To solve the problem of only surface carbonation and realize high-efficiency carbonation of recycled coarse aggregate,the method of carbonated recycled coarse aggregate with nano materials pre-soaking was first put fo...To solve the problem of only surface carbonation and realize high-efficiency carbonation of recycled coarse aggregate,the method of carbonated recycled coarse aggregate with nano materials pre-soaking was first put forward.The carbonation effect of modified recycled coarse aggregate with three different carbonation methods was evaluated,and water absorption,apparent density and crush index of modified recycled coarse aggregate were measured.Combined with XRD,SEM,and MIP microscopic analysis,the high-efficiency carbonation strengthening mechanism of modified recycled coarse aggregate was revealed.The experimental results show that,compared with the non-carbonated recycled coarse aggregate,the physical and microscopic properties of carbonated recycled coarse aggregate are improved.The method of carbonation with nano-SiO_(2) pre-soaking can realize the high-efficiency carbonation of recycled coarse aggregate,for modified recycled coarse aggregate with the method,water absorption is reduced by 23.03%,porosity is reduced by 44.06%,and the average pore diameter is 21.82 nm.The high-efficiency carbonation strengthening mechanism show that the pre-socked nano-SiO_(2) is bound to the hydration product Ca(OH)_(2) of the old mortar with nano-scale C-S-H,which can improve the CO_(2) absorption rate,accelerate the carbonation reaction,generate more stable CaCO_(3) and nano-scale silica gel,and bond to the dense three-dimensional network structure to realize the bidirectional enhancement of nano-materials and pressurized carbonation.It is concluded that the method of carbonation with nano-SiO_(2) pre-soaking is a novel high-efficiency carbonation modification of recycled coarse aggregate.展开更多
Minerals in Portland cement including tricalcium silicate(C_(3)S),β-dicalcium silicate(β-C_(2)S),tricalcium aluminate(C_(3)A),and tetracalcium ferroaluminate(C_(4)AF),show a significantly different activity and prod...Minerals in Portland cement including tricalcium silicate(C_(3)S),β-dicalcium silicate(β-C_(2)S),tricalcium aluminate(C_(3)A),and tetracalcium ferroaluminate(C_(4)AF),show a significantly different activity and product evolution for CO_(2)curing at various water-to-solid ratios.These pure minerals were synthesized and subject to CO_(2)curing in this study to make an in-depth understanding for the carbonation properties of cement-based materials.Results showed that the optimum water-to-solid ratios of C_(3)S,β-C_(2)S,C_(3)A and C_(4)AF were 0.25,0.15,0.30 and 0.40 for carbonation,corresponding to 2 h carbonation degree of 38.5%,38.5%,24.2%,and 21.9%,respectively.The produced calcite duringβ-C_(2)S carbonation decreased as the water-to-solid ratio increased,with an increase in content of metastable CaCO_(3)of vaterite and aragonite.The thermodynamic stability of CaCO_(3)produced during carbonation was C_(3)A>C_(4)AF>β-C_(2)S>C_(3)S.The carbonation degree of Portland cement was predicted based on the results of pure minerals and the composition of cement,and the error of predicted production of CaCO_(3)was only 1.1%,which provides a potential method to predict carbonation properties of systems with a complex mineral composition.展开更多
The reuse of waste recycled concrete from harsh environments has become a research hotspot in the field of construction.This study investigated the repair effect of carbonation treatment on second-generation recycled ...The reuse of waste recycled concrete from harsh environments has become a research hotspot in the field of construction.This study investigated the repair effect of carbonation treatment on second-generation recycled fine aggregate(SRFA)obtained from recycled fine aggregate concrete(RFAC)subjected to freeze-thaw(FT)cycles.Before and after carbonation,the properties of SRFA were evaluated.Carbonated second-generation recycled fine aggregate(CSRFA)at five substitution rates(0%,25%,50%,75%,100%)to replace SRFA was used to prepare carbonated second-generation recycled fine aggregate concrete(CSRFAC).The water absorption,porosity and mechanical properties of CSRFAC were tested,and its frost-resisting durability was evaluated.The results showed after carbonation treatment,the physical properties of SRFA was improved and met the requirements of II aggregate.The micro-hardness of the interfacial transition zone and attached mortar in CSRFA was 50.5%and 31.2%higher than that in SRFA,respectively.With the increase of CSRFA replacement rate,the water absorption and porosity of CSRFAC gradually decreased,and the mechanical properties and frost resistance of CSRFAC were gradually improved.Carbonation treatment effectively repairs the damage of SRFA caused by FT cycles and improves its application potential.展开更多
This study proposed an improved bio-carbonation of reactive magnesia cement(RMC)method for dredged sludge stabilization using the urea pre-hydrolysis strategy.Based on unconfined compression strength(UCS),pickling-dra...This study proposed an improved bio-carbonation of reactive magnesia cement(RMC)method for dredged sludge stabilization using the urea pre-hydrolysis strategy.Based on unconfined compression strength(UCS),pickling-drainage,and scanning electron microscopy(SEM)tests,the effects of prehydrolysis duration(T),urease activity(UA)and curing age(CA)on the mechanical properties and microstructural characteristics of bio-carbonized samples were systematically investigated and analyzed.The results demonstrated that the proposed method could significantly enhance urea hydrolysis and RMC bio-carbonation to achieve efficient stabilization of dredged sludge with 80%high water content.A significant strength increment of up to about 1063.36 kPa was obtained for the bio-carbonized samples after just 7 d of curing,which was 2.64 times higher than that of the 28-day cured ordinary Portland cement-reinforced samples.Both elevated T and UA could notably increase urea utilization ratio and carbonate ion yield,but the resulting surge in supersaturation also affected the precipitation patterns of hydrated magnesia carbonates(HMCs),which weakened the cementation effect of HMCs on soil particles and further inhibited strength enhancement of bio-carbonized samples.The optimum formula was determined to be the case of T?24 h and UA?10 U/mL for dredged sludge stabilization.A 7-day CA was enough for bio-carbonized samples to obtain stable strength,albeit slightly affected by UA.The benefits of high efficiency and water stability presented the potential of this method in achieving dredged sludge stabilization and resource utilization.This investigation provides informative ideas and valuable insights on implementing advanced bio-geotechnical techniques to achieve efficient stabilization of soft soil,such as dredged sludge.展开更多
Carbonation is a natural aging process that occurs in all types of concrete. One of its primary implications is the acceleration of steel corrosion caused by the phenomena of depassivation. The goal of this research i...Carbonation is a natural aging process that occurs in all types of concrete. One of its primary implications is the acceleration of steel corrosion caused by the phenomena of depassivation. The goal of this research is to investigate the carbonation of quarry sand-based concrete. The concrete is made of 100% crushed sand 0/6.3, gravel 8/15, and 15/25 from the Arab Contractor quarry in Nomayos, Cameroon, with CEM II B-P 42.5 R from CIMENCAM (Cimenteries du Cameroun). The study employed two admixtures: one with a dual superplasticizing and reducing action (Sikamen) and another with a water-repellent effect (Sika liquid). Carbonation was performed on concrete samples at the following dates: 0, 7, 14, 28, 56, 90, 180 days, one year, and six months. Carbonated concrete (CC) and non-carbonated concrete (NCC) samples are compared in terms of their physical attributes and mineralogical characteristics. The results of this investigation reveal that after more than a year and six months of carbonation, porosity decreases and permeability increases. Despite the high fineness modulus of quarry sand, the compressive strength of quarry sand-based concrete is satisfactory. Carbonation depth is relatively high on some dates, exceeding the minimal cover value for concrete reinforcement. Sikament additive increases concrete compactness and durability while decreasing permeability. Sika water repellant mixes with the lime in cement to generate complimentary crystallizations that block the mortar’s capillaries, making it watertight.展开更多
The strength development law of γ-type dicalcium silicate (γ-C_(2)S) under different carbonation processes was investigated,and the carbonation mechanism of γ-C_(2)S under the action of NH_(4)HCO_(3) was clarified ...The strength development law of γ-type dicalcium silicate (γ-C_(2)S) under different carbonation processes was investigated,and the carbonation mechanism of γ-C_(2)S under the action of NH_(4)HCO_(3) was clarified by using a wide range of test methods,including XRD and SEM.A method of saturated NH_(4)HCO_(3) solution as a curing agent was identified to improve the carbonation efficiency and enhance the carbonation degree of γ-C_(2)S,and then a high-strength carbonated specimen was obtained.Microhardness analysis and SEM morphology analysis were conducted on the carbonised specimens obtained under atmospheric pressure carbonisation conditions using the curing agent.It was found that γ-C_(2)S could perform carbonisation well under atmospheric pressure,which promoted the carbonisation efficiency and decreased the carbonisation cost simultaneously.Therefore,a new carbonisation process solution was proposed for the rapid carbonisation of γ-C_(2)S.展开更多
The environmental concerns resulting from coal-fired power generation that produces large amounts of CO_(2)and fly ash are of great interest.To mitigate,this study aims to develop a novel carbonated CO_(2)-fly ash-bas...The environmental concerns resulting from coal-fired power generation that produces large amounts of CO_(2)and fly ash are of great interest.To mitigate,this study aims to develop a novel carbonated CO_(2)-fly ash-based backfill(CFBF)material under ambient conditions.The performance of CFBF was investigated for different fly ash-cement ratios and compared with non-CO_(2)reacted samples.The fresh CFBF slurry conformed to the Herschel-Bulkley model with shear thinning characteristics.After carbonation,the yield stress of the fresh slurry increased significantly by lowering fly ash ratio due to gel formation.The setting times were accelerated,resulting in approximately 40.6%of increased early strength.The final strength decreased when incorporating a lower fly ash ratio(50%and 60%),which was related to the existing heterogeneous pores caused by rapid fluid loss.The strength increased with fly ash content above 70%because additional C-S(A)-H and silica gels were characterized to precipitate on the grain surface,so the binding between particles increased.The C-S(A)-H gel was developed through the pozzolanic reaction,where CaCO_(3)was the prerequisite calcium source obtained in the CO_(2)-fly ash reaction.Furthermore,the maximum CO_(2)uptake efficiency was 1.39 mg-CO_(2)/g-CFBF.The CFBF material is feasible to co-dispose CO_(2)and fly ash in the mine goaf as negative carbon backfill materials,and simultaneously mitigates the strata movement and water lost in post-subsurface mining.展开更多
Due to the presence of old mortar (OM) and interfacial transition zone (ITZ),recycled concrete aggregate (RCA) is inferior to natural aggregate (NA).The purpose of this paper was to study the effect of accelerated car...Due to the presence of old mortar (OM) and interfacial transition zone (ITZ),recycled concrete aggregate (RCA) is inferior to natural aggregate (NA).The purpose of this paper was to study the effect of accelerated carbonation on the macro-properties and micro-properties of RCA under different pressure(0.05,0.15,0.30 MPa).The macro-property tests included colour change,apparent density,water absorption,and crushing value of RCA.The micro-property tests included scanning electron microscopy (SEM),X-ray diffraction (XRD),thermogravimetry-differential scanning calorimetry (TG-DSC),and Vickers micro-hardness(VMH).The results showed that the change trends of apparent density,water absorption,and crushing value of RCA displayed exponential relationships as pressure increasing,with the optimum pressure of 0.30 MPa.SEM images indicated that the calcite caused by the hydration products in RCA and the Ca(OH)_(2) derived from saturated lime water improved the properties of RCA;as the apparent density increased,the water absorption and crushing value decreased.The results of XRD and TG-DSC indicated that,as the pressure increased,the masses of Ca(OH)_(2) in carbonated RCA gradually decreased,while those of CaCO_(3) gradually increased,which demonstrated that the carbonation degree gradually increased.Besides,ITZ-2 was the weakest phase in RCA,but its improvement degree of VMH by accelerated carbonation was higher than that of OM.However,RCA was not completely carbonated,but only carbonated in a certain depth after 24 h accelerated carbonation.展开更多
The overall carbonation of MgO-admixed soil provides not only an efficient and environmentally friendly technique for improving soft ground but also a permanently safe solution for CO_(2) sequestration.To evaluate the...The overall carbonation of MgO-admixed soil provides not only an efficient and environmentally friendly technique for improving soft ground but also a permanently safe solution for CO_(2) sequestration.To evaluate the carbon sequestration potential and promote the carbonation application in soil improvement,a laboratory-scale model investigation is designed under pressurized carbonation considering the influences of MgO dosage and CO_(2) ventilation mode(way).The temperature,dynamic resilience modulus,and dynamic cone penetration(DCP)were tested to assess the carbonation treatment effect.The physical,strength,and microscopic tests were also undertaken to reveal the evolution mechanisms of CO_(2) migration in the MgO-carbonated foundation.The results indicate that the temperature peaks of MgO-treated foundation emerge at w20 h during hydration,but occur at a distance of 0e25 cm from the gas source within 6 h during carbonation.The dynamic resilience moduli of the model foundation increase by more than two times after carbonation and the DCP indices reduce dramatically.As the distance from the gas inlet increases,the bearing capacity,strength,and carbon sequestration decrease,whereas the moisture content increases.Compared to the end ventilation,the middle ventilation produces a higher carbonation degree and a wider carbonation area.The cementation and filling of nesquehonite and dypingite/hydromagnesite are verified to be critical factors for carbonation evolution and enhancing mechanical performances.Finally,the overall carbonation model is described schematically in three stages of CO_(2) migration.The outcomes would help to facilitate the practical application of CO_(2) sequestration in soil treatment.展开更多
The efiect of an innovative accelerated carbonation curing technique was evaluated on concrete containing natural zeolite powder and fine aggregate as partial replacement to alleviate the CO_(2) emission up to a certa...The efiect of an innovative accelerated carbonation curing technique was evaluated on concrete containing natural zeolite powder and fine aggregate as partial replacement to alleviate the CO_(2) emission up to a certain extent from the concrete production industry and improve sequestration of CO_(2) into the concrete matrix in a stable form.An accelerated carbonation curing was accomplished by subjecting the concrete specimens to 0.5 and 0.75 M concentrations of sodium bicarbonate(NaHCO_(3)) solutions up to a curing age of 180 days after the initial 28 days of normal water curing.Tests for carbonation depth,pH value,compressive strength,calcium carbonate(CaCO_(3))content,X-ray difiraction,and thermogravimetric(TGA)analyses and Fourier transform infrared spectroscopy(FTIR)were performed to measure the extent of carbonation.The obtained results showed an increment in average compressive strength for the zeolite concrete(ZLC)mixes exposed to accelerated carbonation curing.The ZLC mixes exposed to increasing NaHCO_(3) solution concentration and exposure period exhibited greater carbonation depth and decreased pH at each depth interval indicating higher CO_(2) sequestration within the concrete matrix.The results obtained from the microstructural analysis(XRD,TGA,and FTIR)and CaCO_(3) content measurements confirm that the higher amount of CaCO_(3) formation provides a clear indication of the carbonation enhancement and CO_(2) sequestration within the concrete matrix and in turn contributing to the global warming reduction.展开更多
Two carbonation approaches are considered for studying the effects on the hardening mechanisms of slurries made of 100 wt%electric arc furnace steel slag (EAF) slag or 80 wt%EAF slag incorporating 20 wt% of Portland c...Two carbonation approaches are considered for studying the effects on the hardening mechanisms of slurries made of 100 wt%electric arc furnace steel slag (EAF) slag or 80 wt%EAF slag incorporating 20 wt% of Portland cement,which are applied during the hot-stage pretreatment with simulated gas for raw steel slag or the accelerated carbonation curing of slurry.The mechanical strengths,carbonate products,microstructures and CO_(2) uptakes were quantitatively investigated.Results manifest that accelerated carbonation curing increases the compressive strengths of steel slag slurry,from 17.1 MPa (binder of 80 wt% EAF and 20 wt%cement under standard moisture curing) to 36.0 MPa (binder of 80 wt%EAF and 20 wt%cement under accelerated carbonation curing),with a CO_(2) uptake of 52%.In contrast,hot-stage carbonation applied during the pretreatment of steel slag increases the compressive strengths to 43.7 MPa (binder of 80 wt%carbonated EAF and 20 wt%cement under accelerated carbonation curing),with a CO_(2) uptake of 67%.Hotstage carbonation of steel slag is found for particle agglomeration,minerals remodeling and calcite formed,thus causing an activated steel slag with a dense structure and more active components.Accelerated carbonation curing of steel slag slurry paste results in the newly formed amorphous CaCO_(3),calcite crystalline and silica gels that covered the pores of the matrix,facilitating microstructure densification and strength improvement.Adopting the combinative methods of the hot-stage CO_(2) pretreatment and accelerated carbonation curing creates a promising high-volume steel slag-based binder with high strengths and CO_(2) storage.展开更多
Magnesium slag(MS)is an industrial byproduct with high CO_(2)sequestration potential.This study investigates the carbonation behavior and microstructural changes of MS during wet carbonation at 0℃.XRD,TG,FTIR,SEM,and...Magnesium slag(MS)is an industrial byproduct with high CO_(2)sequestration potential.This study investigates the carbonation behavior and microstructural changes of MS during wet carbonation at 0℃.XRD,TG,FTIR,SEM,and BET techniques were used to characterize the phase composition,microstructure,and porosity of MS samples carbonated for different durations.The results showed that the main carbonation products were calcite,vaterite,and highly polymerized silica gel,with particle sizes around 1μm.The low-temperature environment retarded the carbonation reaction rate and affected the morphology and crystallization of calcium carbonate.After 480 min of carbonation,the specific surface area and porosity of MS increased substantially by 740%and 144.6%,respectively,indicating improved reactivity.The microstructure of carbonated MS became denser with calcite particles surrounded by silica gel.This study demonstrates that wet carbonation of MS at 0℃significantly enhances its properties,creating an ultrafine supplementary cementitious material with considerable CO_(2)sequestration capacity.展开更多
To compare the results obtained under both natural and accelerated environments,the pH values of carbonated concrete were measured,the variation of pH values was determined,and the variations of Ca(OH)2 and CaCO3 co...To compare the results obtained under both natural and accelerated environments,the pH values of carbonated concrete were measured,the variation of pH values was determined,and the variations of Ca(OH)2 and CaCO3 contents in the carbonated concrete under natural condition and high CO2 concentration accelerated climate environments were determined by microcosmic test methods such as DTA and X-ray diffraction.The experimental results showed that the overall variation trend of pH values and phase component of carbonation layer of concrete under accelerated climate environments with high CO2 concentrations were the same as those under natural conditions.Therefore,the carbonation processes of concrete were considered consistent under both conditions.However there was a difference in the length of semi-carbonation zones.The one measured under high CO2 concentration accelerated climate environments was shorter than that under natural condition.Experimental investigation showed that it was caused by the differences in climate condition(temperature and relative humidity) as well as the properties of the concrete.The concentration of CO2 and the duration of the carbonation process have no effect on the length of semi-carbonation zone.Thus,it is acceptable to simulate the natural condition by applying the high CO2 concentration artificial accelerated carbonation technique for the purpose of the study of carbonation process of concrete.展开更多
Through the rapid carbonation test of SFRRC with different fiber volume fractions at ultralow temperature,the influence of ultra-low temperature damage on the carbonation resistance of SFRRC was analyzed,which provide...Through the rapid carbonation test of SFRRC with different fiber volume fractions at ultralow temperature,the influence of ultra-low temperature damage on the carbonation resistance of SFRRC was analyzed,which provides a theoretical basis for the application of SFRRC in ultra-low temperature engineering.The experimental results show that ultra-low temperatures can significantly weaken the carbonization resistance of SFRRC.When the temperature reaches 160℃,the carbonization depth increases by 67.66%compared with the normal state.The proper amount of steel fiber has an evident influence on the carbonation resistance of the material.However,when the addition amount exceeds the optimum content,the carbonation resistance of the material decreases.The grey prediction model established by constructing the original sequence can reasonably predict the carbonation resistance of SFRRC after ultra-low temperatures.展开更多
In order to evaluate the carbonation life of newly-built concrete structures,two kinds of nondestructive methods are adopted to test the thickness of the concrete cover and the ultrasonic velocity of two newly-built t...In order to evaluate the carbonation life of newly-built concrete structures,two kinds of nondestructive methods are adopted to test the thickness of the concrete cover and the ultrasonic velocity of two newly-built tunnel structures.Simultaneously a probabilistic method is proposed based on the relationship between the accelerated carbonation rate and the ultrasonic velocity.This proposed method is applied to evaluate the carbonation related lives of two newly-built tunnels and the results indicate that even under nearly the same environment and CO2 combining conditions,there exits a big difference in the probabilistic carbonation lives between the two tunnels;i.e.,the probabilistic lives of Tunnel A and Tunnel B are 94.0% and 82.3% and the corresponding maximum discrepancies are 11.6% and 27.0%,respectively.Thus,it can be concluded that the scattered quality of the concrete cover is attributed to the differences in construction technique,which eventually leads to the diversity in the evaluated probabilistic carbonation lives of the two tunnels.展开更多
Abstract: Two Canadian limestones with different properties were tested to determine the effect of SO2 during the carbonation of sorbent on the CO2 capture performance in Ca- looping. When the reaction gas is mixed w...Abstract: Two Canadian limestones with different properties were tested to determine the effect of SO2 during the carbonation of sorbent on the CO2 capture performance in Ca- looping. When the reaction gas is mixed with SO2, the carbonation ratio of the sorbent is always lower than that without SO2 for each cycle under the same conditions, and the sulfation ratio increases almost linearly with the increase in the cycle times. At 650 ℃, there is little difference in the carbonation ratio of the sorbent during the first four cycles for the two carbonation time, 5 and 10 rain at 0. 18% SO2. The indirect sulfation reaction that occurs simultaneously with the carbonation of CaO is responsible for the degradation of the sorbent for CO2 capture, and the carbonation duration is not the main factor that affects the ability of the sorbent. 680℃ is the best carbonation temperature among the three tested temperatures and the highest carbonation ratio can be obtained. Also, the sulfation ratio is the highest. The probable cause is the different effects of temperature on the carbonation rate and sulfation rate. A higher SO2 concentration will decrease the carbonation ratio clearly, but the decrease in the carbonation capability of the sorbent is not proportional to the increase of the SO2 concentration in flue gases.展开更多
Based on the test results, the differences of the carbonized depth of concrete measured by phenolphthalein indicator and rainbow indicator were discussed, the effects of the water to cement ratio of concrete, the carb...Based on the test results, the differences of the carbonized depth of concrete measured by phenolphthalein indicator and rainbow indicator were discussed, the effects of the water to cement ratio of concrete, the carbonized age and the relative humidity of environment on the carbonized depth of concrete and the depth of half-carbonized zone corresponding to green zone measured by rainbow indicator were also analyzed. It is proved that the depth measured by phenolphthalein indicator is always smaller than that measured by rainbow indicator, and the half-carbonized zone can only be measured by rainbow indicator. The carbonized and half-carbonized depths of concrete are influenced by the carbonation age, the water to cement ratio of concrete and the relative humidity of environment. It is suggested that the phenolphthalein indicator can be used to measure the carbonized depth of concrete when the strength grade of concrete is below C45, otherwise, the rainbow indicator should be utilized.展开更多
The shajiang river bridge on the appearance test, concrete rebound detection, concrete cover depth detection, concrete carbonation depth detection, concrete chlorine ion content detection, and the detection results in...The shajiang river bridge on the appearance test, concrete rebound detection, concrete cover depth detection, concrete carbonation depth detection, concrete chlorine ion content detection, and the detection results in statistics and analysis. Based on the bridge of the service the atmospheric environment parameters and testing data, the paper calculates and analyzes the main stress components the carbonation bridge reliability index and remaining life of carbide, assessing the bridge for the service life and reinforcement maintenance and offer the scientific basis.展开更多
Red mud produced in the Bayer process is a hazardous solid waste because of its high alkalinity; however, it is rich in valuable components such as titanium, iron, and aluminum. In this study, a novel calcification-ca...Red mud produced in the Bayer process is a hazardous solid waste because of its high alkalinity; however, it is rich in valuable components such as titanium, iron, and aluminum. In this study, a novel calcification-carbonation method was developed to recover alkali and alumina from Bayer red mud under mild reaction conditions. Batch experiments were performed to evaluate the potential effects of im- portant parameters such as temperature, amount of CaO added, and CO2 partial pressure on the recovery of alkali and alumina. The results showed that 95.2% alkali and 75.0% alumina were recovered from red mud with decreases in the mass ratios of Na2O to Fe2O3 and of Al2O3 to Fe2O3 from 0.42 and 0.89 to 0.02 and 0.22, respectively. The processed red mud with less than 0.5wt% Na2O can potentially be used as a construction material.展开更多
Large quantities of COand blast furnace slag are discharged in the iron and steel industry. Mineral carbonation of blast furnace slag can offer substantial COemission reduction and comprehensive utilisation of the sol...Large quantities of COand blast furnace slag are discharged in the iron and steel industry. Mineral carbonation of blast furnace slag can offer substantial COemission reduction and comprehensive utilisation of the solid waste. In this study, a recyclable extractant,(NH)SO, was used to extract calcium and magnesium from blast furnace slag(main phases of gehlenite and akermanite) by using low-temperature roasting to fix COthrough aqueous carbonation. The process parameters and efficiency of the roasting extraction, mineralisation, and Al recovery were investigated in detail. The results showed that the extractions of Ca, Mg, and Al can reach almost 100% at an(NH4)SO-to-slag mass ratio of 3:1 and at 370°C in 1 h. Adjusting the p H value of the leaching solution of the roasted slag to 5.5 with the NHreleased during the roasting resulted in 99% Al precipitation, while co-precipitation of Mg was lower than 2%. The Mg-rich leachate after the depletion of Al and the leaching residue(main phases of CaSOand SiO) were carbonated using(NH)COand NHHCOsolutions, respectively, under mild conditions. Approximately 99% of Ca and 89% of Mg in the blast furnace slag were converted into CaCOand(NH)Mg(CO)·4 HO,respectively. The latter can be selectively decomposed to magnesium carbonate at 100-200 °C to recover the NHfor reuse. In the present route, the total COsequestration capacity per tonne of blast furnace slag reached up to 316 kg, and 313 kg of Al-rich precipitate, 1000 kg of carbonated product containing CaCOand SiO, and 304 kg of carbonated product containing calcium carbonate and magnesium carbonate were recovered simultaneously. These products can be used, respectively, as raw materials for the production of electrolytic aluminium, cement, and light magnesium carbonate to replace natural resources.展开更多
基金Funded by Joint Funds of the National Natural Science Foundation of China(No.U1904188)the Jiangxi Provincial Department of Education Science and Technology Project(Nos.GJJ171079,GJJ181023,and GJJ181022)。
文摘To solve the problem of only surface carbonation and realize high-efficiency carbonation of recycled coarse aggregate,the method of carbonated recycled coarse aggregate with nano materials pre-soaking was first put forward.The carbonation effect of modified recycled coarse aggregate with three different carbonation methods was evaluated,and water absorption,apparent density and crush index of modified recycled coarse aggregate were measured.Combined with XRD,SEM,and MIP microscopic analysis,the high-efficiency carbonation strengthening mechanism of modified recycled coarse aggregate was revealed.The experimental results show that,compared with the non-carbonated recycled coarse aggregate,the physical and microscopic properties of carbonated recycled coarse aggregate are improved.The method of carbonation with nano-SiO_(2) pre-soaking can realize the high-efficiency carbonation of recycled coarse aggregate,for modified recycled coarse aggregate with the method,water absorption is reduced by 23.03%,porosity is reduced by 44.06%,and the average pore diameter is 21.82 nm.The high-efficiency carbonation strengthening mechanism show that the pre-socked nano-SiO_(2) is bound to the hydration product Ca(OH)_(2) of the old mortar with nano-scale C-S-H,which can improve the CO_(2) absorption rate,accelerate the carbonation reaction,generate more stable CaCO_(3) and nano-scale silica gel,and bond to the dense three-dimensional network structure to realize the bidirectional enhancement of nano-materials and pressurized carbonation.It is concluded that the method of carbonation with nano-SiO_(2) pre-soaking is a novel high-efficiency carbonation modification of recycled coarse aggregate.
基金Funded by Hainan Provincial Natural Science Foundation of China(No.522QN279)State Key Laboratory of High Performance Civil Engineering Materials(No.2023CEM004)Natural Science Foundation of Jiangsu Province(No.BK20231088)。
文摘Minerals in Portland cement including tricalcium silicate(C_(3)S),β-dicalcium silicate(β-C_(2)S),tricalcium aluminate(C_(3)A),and tetracalcium ferroaluminate(C_(4)AF),show a significantly different activity and product evolution for CO_(2)curing at various water-to-solid ratios.These pure minerals were synthesized and subject to CO_(2)curing in this study to make an in-depth understanding for the carbonation properties of cement-based materials.Results showed that the optimum water-to-solid ratios of C_(3)S,β-C_(2)S,C_(3)A and C_(4)AF were 0.25,0.15,0.30 and 0.40 for carbonation,corresponding to 2 h carbonation degree of 38.5%,38.5%,24.2%,and 21.9%,respectively.The produced calcite duringβ-C_(2)S carbonation decreased as the water-to-solid ratio increased,with an increase in content of metastable CaCO_(3)of vaterite and aragonite.The thermodynamic stability of CaCO_(3)produced during carbonation was C_(3)A>C_(4)AF>β-C_(2)S>C_(3)S.The carbonation degree of Portland cement was predicted based on the results of pure minerals and the composition of cement,and the error of predicted production of CaCO_(3)was only 1.1%,which provides a potential method to predict carbonation properties of systems with a complex mineral composition.
基金financially sponsored by Qing Lan Project in Jiangsu Province of China(2023)Scientific Research Project of Taizhou Polytechnic College(TZYKY-22-4).
文摘The reuse of waste recycled concrete from harsh environments has become a research hotspot in the field of construction.This study investigated the repair effect of carbonation treatment on second-generation recycled fine aggregate(SRFA)obtained from recycled fine aggregate concrete(RFAC)subjected to freeze-thaw(FT)cycles.Before and after carbonation,the properties of SRFA were evaluated.Carbonated second-generation recycled fine aggregate(CSRFA)at five substitution rates(0%,25%,50%,75%,100%)to replace SRFA was used to prepare carbonated second-generation recycled fine aggregate concrete(CSRFAC).The water absorption,porosity and mechanical properties of CSRFAC were tested,and its frost-resisting durability was evaluated.The results showed after carbonation treatment,the physical properties of SRFA was improved and met the requirements of II aggregate.The micro-hardness of the interfacial transition zone and attached mortar in CSRFA was 50.5%and 31.2%higher than that in SRFA,respectively.With the increase of CSRFA replacement rate,the water absorption and porosity of CSRFAC gradually decreased,and the mechanical properties and frost resistance of CSRFAC were gradually improved.Carbonation treatment effectively repairs the damage of SRFA caused by FT cycles and improves its application potential.
基金supported by the National Natural Science Foundation of China(Grant Nos.41925012 and 42230710)the Key Laboratory Cooperation Special Project of Western Cross Team of Western Light,CAS(Grant No.xbzg-zdsys-202107).
文摘This study proposed an improved bio-carbonation of reactive magnesia cement(RMC)method for dredged sludge stabilization using the urea pre-hydrolysis strategy.Based on unconfined compression strength(UCS),pickling-drainage,and scanning electron microscopy(SEM)tests,the effects of prehydrolysis duration(T),urease activity(UA)and curing age(CA)on the mechanical properties and microstructural characteristics of bio-carbonized samples were systematically investigated and analyzed.The results demonstrated that the proposed method could significantly enhance urea hydrolysis and RMC bio-carbonation to achieve efficient stabilization of dredged sludge with 80%high water content.A significant strength increment of up to about 1063.36 kPa was obtained for the bio-carbonized samples after just 7 d of curing,which was 2.64 times higher than that of the 28-day cured ordinary Portland cement-reinforced samples.Both elevated T and UA could notably increase urea utilization ratio and carbonate ion yield,but the resulting surge in supersaturation also affected the precipitation patterns of hydrated magnesia carbonates(HMCs),which weakened the cementation effect of HMCs on soil particles and further inhibited strength enhancement of bio-carbonized samples.The optimum formula was determined to be the case of T?24 h and UA?10 U/mL for dredged sludge stabilization.A 7-day CA was enough for bio-carbonized samples to obtain stable strength,albeit slightly affected by UA.The benefits of high efficiency and water stability presented the potential of this method in achieving dredged sludge stabilization and resource utilization.This investigation provides informative ideas and valuable insights on implementing advanced bio-geotechnical techniques to achieve efficient stabilization of soft soil,such as dredged sludge.
文摘Carbonation is a natural aging process that occurs in all types of concrete. One of its primary implications is the acceleration of steel corrosion caused by the phenomena of depassivation. The goal of this research is to investigate the carbonation of quarry sand-based concrete. The concrete is made of 100% crushed sand 0/6.3, gravel 8/15, and 15/25 from the Arab Contractor quarry in Nomayos, Cameroon, with CEM II B-P 42.5 R from CIMENCAM (Cimenteries du Cameroun). The study employed two admixtures: one with a dual superplasticizing and reducing action (Sikamen) and another with a water-repellent effect (Sika liquid). Carbonation was performed on concrete samples at the following dates: 0, 7, 14, 28, 56, 90, 180 days, one year, and six months. Carbonated concrete (CC) and non-carbonated concrete (NCC) samples are compared in terms of their physical attributes and mineralogical characteristics. The results of this investigation reveal that after more than a year and six months of carbonation, porosity decreases and permeability increases. Despite the high fineness modulus of quarry sand, the compressive strength of quarry sand-based concrete is satisfactory. Carbonation depth is relatively high on some dates, exceeding the minimal cover value for concrete reinforcement. Sikament additive increases concrete compactness and durability while decreasing permeability. Sika water repellant mixes with the lime in cement to generate complimentary crystallizations that block the mortar’s capillaries, making it watertight.
基金Funded by Hubei Technology Innovation Key Program (No.2018AAA004)。
文摘The strength development law of γ-type dicalcium silicate (γ-C_(2)S) under different carbonation processes was investigated,and the carbonation mechanism of γ-C_(2)S under the action of NH_(4)HCO_(3) was clarified by using a wide range of test methods,including XRD and SEM.A method of saturated NH_(4)HCO_(3) solution as a curing agent was identified to improve the carbonation efficiency and enhance the carbonation degree of γ-C_(2)S,and then a high-strength carbonated specimen was obtained.Microhardness analysis and SEM morphology analysis were conducted on the carbonised specimens obtained under atmospheric pressure carbonisation conditions using the curing agent.It was found that γ-C_(2)S could perform carbonisation well under atmospheric pressure,which promoted the carbonisation efficiency and decreased the carbonisation cost simultaneously.Therefore,a new carbonisation process solution was proposed for the rapid carbonisation of γ-C_(2)S.
基金The authors would like to make an appreciation to the National Natural Science Foundation of China(No.51874280)the Fundamental Research Funds of the Central Universities(No.2021ZDPY0211)for financial support.
文摘The environmental concerns resulting from coal-fired power generation that produces large amounts of CO_(2)and fly ash are of great interest.To mitigate,this study aims to develop a novel carbonated CO_(2)-fly ash-based backfill(CFBF)material under ambient conditions.The performance of CFBF was investigated for different fly ash-cement ratios and compared with non-CO_(2)reacted samples.The fresh CFBF slurry conformed to the Herschel-Bulkley model with shear thinning characteristics.After carbonation,the yield stress of the fresh slurry increased significantly by lowering fly ash ratio due to gel formation.The setting times were accelerated,resulting in approximately 40.6%of increased early strength.The final strength decreased when incorporating a lower fly ash ratio(50%and 60%),which was related to the existing heterogeneous pores caused by rapid fluid loss.The strength increased with fly ash content above 70%because additional C-S(A)-H and silica gels were characterized to precipitate on the grain surface,so the binding between particles increased.The C-S(A)-H gel was developed through the pozzolanic reaction,where CaCO_(3)was the prerequisite calcium source obtained in the CO_(2)-fly ash reaction.Furthermore,the maximum CO_(2)uptake efficiency was 1.39 mg-CO_(2)/g-CFBF.The CFBF material is feasible to co-dispose CO_(2)and fly ash in the mine goaf as negative carbon backfill materials,and simultaneously mitigates the strata movement and water lost in post-subsurface mining.
基金Funded by Joint Funds of the National Natural Science Foundation of China (No.U1904188)Key R&D and Promotion Projects in Henan Province,China (No.212102310288)the Key Science and Technology Program of Henan Province,China (No.202102310253)。
文摘Due to the presence of old mortar (OM) and interfacial transition zone (ITZ),recycled concrete aggregate (RCA) is inferior to natural aggregate (NA).The purpose of this paper was to study the effect of accelerated carbonation on the macro-properties and micro-properties of RCA under different pressure(0.05,0.15,0.30 MPa).The macro-property tests included colour change,apparent density,water absorption,and crushing value of RCA.The micro-property tests included scanning electron microscopy (SEM),X-ray diffraction (XRD),thermogravimetry-differential scanning calorimetry (TG-DSC),and Vickers micro-hardness(VMH).The results showed that the change trends of apparent density,water absorption,and crushing value of RCA displayed exponential relationships as pressure increasing,with the optimum pressure of 0.30 MPa.SEM images indicated that the calcite caused by the hydration products in RCA and the Ca(OH)_(2) derived from saturated lime water improved the properties of RCA;as the apparent density increased,the water absorption and crushing value decreased.The results of XRD and TG-DSC indicated that,as the pressure increased,the masses of Ca(OH)_(2) in carbonated RCA gradually decreased,while those of CaCO_(3) gradually increased,which demonstrated that the carbonation degree gradually increased.Besides,ITZ-2 was the weakest phase in RCA,but its improvement degree of VMH by accelerated carbonation was higher than that of OM.However,RCA was not completely carbonated,but only carbonated in a certain depth after 24 h accelerated carbonation.
基金funding provided by the National Science Foundation of China(Grant No.41902286)the Open Fund for the State Key Laboratory of Geomechanics and Geotechnical Engineering(Grant No.SKLGME021029)the CRSRI Open Research Program(Grant No.CKWV20221015/KY).
文摘The overall carbonation of MgO-admixed soil provides not only an efficient and environmentally friendly technique for improving soft ground but also a permanently safe solution for CO_(2) sequestration.To evaluate the carbon sequestration potential and promote the carbonation application in soil improvement,a laboratory-scale model investigation is designed under pressurized carbonation considering the influences of MgO dosage and CO_(2) ventilation mode(way).The temperature,dynamic resilience modulus,and dynamic cone penetration(DCP)were tested to assess the carbonation treatment effect.The physical,strength,and microscopic tests were also undertaken to reveal the evolution mechanisms of CO_(2) migration in the MgO-carbonated foundation.The results indicate that the temperature peaks of MgO-treated foundation emerge at w20 h during hydration,but occur at a distance of 0e25 cm from the gas source within 6 h during carbonation.The dynamic resilience moduli of the model foundation increase by more than two times after carbonation and the DCP indices reduce dramatically.As the distance from the gas inlet increases,the bearing capacity,strength,and carbon sequestration decrease,whereas the moisture content increases.Compared to the end ventilation,the middle ventilation produces a higher carbonation degree and a wider carbonation area.The cementation and filling of nesquehonite and dypingite/hydromagnesite are verified to be critical factors for carbonation evolution and enhancing mechanical performances.Finally,the overall carbonation model is described schematically in three stages of CO_(2) migration.The outcomes would help to facilitate the practical application of CO_(2) sequestration in soil treatment.
文摘The efiect of an innovative accelerated carbonation curing technique was evaluated on concrete containing natural zeolite powder and fine aggregate as partial replacement to alleviate the CO_(2) emission up to a certain extent from the concrete production industry and improve sequestration of CO_(2) into the concrete matrix in a stable form.An accelerated carbonation curing was accomplished by subjecting the concrete specimens to 0.5 and 0.75 M concentrations of sodium bicarbonate(NaHCO_(3)) solutions up to a curing age of 180 days after the initial 28 days of normal water curing.Tests for carbonation depth,pH value,compressive strength,calcium carbonate(CaCO_(3))content,X-ray difiraction,and thermogravimetric(TGA)analyses and Fourier transform infrared spectroscopy(FTIR)were performed to measure the extent of carbonation.The obtained results showed an increment in average compressive strength for the zeolite concrete(ZLC)mixes exposed to accelerated carbonation curing.The ZLC mixes exposed to increasing NaHCO_(3) solution concentration and exposure period exhibited greater carbonation depth and decreased pH at each depth interval indicating higher CO_(2) sequestration within the concrete matrix.The results obtained from the microstructural analysis(XRD,TGA,and FTIR)and CaCO_(3) content measurements confirm that the higher amount of CaCO_(3) formation provides a clear indication of the carbonation enhancement and CO_(2) sequestration within the concrete matrix and in turn contributing to the global warming reduction.
基金Funded by the National Key Research and Development Program of China-Intergovernmental International Cooperation in Scientific and Technological Innovation MOST,China (No.2018YFE0107300)。
文摘Two carbonation approaches are considered for studying the effects on the hardening mechanisms of slurries made of 100 wt%electric arc furnace steel slag (EAF) slag or 80 wt%EAF slag incorporating 20 wt% of Portland cement,which are applied during the hot-stage pretreatment with simulated gas for raw steel slag or the accelerated carbonation curing of slurry.The mechanical strengths,carbonate products,microstructures and CO_(2) uptakes were quantitatively investigated.Results manifest that accelerated carbonation curing increases the compressive strengths of steel slag slurry,from 17.1 MPa (binder of 80 wt% EAF and 20 wt%cement under standard moisture curing) to 36.0 MPa (binder of 80 wt%EAF and 20 wt%cement under accelerated carbonation curing),with a CO_(2) uptake of 52%.In contrast,hot-stage carbonation applied during the pretreatment of steel slag increases the compressive strengths to 43.7 MPa (binder of 80 wt%carbonated EAF and 20 wt%cement under accelerated carbonation curing),with a CO_(2) uptake of 67%.Hotstage carbonation of steel slag is found for particle agglomeration,minerals remodeling and calcite formed,thus causing an activated steel slag with a dense structure and more active components.Accelerated carbonation curing of steel slag slurry paste results in the newly formed amorphous CaCO_(3),calcite crystalline and silica gels that covered the pores of the matrix,facilitating microstructure densification and strength improvement.Adopting the combinative methods of the hot-stage CO_(2) pretreatment and accelerated carbonation curing creates a promising high-volume steel slag-based binder with high strengths and CO_(2) storage.
基金support from the National Key R&D Program Intergovernmental International Science and Technology Innovation Cooperation Project(2018YFE0107300)the China Building Materials Federation(20221JBGS03-11)+2 种基金the Science and Technology Project of Henan Province(211110231400,212102310559,212102310564,222300420167,22A430022)the Opening Project of the State Key Laboratory of Green Building Materials(2021GBM06)the Henan Outstanding Foreign Scientists’Workroom(GZS2021003).
文摘Magnesium slag(MS)is an industrial byproduct with high CO_(2)sequestration potential.This study investigates the carbonation behavior and microstructural changes of MS during wet carbonation at 0℃.XRD,TG,FTIR,SEM,and BET techniques were used to characterize the phase composition,microstructure,and porosity of MS samples carbonated for different durations.The results showed that the main carbonation products were calcite,vaterite,and highly polymerized silica gel,with particle sizes around 1μm.The low-temperature environment retarded the carbonation reaction rate and affected the morphology and crystallization of calcium carbonate.After 480 min of carbonation,the specific surface area and porosity of MS increased substantially by 740%and 144.6%,respectively,indicating improved reactivity.The microstructure of carbonated MS became denser with calcite particles surrounded by silica gel.This study demonstrates that wet carbonation of MS at 0℃significantly enhances its properties,creating an ultrafine supplementary cementitious material with considerable CO_(2)sequestration capacity.
基金Funded by the National Natural Science Foundation of China (No.50538070,50878207)
文摘To compare the results obtained under both natural and accelerated environments,the pH values of carbonated concrete were measured,the variation of pH values was determined,and the variations of Ca(OH)2 and CaCO3 contents in the carbonated concrete under natural condition and high CO2 concentration accelerated climate environments were determined by microcosmic test methods such as DTA and X-ray diffraction.The experimental results showed that the overall variation trend of pH values and phase component of carbonation layer of concrete under accelerated climate environments with high CO2 concentrations were the same as those under natural conditions.Therefore,the carbonation processes of concrete were considered consistent under both conditions.However there was a difference in the length of semi-carbonation zones.The one measured under high CO2 concentration accelerated climate environments was shorter than that under natural condition.Experimental investigation showed that it was caused by the differences in climate condition(temperature and relative humidity) as well as the properties of the concrete.The concentration of CO2 and the duration of the carbonation process have no effect on the length of semi-carbonation zone.Thus,it is acceptable to simulate the natural condition by applying the high CO2 concentration artificial accelerated carbonation technique for the purpose of the study of carbonation process of concrete.
基金the Natural Science Foundation of Hubei Province of China(No.2020CFB860)。
文摘Through the rapid carbonation test of SFRRC with different fiber volume fractions at ultralow temperature,the influence of ultra-low temperature damage on the carbonation resistance of SFRRC was analyzed,which provides a theoretical basis for the application of SFRRC in ultra-low temperature engineering.The experimental results show that ultra-low temperatures can significantly weaken the carbonization resistance of SFRRC.When the temperature reaches 160℃,the carbonization depth increases by 67.66%compared with the normal state.The proper amount of steel fiber has an evident influence on the carbonation resistance of the material.However,when the addition amount exceeds the optimum content,the carbonation resistance of the material decreases.The grey prediction model established by constructing the original sequence can reasonably predict the carbonation resistance of SFRRC after ultra-low temperatures.
基金Key Construction Project of Nanjing Yangtze River Tunnel(No.7612005822)the National Basic Research Program of China(973Program)(No.2009CB623203).
文摘In order to evaluate the carbonation life of newly-built concrete structures,two kinds of nondestructive methods are adopted to test the thickness of the concrete cover and the ultrasonic velocity of two newly-built tunnel structures.Simultaneously a probabilistic method is proposed based on the relationship between the accelerated carbonation rate and the ultrasonic velocity.This proposed method is applied to evaluate the carbonation related lives of two newly-built tunnels and the results indicate that even under nearly the same environment and CO2 combining conditions,there exits a big difference in the probabilistic carbonation lives between the two tunnels;i.e.,the probabilistic lives of Tunnel A and Tunnel B are 94.0% and 82.3% and the corresponding maximum discrepancies are 11.6% and 27.0%,respectively.Thus,it can be concluded that the scattered quality of the concrete cover is attributed to the differences in construction technique,which eventually leads to the diversity in the evaluated probabilistic carbonation lives of the two tunnels.
基金The National Natural Science Foundation of China(No.51276064)the Natural Science Foundation of Beijing City(No.3132028)
文摘Abstract: Two Canadian limestones with different properties were tested to determine the effect of SO2 during the carbonation of sorbent on the CO2 capture performance in Ca- looping. When the reaction gas is mixed with SO2, the carbonation ratio of the sorbent is always lower than that without SO2 for each cycle under the same conditions, and the sulfation ratio increases almost linearly with the increase in the cycle times. At 650 ℃, there is little difference in the carbonation ratio of the sorbent during the first four cycles for the two carbonation time, 5 and 10 rain at 0. 18% SO2. The indirect sulfation reaction that occurs simultaneously with the carbonation of CaO is responsible for the degradation of the sorbent for CO2 capture, and the carbonation duration is not the main factor that affects the ability of the sorbent. 680℃ is the best carbonation temperature among the three tested temperatures and the highest carbonation ratio can be obtained. Also, the sulfation ratio is the highest. The probable cause is the different effects of temperature on the carbonation rate and sulfation rate. A higher SO2 concentration will decrease the carbonation ratio clearly, but the decrease in the carbonation capability of the sorbent is not proportional to the increase of the SO2 concentration in flue gases.
基金Funded by Outstanding Youth Science Foundation of Henan Province of China (No. 04120002300)
文摘Based on the test results, the differences of the carbonized depth of concrete measured by phenolphthalein indicator and rainbow indicator were discussed, the effects of the water to cement ratio of concrete, the carbonized age and the relative humidity of environment on the carbonized depth of concrete and the depth of half-carbonized zone corresponding to green zone measured by rainbow indicator were also analyzed. It is proved that the depth measured by phenolphthalein indicator is always smaller than that measured by rainbow indicator, and the half-carbonized zone can only be measured by rainbow indicator. The carbonized and half-carbonized depths of concrete are influenced by the carbonation age, the water to cement ratio of concrete and the relative humidity of environment. It is suggested that the phenolphthalein indicator can be used to measure the carbonized depth of concrete when the strength grade of concrete is below C45, otherwise, the rainbow indicator should be utilized.
文摘The shajiang river bridge on the appearance test, concrete rebound detection, concrete cover depth detection, concrete carbonation depth detection, concrete chlorine ion content detection, and the detection results in statistics and analysis. Based on the bridge of the service the atmospheric environment parameters and testing data, the paper calculates and analyzes the main stress components the carbonation bridge reliability index and remaining life of carbide, assessing the bridge for the service life and reinforcement maintenance and offer the scientific basis.
基金financially supported by the Joint Funds of the National Natural Science Foundation of China(No.U1202274)the National Natural Science Foundation of China(No.51204040)+1 种基金the Research Fund for the Doctoral Program of Higher Education of China(No.20120042110011)the Fundamental Research Funds for the Central Universities(No.N140204015)
文摘Red mud produced in the Bayer process is a hazardous solid waste because of its high alkalinity; however, it is rich in valuable components such as titanium, iron, and aluminum. In this study, a novel calcification-carbonation method was developed to recover alkali and alumina from Bayer red mud under mild reaction conditions. Batch experiments were performed to evaluate the potential effects of im- portant parameters such as temperature, amount of CaO added, and CO2 partial pressure on the recovery of alkali and alumina. The results showed that 95.2% alkali and 75.0% alumina were recovered from red mud with decreases in the mass ratios of Na2O to Fe2O3 and of Al2O3 to Fe2O3 from 0.42 and 0.89 to 0.02 and 0.22, respectively. The processed red mud with less than 0.5wt% Na2O can potentially be used as a construction material.
基金financial support of the National Key R&D Program of China(2016YFB0600904)
文摘Large quantities of COand blast furnace slag are discharged in the iron and steel industry. Mineral carbonation of blast furnace slag can offer substantial COemission reduction and comprehensive utilisation of the solid waste. In this study, a recyclable extractant,(NH)SO, was used to extract calcium and magnesium from blast furnace slag(main phases of gehlenite and akermanite) by using low-temperature roasting to fix COthrough aqueous carbonation. The process parameters and efficiency of the roasting extraction, mineralisation, and Al recovery were investigated in detail. The results showed that the extractions of Ca, Mg, and Al can reach almost 100% at an(NH4)SO-to-slag mass ratio of 3:1 and at 370°C in 1 h. Adjusting the p H value of the leaching solution of the roasted slag to 5.5 with the NHreleased during the roasting resulted in 99% Al precipitation, while co-precipitation of Mg was lower than 2%. The Mg-rich leachate after the depletion of Al and the leaching residue(main phases of CaSOand SiO) were carbonated using(NH)COand NHHCOsolutions, respectively, under mild conditions. Approximately 99% of Ca and 89% of Mg in the blast furnace slag were converted into CaCOand(NH)Mg(CO)·4 HO,respectively. The latter can be selectively decomposed to magnesium carbonate at 100-200 °C to recover the NHfor reuse. In the present route, the total COsequestration capacity per tonne of blast furnace slag reached up to 316 kg, and 313 kg of Al-rich precipitate, 1000 kg of carbonated product containing CaCOand SiO, and 304 kg of carbonated product containing calcium carbonate and magnesium carbonate were recovered simultaneously. These products can be used, respectively, as raw materials for the production of electrolytic aluminium, cement, and light magnesium carbonate to replace natural resources.