% Fe_2O_3 could strongly absorb microwave energy. Therefore, preparing hematite powder from ferrous sulfate using microwave calcination was feasible. Hematite was obtained under the following optimized conditions: calcination temperature, 850 °C; microwave power, 650 W; and sample amount, 40 g. The obtained hematite satisfied the first-grade quality requirements. The total ferrum value was more than 58%, and the total sulfur and phosphorus contents were less than 0.5% and 0.2%, respectively. X-ray powder diffraction and scanning electron microscopy were used to characterize the structure and morphology of microsized hematite powder. The particles were non-spherical in shape, and the average particle size distribution was 10.45 μm. This work provides new potential applications for waste ferrous sulfate.
文摘Activated carbons (ACs) calcined at 400˚C, 500˚C, and 600˚C (AC-400, AC-500, and AC-600) were prepared using palm nut shells from Gabon as raw material and zinc chloride (ZnCl2) as a chemical activating agent. Prepared ACs were characterized by physisorption of nitrogen (N2), determination of diode and methylene blue numbers for studies of porosity and by quantification and determination of surface functional groups and pH at point of zero charge (pHpzc) respectively, for studies of chemical properties of prepared ACs. Then, effects of calcination temperature (Tcal) on porosity and chemical properties of prepared ACs were studied. The results obtained showed that when the calcination temperature increases from 500˚C to 600˚C, the porosity and chemical properties of prepared ACs are modified. Indeed, the methylene blue and iodine numbers determined for activated carbons AC-400 (460 and 7.94 mg·g−1, respectively) and AC-500 (680 and 8.90 mg·g−1, respectively) are higher than those obtained for AC-600 (360 and 5.75 mg·g−1, respectively). Compared to the AC-500 adsorbent, specific surface areas (SBET) and microporous volume losses for AC-600 were estimated to 44.7% and 45.8%, respectively. Moreover, in our experimental conditions, the effect of Tcal on the quantities of acidic and basic functional groups on the surface of the ACs appears negligible. In addition, results of the pHpzc of prepared ACs showed that as Tcal increases, the pH of the adsorbents increases and tends towards neutrality. Indeed, a stronger acidity was determined on AC-400 (pHpzc = 5.60) compared to those on AC-500 and AC-600 (pHpzc = 6.85 and 6.70, respectively). Also according to the results of porosity and chemical characterizations, adsorption being a surface phenomenon, 500˚C appears to be the optimal calcination temperature for the preparation of activated carbons from palm nut shells in our experimental conditions.
文摘The research involves the calcination of Sichuanshimian asbestos tailings with ammonium sulfate in order to extract magnesium. This paper studies the effect of different calcination conditions on the magnesium extraction rate, and it also studies the mechanism of calcination of asbestos tailings mixed with ammonium sulfate. The results were characterized by XRD, TGA and elemental analysis. The results showed that as the temperature rises the magnesium extraction rate first increases and then decreases. Optimal experimental conditions are calcination temperature of 600℃, calcination time of 1.5 h, the amount of sodium added of 20%, under which condition a magnesium extraction rate of 85.16% can be achieved.
基金The authors appreciative and acknowledge the Faculty of Engineering,Khon Kaen University,Thailand,and the Graduate School,Khon Kaen University,Thailand,for supporting the Lecturer in Admitting High Potential Students to Study and Research in His Expert Program Year 2018(Grant No.611JT212)。
文摘Isosorbide is a multi-purpose chemical that can be produced from renewable resources.Specifically,it has been investigated as a replacement for toxic bisphenol A(BPA)in the production of polycarbonate(PC).In this study,the synthesis of isosorbide by sorbitol dehydration using a cerium-based catalyst derived from calcined cerium(IV)sulfate(300°C,400°C,450°C,500°C,and 650°C)was investigated.The reaction occurred in a high-pressure reactor containing nitrogen gas.Advanced instrumental techniques were applied to analyze the characteristics of the calcined catalyst.The results showed that the calcined catalysts demonstrated different crystalline structures and sulfate species at different temperatures.However,the acidic properties(strength and amount)of the catalyst did not change with the calcination temperature.The cerium(IV)sulfate calcined at 400°C exhibited the best catalytic performance,achieving the highest isosorbide yield(55.7%)and complete conversion of sorbitol at 180°C,20 bar of N2,and 6 h using CeSO-400.The presence of a sulfate group on the catalyst was the most important factor in determining the catalytic performance of sorbitol dehydration to isosorbide.This work suggests that CeSO-400 catalysts may play an important role in reducing reaction conditions.
基金Project (50734007) supported by the National Natural Science Foundation of ChinaProject (2007GA002) supported by Science and Technology Planning of Yunnan Province, ChinaProject (2008-16) supported by Analysis and Testing Foundation of Kunming University of Science and Technology, China
文摘Parameters of technique to prepare vanadium pentoxide by calcination from ammonium metavanadate were optimized using central composite design of response surface methodology. A quadratic equation model for decomposition rate was built and effects of main factors and their corresponding relationships were obtained. The results of the statistical analysis show that the decomposition rate of ammonium metavanadate is significantly affected by calcination temperature and calcination time. The optimized calcination conditions are as follows: calcination temperature 669.71 K, calcination time 35.9 min and sample mass 4.25 g. The decomposition rate of ammonium metavanadate is 99.71%,which coincides well with experimental value of 99.27% under the optimized conditions, suggesting that regressive equation fits the decomposition rates perfectly. XRD reveals that it is feasible to prepare the V2O5 by calcination from ammonium metavanadate using response surface methodology.
基金This work was supported by the National Natural Science Foundation of China (No.51006110 and No.51276183) and the National Natural Research Foundation of China/Japan Science and Technology Agency (No.51161140331).
文摘The effect of calcination temperature on the catalytic activity for the dimethyl ether (DME) carbonylation into methyl acetate (MA) was investigated over mordenite supported copper (Cu/HMOR) prepared by ion-exchange process. The results showed that the catalytic activity was obviously affected by the calcination temperature. The maximal DME conversion of 97.2% and the MA selectivity of 97.9% were obtained over the Cu/HMOR calcined at 430 ℃ under conditions of 210 ℃, 1.5 MPa, and GSHV of 4883 h^-1. The obtained Cu/HMOR catalysts were characterized by powder X-ray diffraction, N2 absorption, NH3 temperature program desorption, CO temperature program desorption, and Raman techniques. Proper calcination temperature was effective to promote copper ions migration and diffusion, and led the support HMOR to possess more acid activity sites, which exhibited the complete decomposing of copper nitrate, large surface area and optimum micropore structure, more amount of CO adsorption site and proper amount of weak acid centers.
基金ACKNOWLEDGMENT This work was supported by the National Natural Science Foundation of China (No.20873125),
文摘A La-modified Al2O3 catalyst was prepared with deposition-precipitation method. The effect of calcination temperature on the reactivity for vapor phase hydrofluorination of acetylene to vinyl fluoride. The catalysts calcined at different temperatures were characterized using NH3-TPD, pyridine-FTIR, X-ray diffraction, and Raman techniques. It was found that the calcination process could not only change the structure of these catalysts but also modify the amount of surface acidity on the catalysts. The catalyst calcined at 400 ℃ exhibited the highest conversion of acetylene (94.6%) and highest selectivity to vinyl fluoride (83.4%) and lower coke deposition selectivity (0.72%). The highest activity was related to the largest amount of surface acidity on the catalyst, and the coke deposition was also related to the total amount of surface acidic sites.
基金The National Natural Science Foundation of China(No.51276064)the Natural Science Foundation of Beijing City(No.3132028)
文摘Abstract: Two Canadian limestones with different properties were tested to determine the effect of SO2 during the carbonation of sorbent on the CO2 capture performance in Ca- looping. When the reaction gas is mixed with SO2, the carbonation ratio of the sorbent is always lower than that without SO2 for each cycle under the same conditions, and the sulfation ratio increases almost linearly with the increase in the cycle times. At 650 ℃, there is little difference in the carbonation ratio of the sorbent during the first four cycles for the two carbonation time, 5 and 10 rain at 0. 18% SO2. The indirect sulfation reaction that occurs simultaneously with the carbonation of CaO is responsible for the degradation of the sorbent for CO2 capture, and the carbonation duration is not the main factor that affects the ability of the sorbent. 680℃ is the best carbonation temperature among the three tested temperatures and the highest carbonation ratio can be obtained. Also, the sulfation ratio is the highest. The probable cause is the different effects of temperature on the carbonation rate and sulfation rate. A higher SO2 concentration will decrease the carbonation ratio clearly, but the decrease in the carbonation capability of the sorbent is not proportional to the increase of the SO2 concentration in flue gases.
基金supported by the National Basic Research Program of China(973 Program,2010CB732300)the National Natural Science Foundation of China(21103048)~~
文摘The effects of calcination temperature on the physicochemical properties of manganese oxide catalysts prepared by a precipitation method were assessed by X-ray diffraction,N2 adsorption-desorption,X-ray photoelectron spectroscopy,H2 temperature-programmed reduction,O2 temperature-programmed desorption,and thermogravimetry-differential analysis.The catalytic performance of each of these materials during the selective oxidation of cyclohexane with oxygen in a solvent-free system was subsequently examined.It was found that the MnOx-500 catalyst,calcined at 500 °C,consisted of a Mn2O3 phase in addition to Mn5O8 and Mn3O4 phases and possessed a low surface area.Unlike MnOx-500,the MnOx-400 catalyst prepared at 400 °C was composed solely of Mn3O4 and Mn5O8 and had a higher surface area.The pronounced catalytic activity of this latter material for the oxidation of cyclohexene was determined to result from numerous factors,including a higher concentration of surface adsorbed oxygen,greater quantities of the surface Mn4+ ions that promote oxygen mobility and the extent of O2 adsorption and reducibility on the catalyst.The effects of various reaction conditions on the activity of the MnOx-400 during the oxidation of cyclohexane were also evaluated,such as the reaction temperature,reaction time,and initial oxygen pressure.Following a 4 h reaction at an initial O2 pressure of 0.5 MPa and 140 °C,an 8.0% cyclohexane conversion and 5.0% yield of cyclohexanol and cyclohexanone were achieved over the MnOx-400 catalyst.In contrast,employing MnOx-500 resulted in a 6.1% conversion of cyclohexane and 75% selectivity for cyclohexanol and cyclohexanone.After being recycled through 10 replicate uses,the catalytic activity of the MnOx-400 catalyst was unchanged,demonstrating its good stability.
文摘Co3O4/SiO2 catalysts for CO oxidation were prepared by conventional incipient wetness impregnation followed by calcination at various temperatures. Their structures were char- acterized with X-ray diffraction (XRD), laser Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), temperature-programmed reduction (TPR) and X-ray absorption fine structure (XAFS) spectroscopy. Both XRD and Raman spectroscopy only detect the existence of Co3O4 crystallites in all catalysts. However, XPS results indicate that excess Co2+ ions are present on the surface of Co3O4 in Co3O4(200)/Si02 as compared with bulk Co3O4. Meanwhile, TPR results suggest the presence of surface oxygen vacancies on Co3O4 in Co3O4(200)/SiO2, and XAFS results demonstrate that Co3O4 in Co3O4(200)/SIO2 contains excess Co2+. Increasing calcination temperature results in oxidation of excess Co2+ and the decrease of the concentration of surface oxygen vacancies, consequently the for- mation of stoichiometric Co3O4 on supported catalysts. Among all Co3O4/SiO2 catalysts, Co3O4(200)/SiO2 exhibits the best catalytic performance towards CO oxidation, demonstrating that excess Co2+ and surface oxygen vacancies can enhance the catalytic activity of Co3O4 towards CO oxidation. These results nicely demonstrate the effect of calcination temperature on the structure and catalytic performance towards CO oxidation of silicasupported Co3O4 catalysts and highlight the important role of surface oxygen vacancies on Co3O4.
基金supported by the Chinese Nonferrous Guilin Research Institute of Geology for Mineral Resource (No.ky20101372000001)
文摘Muscovite mineral was roasted in different conditions.Rubidium leaching rate was a standard to examine the impact of various factors on calcination effect,including the agent types,roasting time,mass ratio,and roasting temperature.The results indicate that the best agent is the combination of sodium chloride and calcium chloride,and its mass ratio of muscovite/NaCl/CaCl2is1.00:0.25:0.25.Calcined at 850℃ for 30 min,the rubidium leaching rate is up to 90.12%.The reaction of muscovite ore with the chlorinating agent CaCl2was studied by TG/DSC,and the surface morphology before and after leaching was characterized by SEM.Rubidium chloride products can be obtained using t-BAMBP extraction,hydrochloric acid re-extraction,and purification.
基金financially supported by Zhejiang Natural Science Foundation(No.Y1080393)Opening Foundation of State Key Laboratory of Clean Energy Utilization(No.ZJUEDU2012001)
文摘Calcination and acid leaching of coal kaolin were studied to determine an effective and economical preparation method of calcined kaolin. Thermogravimetric-differential thermal analysis (TG-DTA) and X-ray diffraction (XRD) demonstrated that 900°C was the suitable temperature for the calcination. Leaching tests showed that hydrochloric acid was more effective for iron dissolution from raw coal kaolin (RCK), whereas oxalic acid was more effective on iron dissolution from calcined coal kaolin (CCK). The iron dissolution from CCK was 28.78wt%, which is far less effective than the 54.86wt% of RCK under their respective optimal conditions. Through analysis by using M?ssbauer spectroscopy, it is detected that nearly all of the structural ferrous ions in RCK were removed by hydrochloric acid. However, iron sites in CCK changed slightly by oxalic acid leaching because nearly all ferrous ions were transformed into ferric species after firing at 900°C. It can be concluded that it is difficult to remove the structural ferric ions and ferric oxides evolved from the structural ferrous ions. Thus, iron removal by acids should be conducted prior to calcination.
基金supported by the National Natural Science Foundation of China(NSFC 20776089)the 985 Project of Sichuan University
文摘The catalytic performances of Co3O4/SiO2 catalysts prepared by incipient wetness impregnation for CO oxidation were investigated using three kinds of silica as carriers with different pore sizes of 7.7,14.0 and 27.0 nm.The effects of calcination temperature on the catalyst surface and micro structure properties as well as catalytic performance for the oxidation of carbon monoxide were also studied.All catalysts were characterized by N2 adsorption-desorption,XRD,XPS,FTIR,H2-TPR and O2-TPD.It was found that the properties and crystal size of cobalt-containing species strongly depended on the pore size of silica carrier.While the silica pore size increased from 7.7 to 27.0 nm,the Co3O4 crystal size increased from 8.5 to 13.5 nm.Moreover,it was demonstrated that if the spinel crystal structure of Co3O4 was obtained at a calcination temperature as low as 150℃,the catalyst sample would have a high Co3O4 surface dispersion and an increase of surface active species,and thus exhibit a high activity for the oxidation of carbon monoxide.
基金The authors would like to thank the financial support from the National Basic Research Program of China fgrant No.2004CB 217806)the National Natural Science Foundation of China (Grant No.20373043) the Scientific Research Key Foundation for the Returned Overseas Chinese Scholars of State Education Ministry.
文摘The acidic modulations of a series of HZSM-5 catalysts were successfully made by calcination at different treatment temperatures, i.e. 500, 600, 650, 700 and 800 ℃, respectively. The results indicated that the total acid amounts, their density and the amount of B-type acid of HZSM-5 catalysts rapidly decreased, while the amounts of L-type acid had almost no change and thus the ratio of L/B was obviously enhanced with the increase of calcination temperature (excluding 800 ℃). The catalytic performances of modified HZSM-5 catalysts for the cracking of n-butane were also investigated. The main properties of these catalysts were characterized by means of XRD, N2 adsorption at low temperature, NH3-TPD, FTIR of pyridine adsorption and BET surface area measurements. The results showed that HZSM-5 zeolite pretreated at 800 ℃ had very low catalytic activity for n-butane cracking. In the calcination temperature range of 500-700 ℃, the total selectivity to olefins, propylene and butene were increased with the increase of calcination temperature, while, the selectivity for arene decreased with the calcination temperature. The HZSM-5 zeolite calcined at 700 ℃ produced light olefins with high yield, at the reaction temperature of 650 ℃ the yields of total olefins and ethylene were 52.8% and 29.4%, respectively. Besides, the more important role is that high calcination temperature treatment improved the duration stability of HZSM-5 zeolites. The effect of calcination temperature on the physico-chemical properties and catalytic performance of HZSM-5 for cracking of n-butane was explored. It was found that the calcination temperature had large effects on the surface area, crystallinity and acid properties of HZSM-5 catalyst, which further affected the catalytic performance for n-butane cracking.
文摘Nickel was recovered from nickel laterite using a sulfation-roasting-leaching process and the effects of operation parameters in- cluding acid addition, roasting temperature, and roasting time on nickel extraction and iron dissolution were investigated using response sur- face methodology (RSM). Two second-order polynomial models of high significance were presented to show the relationship between the responses and the variables. The analysis of variance (ANOVA) showed high coefficients of determination (R2) of 0.894 and 0.980 for the two models, respectively. Optimum areas of 〉-80% Ni extraction and 〈5% Fe dissolution were obtained by the overlaid contours. Verification experiments in the optimum areas were conducted and the results indicate a close agreement with the predicted values obtained from the models.
基金Supported by the National Key Projects for Fundamental Research and Development of China(2016YFB0600904)
文摘This paper describes a novel, facile chemical pathway for preparing synthetic rutile from ilmenite. The pathway consists of two primary units, i.e., selectively sulfating ilmenite, which was realized via roasting ilmenite with(NH_4)_2SO_4followed by selective thermal decomposition of the sulfated ilmenite, and targeted leaching of the impurities. The effects of the process parameters were systematically investigated. The results showed that the optimum sulfation conditions were a mass ratio of(NH_4)_2SO_4to ilmenite of 14, temperature of 360 °C, and time of 120 min with a sulfation ratio of ~ 95%. The optimum thermal decomposition conditions were480 °C in N_2 atmosphere, and nearly all Ti OSO_4 were decomposed with co-decomposition of Fe SO_4 of 23%. For acid leaching, the optimum conditions were 2.5 wt% HCl, 98 °C and 120 min. Under those conditions, 94.2% iron was removed with a Ti O_2 dissolution loss b 1%. For alkali leaching, 67% Si O_2 was removed in 5 wt% Na OH at102 °C for 1 h. A synthetic rutile with a Ti O_2 content N 92 wt% and total Mg O + Ca O b 1.5 wt% was obtained.Based on these results, a schematic flowsheet was proposed. Additionally, it was found that the decomposition of Fe SO_4 mixed with Ti OSO_4 under N_2was inhibited due to its oxidation to a higher thermal stability Fe_2(SO_4)_3by oxygen emitted from the decomposition of Ti OSO_4. At the same time, Ti OSO_4 decomposition was promoted due to the immediate in situ consumption of oxygen by Fe SO_4. The synergetic effect might be responsible for the enhanced selectivity of sulfated ilmenite thermal decomposition.
基金supported by the National Natural Science Foundation of China(No.21176177)the Natural Science Foundation of Tianjin(No.12JCYBJC13200)State Key Laboratory of Catalytic Materials and Reaction Engineering(RIPP,SINOPEC)
文摘SiO2-supported Ni-Mo bimetallic phosphides were prepared by temperature-programmed reduction (TPR) method from the phosphate precur- sors calcined at different temperatures. Their properties were characterized by means of ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS), H2 temperature-programmed reduction (H2-TPR), X-ray diffraction (XRD), transmission electron microscopy (TEM), CO chemisorption, H2 and NH3 temperature-programmed desorptions (H2-TPD and NH3-TPD). Their catalytic performances for the deoxygena- tion of methyl laurate were tested in a fixed-bed reactor. When the precursors were calcined at 400 and 500 ℃, respectively, NiMoP2 phase could be formed apart from Ni2P and MoP phases in the prepared C400 and C500 catalysts. However, when the precursors were calcined at 600, 700 and 800 ℃, respectively, only Ni2P and MoP phases could be detected in the prepared C600, C700 and C800 catalysts. Also, in C400, C500 and C600 catalysts, Mo atoms were found to be entered in the lattice of Ni2P phase, but the entering extent became less with the increase of calcination temperature. As the calcination temperature of the precursor increased, the interaction between Ni and Mo in the prepared catalysts decreased, and the phosphide crystallite size tended to increase, subsequently leading to the decrease in the surface metal site density and the acid amount. C600 catalyst showed the highest activity among the tested ones for the deoxygenation of methyl laurate. As the calcination temperature of the precursor increased, the selectivity to C12 hydrocarbons decreased while the selectivity to C11 hydrocarbons tended to increase. This can be mainly attributed to the decreased Ni-Mo interaction and the increased phosphide particle size. In sum, the structure and performance of Ni-Mo bimetallic phosphide catalyst can be tuned by the calcination temperature of precursor.
文摘High purity polysaccharide of pachyman was isolated from the powder of Poria cocos sclerotium with an yield of 77.8%. The intrinsic viscosity of polysaccharide was found to be 78.95 mL/g in DMSO solution at 25℃. The isolated polysaccharide was reacted with chlorosulfonic acid to obtain pachyman sulfate using the improved Wolfrom method. The results of the orthogonality experiment on the sulfation reaction identified that the effectiveness of the reaction conditions on the degree of sulfation and the value of intrinsic viscosity is in the following order: molar ratio of chlorosulfonic acid to glucoside (3-5) 〉 reaction temperature (60-80℃) 〉 reaction time (1 2 h), The kinetic studies of the pachyman sulfation indicated that the hydrolysis is accompanied with the sulfation process. The decrease in intrinsic viscosity of the sulfated pachyman is proportional to the increase in the degree of sulfation under the mild reaction conditions of 〈 80℃, chlorosulfonic acid/glucoside mole ratio 〈 5, and reaction time 〈 2 h. Beyond the above reaction conditions, excessive loss of --OH group occurs during hydrolysis. The NMR results indicated a complete sulfation on C-6 and a partial sulfation on the C-2 and C-4 of glucoside.