The advantages of OPV (organic photovoltaic) are low cost, little pollution and flexible. But challenge for OPV manufacture still is lacking of accurately performance measurement due to capacitance issue. Firstly, c...The advantages of OPV (organic photovoltaic) are low cost, little pollution and flexible. But challenge for OPV manufacture still is lacking of accurately performance measurement due to capacitance issue. Firstly, characterization of OPV requires considering the slowly temporal response due to capacitance effect, and the relative I-V (current-voltage) curves are strongly dependent on the voltage sweep direction, even for the sweep time only in few seconds or less. Secondly, the IPCE (incident photon-to-electron conversion efficiency) also shows the slowly temporal response due to capacitance effect and is dependent on the wavelength of the incident light. Furthermore, the related features for measuring I-V curves are more sensitive with temperature due to non-linear characteristics issue, but current IPCE spectra of OPV are similar to that happened in conventional crystalline Si or amorphous silicon devices. In this work, we developed a RTOSM (real-time one-sweep method) applied both in I-V and IPCE to analysis different electronic transport materials, and result showed this new approach proposed a good way to slow down testing time and having better accuracy for OPV measurement by eliminating acceptance effect instantly.展开更多
A negative capacitance(NC)effect has been proposed as a critical pathway to overcome the‘Boltzmann tyranny’of electrons,achieve the steep slope operation of transistors and reduce the power dissipation of current se...A negative capacitance(NC)effect has been proposed as a critical pathway to overcome the‘Boltzmann tyranny’of electrons,achieve the steep slope operation of transistors and reduce the power dissipation of current semiconductor devices.In particular,the ferroic property in hafnium-based films with fluorite structure provides an opportunity for the application of the NC effect in electronic devices.However,to date,only a transient NC effect has been confirmed in hafnium-based ferroic materials,which is usually accompanied by hysteresis and is detrimental to low-power transistor operations.The stabilized NC effect enables hysteresis-free and low-power transistors but is difficult to observe and demonstrate in hafnium-based films.This difficulty is closely related to the polycrystalline and multi-phase structure of hafnium-based films fabricated by atomic layer deposition or chemical solution deposition.Here,we prepare epitaxial ferroelectric Hf_(0.5)Zr_(0.5)O_(2) and antiferroelectric ZrO_(2) films with single-phase structure and observe the capacitance enhancement effect of Hf_(0.5)Zr_(0.5)O_(2)/Al_(2)O_(3) and ZrO_(2)/Al_(2)O_(3) capacitors compared to that of the isolated Al_(2)O_(3) capacitor,verifying the stabilized NC effect.The capacitance of Hf_(0.5)Zr_(0.5)O_(2) and ZrO_(2) is evaluated as−17.41 and−27.64 pF,respectively.The observation of the stabilized NC effect in hafnium-based films sheds light on NC studies and paves the way for low-power transistors.展开更多
A two-dimensional electrical SiC MOS interface model including interface and near-interface traps is established based on the relevant tunneling and interface Shockley–Read–Hall model. The consistency between simula...A two-dimensional electrical SiC MOS interface model including interface and near-interface traps is established based on the relevant tunneling and interface Shockley–Read–Hall model. The consistency between simulation results and measured data in the different temperatures shows that this interface model can accurately describe the capture and emission performance for near-interface oxide traps, and can well explain the hysteresis-voltage response with increasing temperature, which is intensified by the interaction between deep oxide traps and shallow oxide traps. This also indicates that the near-interface traps result in an increase of threshold-voltage shift in SiC MOSFET with increasing temperature.展开更多
For years, capacitive effects have been the subject of research [1] and [2]. The capacitive effects are discrete capacitors that appear between active conductors of power lines and between them with the ground plane, ...For years, capacitive effects have been the subject of research [1] and [2]. The capacitive effects are discrete capacitors that appear between active conductors of power lines and between them with the ground plane, generating capacitive reactive power to the network [1] and [2]. Indeed, it must be noted that these effects affect the windings of the transformer when the coupling is in star or triangle. This study is conducted to show that capacitive effects affect transformer windings differently when coupling is in stars or triangles. The results obtained are interesting and can be exploited in electrical transmission networks to ensure a long lifespan of transformers.展开更多
Physiotherapeutic effects of infrared lasers have been proved in clinic.These infrared-based regulations of the bioelectrical activities can roughly be classied into enhancement and suppression of action potential(AP)...Physiotherapeutic effects of infrared lasers have been proved in clinic.These infrared-based regulations of the bioelectrical activities can roughly be classied into enhancement and suppression of action potential(AP),which are described by sodium(Na)and potassium(K)transmembrane current equations,named as Hodgkin and Huxley(HH)-model.The enhancement effect is able to evoke or strengthen the AP when infrared light is applied.Its corresponding mechanism is commonly ascribed to the changes of the cell membrane capacitance,which is transiently increased in response to the infrared radiation.The distinctive feature of the suppression effect is to inhibit or reduce the AP by the designed protocols of infrared radiation.However,its mechanism presents more complexity than that in enhancement cases.HH-model describes how the Na current determines the initial phase of AP.So,the enhancement and suppression of AP can be also ascribed to the regulations of the corresponding Na currents.Here,a continuous infrared light at the wavelength of 980 nm(CIS-980)was employed to stimulate a freshly isolated hippocampal neuron in vitro and a suppression effect on the Na currents of the neuron cell was observed.Both Na and K currents,which are named as whole cell currents,were simultaneously recorded with the cell membrane capacitance current by using a patch clamp combined with infrared irradiation.The results demonstrated that the CIS-980 was able to reversibly increase the capacitance currents,completely suppressed Na currents,but little changed K currents,which forms the steady outward whole cell currents and plays a major role on the AP repolarization.A conrmation experiment was designed and carried out by synchronizing tens of milliseconds of infrared stimulation on the same kinds of hippocampal neuron cells.After the blocked K channel,a reduction of Na current amplitude was still recorded.This proved that infrared suppression of Na current was irrelevant to K channel.A membrane capacitance mediation process was preliminarily proposed to explain the Na channel suppression process.展开更多
An approach for analyzing coupling RC interconnect delay based on "effective capacitance" is presented. We compare this new method to the traditional method,which uses Miller capacitance. The results show that the n...An approach for analyzing coupling RC interconnect delay based on "effective capacitance" is presented. We compare this new method to the traditional method,which uses Miller capacitance. The results show that the new method not only improves the accuracy but also reflects the delay dependence on rise time. The method has the same complexity as the Elmore delay model and can be used in performance-driven routing optimization.展开更多
文摘The advantages of OPV (organic photovoltaic) are low cost, little pollution and flexible. But challenge for OPV manufacture still is lacking of accurately performance measurement due to capacitance issue. Firstly, characterization of OPV requires considering the slowly temporal response due to capacitance effect, and the relative I-V (current-voltage) curves are strongly dependent on the voltage sweep direction, even for the sweep time only in few seconds or less. Secondly, the IPCE (incident photon-to-electron conversion efficiency) also shows the slowly temporal response due to capacitance effect and is dependent on the wavelength of the incident light. Furthermore, the related features for measuring I-V curves are more sensitive with temperature due to non-linear characteristics issue, but current IPCE spectra of OPV are similar to that happened in conventional crystalline Si or amorphous silicon devices. In this work, we developed a RTOSM (real-time one-sweep method) applied both in I-V and IPCE to analysis different electronic transport materials, and result showed this new approach proposed a good way to slow down testing time and having better accuracy for OPV measurement by eliminating acceptance effect instantly.
基金The National Key R&D Program of China(Grant No.2021YFB3601301)the National Natural Science Foundation of China(Grant No.52225106 and 12241404)the Natural Science Foundation of Beijing,China(Grant No.JQ20010).
文摘A negative capacitance(NC)effect has been proposed as a critical pathway to overcome the‘Boltzmann tyranny’of electrons,achieve the steep slope operation of transistors and reduce the power dissipation of current semiconductor devices.In particular,the ferroic property in hafnium-based films with fluorite structure provides an opportunity for the application of the NC effect in electronic devices.However,to date,only a transient NC effect has been confirmed in hafnium-based ferroic materials,which is usually accompanied by hysteresis and is detrimental to low-power transistor operations.The stabilized NC effect enables hysteresis-free and low-power transistors but is difficult to observe and demonstrate in hafnium-based films.This difficulty is closely related to the polycrystalline and multi-phase structure of hafnium-based films fabricated by atomic layer deposition or chemical solution deposition.Here,we prepare epitaxial ferroelectric Hf_(0.5)Zr_(0.5)O_(2) and antiferroelectric ZrO_(2) films with single-phase structure and observe the capacitance enhancement effect of Hf_(0.5)Zr_(0.5)O_(2)/Al_(2)O_(3) and ZrO_(2)/Al_(2)O_(3) capacitors compared to that of the isolated Al_(2)O_(3) capacitor,verifying the stabilized NC effect.The capacitance of Hf_(0.5)Zr_(0.5)O_(2) and ZrO_(2) is evaluated as−17.41 and−27.64 pF,respectively.The observation of the stabilized NC effect in hafnium-based films sheds light on NC studies and paves the way for low-power transistors.
基金Supported by the Science Challenge Project under Grant No TZ2018003
文摘A two-dimensional electrical SiC MOS interface model including interface and near-interface traps is established based on the relevant tunneling and interface Shockley–Read–Hall model. The consistency between simulation results and measured data in the different temperatures shows that this interface model can accurately describe the capture and emission performance for near-interface oxide traps, and can well explain the hysteresis-voltage response with increasing temperature, which is intensified by the interaction between deep oxide traps and shallow oxide traps. This also indicates that the near-interface traps result in an increase of threshold-voltage shift in SiC MOSFET with increasing temperature.
文摘For years, capacitive effects have been the subject of research [1] and [2]. The capacitive effects are discrete capacitors that appear between active conductors of power lines and between them with the ground plane, generating capacitive reactive power to the network [1] and [2]. Indeed, it must be noted that these effects affect the windings of the transformer when the coupling is in star or triangle. This study is conducted to show that capacitive effects affect transformer windings differently when coupling is in stars or triangles. The results obtained are interesting and can be exploited in electrical transmission networks to ensure a long lifespan of transformers.
基金This study was financially supported by the National Natural Science Foundation of China(No.31370835)National Science and Technology Major Special Project on new drug innovation(No.2012ZX09503-001-003)funding from the Dalian University of Technology for the corresponding author(No.DUT21YG121).
文摘Physiotherapeutic effects of infrared lasers have been proved in clinic.These infrared-based regulations of the bioelectrical activities can roughly be classied into enhancement and suppression of action potential(AP),which are described by sodium(Na)and potassium(K)transmembrane current equations,named as Hodgkin and Huxley(HH)-model.The enhancement effect is able to evoke or strengthen the AP when infrared light is applied.Its corresponding mechanism is commonly ascribed to the changes of the cell membrane capacitance,which is transiently increased in response to the infrared radiation.The distinctive feature of the suppression effect is to inhibit or reduce the AP by the designed protocols of infrared radiation.However,its mechanism presents more complexity than that in enhancement cases.HH-model describes how the Na current determines the initial phase of AP.So,the enhancement and suppression of AP can be also ascribed to the regulations of the corresponding Na currents.Here,a continuous infrared light at the wavelength of 980 nm(CIS-980)was employed to stimulate a freshly isolated hippocampal neuron in vitro and a suppression effect on the Na currents of the neuron cell was observed.Both Na and K currents,which are named as whole cell currents,were simultaneously recorded with the cell membrane capacitance current by using a patch clamp combined with infrared irradiation.The results demonstrated that the CIS-980 was able to reversibly increase the capacitance currents,completely suppressed Na currents,but little changed K currents,which forms the steady outward whole cell currents and plays a major role on the AP repolarization.A conrmation experiment was designed and carried out by synchronizing tens of milliseconds of infrared stimulation on the same kinds of hippocampal neuron cells.After the blocked K channel,a reduction of Na current amplitude was still recorded.This proved that infrared suppression of Na current was irrelevant to K channel.A membrane capacitance mediation process was preliminarily proposed to explain the Na channel suppression process.
文摘An approach for analyzing coupling RC interconnect delay based on "effective capacitance" is presented. We compare this new method to the traditional method,which uses Miller capacitance. The results show that the new method not only improves the accuracy but also reflects the delay dependence on rise time. The method has the same complexity as the Elmore delay model and can be used in performance-driven routing optimization.