The present paper reports the unusual enhancement of endurance life of ball bearings subjected to carbonitriding treatment. The microstructure was characterized by scanning electron microscopy and correlated with hard...The present paper reports the unusual enhancement of endurance life of ball bearings subjected to carbonitriding treatment. The microstructure was characterized by scanning electron microscopy and correlated with hardness and X-ray diffraction analysis. Endurance tests at 90% reliability revealed that the carbonitrided bearings exhibit nearly ten times more life than the non-carbonitrided bearings. This is attributed to synergic combination of retained austenitic, fine martensitic microstructure and ultrafine carbide precipitates obtained by carbonitriding treatment.展开更多
AISI 321 austenitic stainless steel was treated using rf plasma carbonitriding with the intention of use low-cost orthopedic implant material in biomedical applications. The treatment process was carried at low workin...AISI 321 austenitic stainless steel was treated using rf plasma carbonitriding with the intention of use low-cost orthopedic implant material in biomedical applications. The treatment process was carried at low working gas pressure of 0.075 mbar in nitrogen-acetylene gaseous mixture to form a superficial carbonitrided layer. The samples were treated using rf inductively coupled at a fixed plasma-processing power of 500 W and for a processing time varied from 4 to 20 minutes. The microstructural, mechanical and tribological properties of the untreated and treated samples were studied. The surface hardness is improved by rf plasma carbonitriding to a maximum of 1468 HV0.1 for plasma-processing time of 16 min. To evaluate the biocompatibility performance, the blood was cultured in RPMI media to test the adhesion of blood cells on the untreated and treated samples. It has been found that the blood adhesion on the treated samples is enhanced with increasing the plasma-processing time. The contact angle of the carbonitrided surfaces is decreased to lower values compared to that of the untreated surface. Furthermore, the carbonitrided layer in-vitro corrosion was tested in Ringer’s solution. A degradation in the corrosion resistance was observed for the sample carbonitrided at low plasma processing time of 4 min. However, the corrosion resistance increased to a maximum value at a plasma-processing time of 8 min then gradually decreased with further increase of plasma processing time.展开更多
Diamond-like Carbon (DLC) coatings have attracted significant attention due to their low friction coefficient, high degree of hardness, chemical inertness, and high wear resistance as well as and their many possible u...Diamond-like Carbon (DLC) coatings have attracted significant attention due to their low friction coefficient, high degree of hardness, chemical inertness, and high wear resistance as well as and their many possible uses in metallurgical, aeronautical, and biomedical applications. However, DLC has low adhesion strength to metallic substrates. Carbonitriding was performed before DLC deposition to improve this adherence. Different concentration of nitrogen in the gas mixture was used during the carbonitriding of Ti6Al4V alloy. DLC films were subsequently grown from methane using plasma enhanced chemical vapor deposition. The samples were characterized with Raman scattering spectroscopy, nanoindentation, and tribological tests. Films from 80.0% N2 had the best friction coefficient (0.07) and a critical load of ~22 N. In the scratching test, these films had adhesive failure and they completely detached from the substrate only in the end of the tests. SEM images show carbonitring promoted a significant increase in the surface defects (homogeneously distributed) but without the presence of microcracks. EDX analysis indicated that nitrogen element was diffused throughout the thickness of the samples. Hydrogen and carbon atoms from carbonitriding formed a diffusion-barrier layer that can be used as the first step for DLC deposition. This carbonitriding can also provide a carbide layer, which serves as the precursor for the nucleation and growth of DLC films.展开更多
The microstructure, thickness, microhardness and wear resistance of single-boronizing, carbonitriding+boronizing and carbonitriding+RE-boronizing layers of 16Mn steel were investigated respectively. Effect of rare ear...The microstructure, thickness, microhardness and wear resistance of single-boronizing, carbonitriding+boronizing and carbonitriding+RE-boronizing layers of 16Mn steel were investigated respectively. Effect of rare earths on microstructure and properties of the penetrated layer were studied and the mechanism of effects of rare earths was discussed. The result showed that the structure, microhardness, brittleness and wear resistance of the penetrated layer after carbonitriding+ RE-boronizing were better than that of conventional boronizing and carbonitriding, especially the wear resistance of boronized layer was increased remarkably. The RE-boronizing layer of the steel is single phase Fe2B, and RE elements enhanced Fe2B (002) direction texture. The distribution of rare earth element (La) in the layer was non-uniform. RE content is higher between borides than that of the interior of borides. An optimum value of the addition of RE element in the agent was 8%. The average service life of the 16Mn steel brick mould treated by carbonitriding+RE-boronizing was 1.5 times as long as the service life of the mould treated by carbonitriding-boronizing.展开更多
The application of rolling for fabricating grate on titanium stripe has been explored in this paper. Then the mechanically robust Ti(C,N) diffusion layer was synthetized directly on the grates by laser carbonitridin...The application of rolling for fabricating grate on titanium stripe has been explored in this paper. Then the mechanically robust Ti(C,N) diffusion layer was synthetized directly on the grates by laser carbonitriding in the mixture gas of nitrogen and methane. The results shows that the carbonitriding process is accelerated by temperature enhancement with decreasing scanning speed, The Ti(C,N) diffusion layer is kept at 2 ~nn in thickness, when the scanning speed is smaller than 4 mm/s. The contact angle increases from 20~ to 143.6~ by designing an appropriate grate size and surface roughness. Meanwhile, the relationship between hydrophobicity, hardness performance and scanning speed is also discussed. The hardness of diffusion layer increases with decreasing laser scanning speed, and is up to 11.2 GPa. The surface structure and hydrophobic state are maintained after three cycles of sandpaper abrasion, which has improved the robustness of surface grate.展开更多
The composition and structure of PIII(plasma immersion ion implantation)carbonitrided Cr4Mo4V steel were analyzed using X-ray photoelectron spectroscopy(XPS),X-ray diffraction(XRD),optical microscopy(OM)and SEM.The re...The composition and structure of PIII(plasma immersion ion implantation)carbonitrided Cr4Mo4V steel were analyzed using X-ray photoelectron spectroscopy(XPS),X-ray diffraction(XRD),optical microscopy(OM)and SEM.The results indicate that the nitride and carbide are dispersion phase precipitation and except formation of compound other implantation atoms dissolve into martensite matrix.The total concentration of carbon and nitrogen is about 30 at%near the surface,and still keeps at about 20 at%even at the depth of 8μm.The effect of treatment temperature,implantation time and ratio of N2 to CH4 on the hardness and wear resistance of carbonitrided layer are investigated.It is found that the hardness of Cr4Mo4V steel increases after treatment.The highest hardness of samples is 22.3 GPa,which is about 1.8 times than initial steel.The dry-wear resistance of the samples is also improved after treatment,and the sample with higher hardness shows the better wear resistance.展开更多
The plasma electrolytic carbonitriding (PEC/N) on the Q235 steel was investigated in an aqueous solution containing monoethanolamine and KC1 in a very short period of time. The microdischarge characteristics of the ...The plasma electrolytic carbonitriding (PEC/N) on the Q235 steel was investigated in an aqueous solution containing monoethanolamine and KC1 in a very short period of time. The microdischarge characteristics of the volt- age/current on the Q235 were observed using real-time imaging during the PEC/N. The microstructure and element distribution of the carbonitriding layer were examined using scanning electron microscope (SEM) equipped with energy dispersive spectroscope (EDS). The effect of microdischarge on roughness, thickness and microhardness was evalua- ted. The formation of the carbonitriding layer was discussed. Research shows that it is similar in the microstructure and properties between the plasma electrolytic carbonitriding and the traditional gas carbonitriding. The formation of the carbonitriding layer results from the carbon and nitrogen fluctuation in PEC/N process. The microhardness and thickness can be up to HV 779 and 0. 360 mm in 180 s, respectively, which is close to the results of the gas carboni- triding in the microhardness. Therefore, the plasma electrolytic carbonit^riding has a potential to substitute the gas carbonitriding.展开更多
Titanium carbonitride (TiCN) coating was prepared on 45# carbon steel by electrical discharge coating (EDC), and the compositions, morphology and microstructure of the coating were studied. In addition, its friction a...Titanium carbonitride (TiCN) coating was prepared on 45# carbon steel by electrical discharge coating (EDC), and the compositions, morphology and microstructure of the coating were studied. In addition, its friction and wear behaviors relative to the physical vapor deposition (PVD) TiN coating were investigated. The results show that the TiCN coating features a thickness of 15μm with a primary phase of TiC 0.3 N 0.7 . The wear rates of the two coatings have no clear distinction at low applied loads. However, severe abrasive wear appears in the PVD TiN coating when the applied load exceeds 30 N, while the TiCN coating features better wear resistance. The abrasive wear with coating peelings is found to be the predominant wear mechanism at high applied loads.展开更多
Niobium, as the most effective second-phase forming element, was added in the Fe-Crl3-C-N hard- facing alloy to get carbonitride precipitates. Morphology and composition of carbonitride in the hardfacing alloy were st...Niobium, as the most effective second-phase forming element, was added in the Fe-Crl3-C-N hard- facing alloy to get carbonitride precipitates. Morphology and composition of carbonitride in the hardfacing alloy were studied by optical microscopy, scanning electron microscopy, and electron probe microanalyzer. The ther- modynamics and the effect on the matrix of the formation of carbonitride were also discussed. It was found that niobium carbonitrides are complex Nb(C, N) precipitate distributed on grain boundary and matrix of the hardfacing alloy. Under as-welded condition, primary carbonitride particles were readily precipitated from the hardfacing alloy with large size and morphology as they were formed already during solidification. Under heat treatment condi- tion, a large number of secondary carbonitrides can pre- cipitate out with very fine size and make a great secondary hardening effect on the matrix. As a result, addition of niobium in the hardfacing alloy can prevent the formation of chromium-rich phase on grain boundaries and inter- granular chromium depletion.展开更多
The precipitation behaviors of X80 acicular ferrite pipeline steel were investigated by using transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS). The results show that dendritic precip...The precipitation behaviors of X80 acicular ferrite pipeline steel were investigated by using transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS). The results show that dendritic precipitates in the as-cast steel slabs precipitate mainly in grain boundaries, and these dendritic precipitates dissolve and re-precipitate to two kinds of carbonitrides: Ti- and Nb-rich (Ti, Nb)(C, N) carbonitrides during reheating. Four types of precipitates mainly exist in the hot rolled plate: Ti-rich carbonitrides resulted from the dendritic carbonitrides undissolved during the reheating process; Ti-rich carbonitrides re-precipitated along austenite grain boundaries during the re-heating process; NbC carbides mainly heterogeneously nucleated on the small pre-existing Nb-rich carbonitrides in the hot rolling process; and NbC carbides precipitated on dislocations during hot rolling.展开更多
To investigate the microsegregation phenomena and complex (Ti, Nb)(C, N) precipitation behavior during continuous casting, a unidirectional solidification unit was employed to simulate the solidification process. ...To investigate the microsegregation phenomena and complex (Ti, Nb)(C, N) precipitation behavior during continuous casting, a unidirectional solidification unit was employed to simulate the solidification process. The samples of Ti, Nb-addition steels after unidirectional solidification were examined using field emission scanning electron microscope (FE-SEM) and electron probe X-ray microanalyzer (EPMA). In such specimens, dendrite structure and mushy zone can be detected along the solidification direction. It shows that the addition of titanium, niobium to high-strength low-alloyed (HSLA) steel results in undesirable (Ti, Nb)(C, N) precipitation because of microsegregation. The effect of cooling rate on (Ti, Nb)(C, N) precipitation was investigated. The composition of large precipitates was determined using FE-SEM with EDS. Large (Ti, Nb)(C, N) precipitates could be divided into three kinds according to the composition and morphology. With the cooling rate increasing, Ti-rich (Ti, Nb)(C, N) precipitates are transformed to Nb-rich (Ti, Nb)(C, N) precipitates.展开更多
In this work, the growth kinetics of MX (M - metal, X - C/N) nanoprecipitates in type 347H austenitic steel was systematically studied. To investigate the coarsening behavior and the growth mechanism of MX carbonitr...In this work, the growth kinetics of MX (M - metal, X - C/N) nanoprecipitates in type 347H austenitic steel was systematically studied. To investigate the coarsening behavior and the growth mechanism of MX carbonitrides during long-term aging, experiments were performed at 700, 800, 850, and 900℃ for different periods (1, 24, 70, and 100 h). The precipitation behavior of carbonitrides in specimens subjected to various aging conditions was explored using carbon replicas and transmission electron microscopy (TEM) observations. The corresponding sizes ofMX carbonitrides were measured. The results demonstrates that MX carbonitrides precipitate in type 347H austenitic steel as Nb(C,N). The coarsening rate constant is time-independent; however, an increase in aging temperature results in an increase in coarsening rate of Nb(C,N). The coarsening process was analyzed according to the calculated diffusion activation energy of Nb(C,N). When the aging temperature was 800-900℃, the mean activation energy was 294 kJ·mol -1, and the coarsening behavior was controlled primarily by the diffusion of Nb atoms.展开更多
The morphology, structure, and chemical composition of precipitates in the final microstructure of Nb-V-Ti microalloyed X70 acicular ferrite pipeline steel were investigated using transmission electron microscopy (TE...The morphology, structure, and chemical composition of precipitates in the final microstructure of Nb-V-Ti microalloyed X70 acicular ferrite pipeline steel were investigated using transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS). Precipitates observed by TEM can be classified into two groups. The large precipitates are complex compounds that comprise square-shaped TiN precipitate as core with fine Nb-containing precipitate nucleated on pre-existing TiN precipitate as caps on one or more faces at high temperature. In contrast, the fine and spherical Nb carbides and/or carbonitrides precipitate heterogeneously on dislocations and sub-boundaries at low temperature. From the analysis in terms of thermodynamics, EDS and chemical cornposition of the steel, NbC precipitation is considered to be the predominant precipitation behavior in the tested steel under the processing conditions of this research.展开更多
Ultra-fine titanium carbonitride (TiCN) matrix materials with a grain size less than 1μm were successfully prepared by vacuum microwave sintering. The milling process for raw TiCN particles and the microstructure a...Ultra-fine titanium carbonitride (TiCN) matrix materials with a grain size less than 1μm were successfully prepared by vacuum microwave sintering. The milling process for raw TiCN particles and the microstructure and properties of cermets produced with a composition of 15wt.%WC-17wt.%(Co+Ni)-9wt.%Mo2C-59wt.%Ti0.TN0.3 and sintered by vacuum microwave were analyzed by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results show that a ball-to-powder mass ratio of 8:1 and a milling time of 50 h provided appropriate conditions for the production of ultra-fine TiCN solid solution powders. The use of vacuum microwave sintering produced cermets with much finer grain and black core structures and higher relative density and hardness than those produced by vacuum sintering technology.展开更多
An Al–AlN core–shell structure is beneficial to the performance of Al–Al2O3 composites. In this paper, the phase evolution and microstructure of Al–Al2O3–TiO2 composites at high temperatures in flowing N2 were in...An Al–AlN core–shell structure is beneficial to the performance of Al–Al2O3 composites. In this paper, the phase evolution and microstructure of Al–Al2O3–TiO2 composites at high temperatures in flowing N2 were investigated after the Al–AlN core–shell structure was created at 853 K for 8 h. The results show that TiO2 can convert Al into Al3Ti(~1685 K), which reduces the content of metal Al and rearranges the structure of the composite. Under N2 conditions, Al3Ti is further transformed into a novelty non-oxide phase, TiCN. The transformation process can be expressed as follows: Al3Ti reacts with C and other carbides(Al4C3 and Al4O4C) to form TiCx(x < 1). As the firing temperature increases, Al3Ti transforms into a liquid phase and produces Ti(g) and TiO(g). Finally, Ti(g) and TiO(g) are nitrided and solid-dissolved into the TiCx crystals to form a TiCN solid solution.展开更多
According to the misfitting dislocation theory,a method of theoretical calculation was devel- oped for the specific energy of the semicoherent interface between microalloy carbonitrides and austenite matrix.The calcul...According to the misfitting dislocation theory,a method of theoretical calculation was devel- oped for the specific energy of the semicoherent interface between microalloy carbonitrides and austenite matrix.The calculating formulae were derived and the results were satisfactorily applied on the research works.展开更多
The effect of titanium content on the refinement of austenite grain size in as-cast peritectic carbon steel was investigated by fast directional solidification experiments with simulating the solidification and growth...The effect of titanium content on the refinement of austenite grain size in as-cast peritectic carbon steel was investigated by fast directional solidification experiments with simulating the solidification and growth of surface and subsurface austenite in continuously cast slabs.Transmission electron microscope(TEM)and scanning electron microscope(SEM)were used to analyze the size and distribution of Ti(C,N)precipitates during solidification.Based on these results,the pinning pressure of Ti(C,N)precipitates on the growth of coarse columnar grains(CCGs)was studied.The results show that the austenite microstructure of as-cast peritectic carbon steel is mainly composed of the regions of CCGs and fine columnar grains(FCGs).Increasing the content of titanium reduces the region and the short axis of the CCGs.When the content of titanium is 0.09wt%,there is no CCG region.Dispersed microscale particles will firstly form in the liquid,which will decrease the transition temperature from FCGs to CCGs.The chain-like nanoscale Ti(C,N)will precipitate with the decrease of the transition temperature.Furthermore,calculations shows that the refinement of the CCGs is caused by the pinning effect of Ti(C,N)precipitates.展开更多
Fe3Mo3C has been prepared and its activity for ammonia synthesis was evaluated.As had been observed previously for Co3Mo3C,it was found to be inactive at 400℃.At 500℃activity developed and this can be related to the...Fe3Mo3C has been prepared and its activity for ammonia synthesis was evaluated.As had been observed previously for Co3Mo3C,it was found to be inactive at 400℃.At 500℃activity developed and this can be related to the substitution of lattice carbon by nitrogen.Application of a simple topotactic route to prepare Ni2Mo3C from Ni2Mo3N proved unsuccessful,with the resultant carbonitride formed under optimal synthesis conditions being active for ammonia synthesis at 400℃.展开更多
The nitrogen-alloying hardfacing alloy of the martensitic stainless steel was deposited on a low carbon steel substrate using hardfacing flux-cored wire. Microstructure and surface hardness of hardfacing alloy were in...The nitrogen-alloying hardfacing alloy of the martensitic stainless steel was deposited on a low carbon steel substrate using hardfacing flux-cored wire. Microstructure and surface hardness of hardfacing alloy were investigated and measured by optical microscope and microhardness tester. Carbonitrides of the hardfacing alloy were observed by electron probe. The wear behaviour of the hardfacing alloy was studied using the belt abrasion test apparatus and the worn surface was analyzed by scanning electron microscopy. The results showed that carbonitride particles in the hardfacing alloy are complex MX ( M: alloy elements ; X: C, N) precipitate with fine size. These carbonitride particles distributed homogeneously in the hardfacing alloy and had a good strengthening effect on the wear property. The wear property of the hardfacing alloy with nitrogen was better than the one without nitrogen.展开更多
The distribution of nano-carbonitrides produced by the treatments of surface nanocrystallization and plasma electrolytic carbonitriding on a γ-TiAl was investigated by means of figure analysis. The skewness and kurto...The distribution of nano-carbonitrides produced by the treatments of surface nanocrystallization and plasma electrolytic carbonitriding on a γ-TiAl was investigated by means of figure analysis. The skewness and kurtosis of Gaussian shape distribution curves were studied and the effect of electrolyte temperature was determined. The usage of lower temperatures of the electrolyte is more suitable for achieving lower sizes of complex nano-carbonitrides. The surface roughness of treated samples was measured and it was observed that there is an optimum level of electrolyte temperature for surface roughness increase (difference between two measured data).展开更多
文摘The present paper reports the unusual enhancement of endurance life of ball bearings subjected to carbonitriding treatment. The microstructure was characterized by scanning electron microscopy and correlated with hardness and X-ray diffraction analysis. Endurance tests at 90% reliability revealed that the carbonitrided bearings exhibit nearly ten times more life than the non-carbonitrided bearings. This is attributed to synergic combination of retained austenitic, fine martensitic microstructure and ultrafine carbide precipitates obtained by carbonitriding treatment.
文摘AISI 321 austenitic stainless steel was treated using rf plasma carbonitriding with the intention of use low-cost orthopedic implant material in biomedical applications. The treatment process was carried at low working gas pressure of 0.075 mbar in nitrogen-acetylene gaseous mixture to form a superficial carbonitrided layer. The samples were treated using rf inductively coupled at a fixed plasma-processing power of 500 W and for a processing time varied from 4 to 20 minutes. The microstructural, mechanical and tribological properties of the untreated and treated samples were studied. The surface hardness is improved by rf plasma carbonitriding to a maximum of 1468 HV0.1 for plasma-processing time of 16 min. To evaluate the biocompatibility performance, the blood was cultured in RPMI media to test the adhesion of blood cells on the untreated and treated samples. It has been found that the blood adhesion on the treated samples is enhanced with increasing the plasma-processing time. The contact angle of the carbonitrided surfaces is decreased to lower values compared to that of the untreated surface. Furthermore, the carbonitrided layer in-vitro corrosion was tested in Ringer’s solution. A degradation in the corrosion resistance was observed for the sample carbonitrided at low plasma processing time of 4 min. However, the corrosion resistance increased to a maximum value at a plasma-processing time of 8 min then gradually decreased with further increase of plasma processing time.
基金The authors are very grateful to Conselho Nacional de Desenvolvimento Cientifico e Tecnologico(CNPq)Fundacao de Amparo a Pesquisa do Estado de Sao Paulo(FAPESP)for the financial support.
文摘Diamond-like Carbon (DLC) coatings have attracted significant attention due to their low friction coefficient, high degree of hardness, chemical inertness, and high wear resistance as well as and their many possible uses in metallurgical, aeronautical, and biomedical applications. However, DLC has low adhesion strength to metallic substrates. Carbonitriding was performed before DLC deposition to improve this adherence. Different concentration of nitrogen in the gas mixture was used during the carbonitriding of Ti6Al4V alloy. DLC films were subsequently grown from methane using plasma enhanced chemical vapor deposition. The samples were characterized with Raman scattering spectroscopy, nanoindentation, and tribological tests. Films from 80.0% N2 had the best friction coefficient (0.07) and a critical load of ~22 N. In the scratching test, these films had adhesive failure and they completely detached from the substrate only in the end of the tests. SEM images show carbonitring promoted a significant increase in the surface defects (homogeneously distributed) but without the presence of microcracks. EDX analysis indicated that nitrogen element was diffused throughout the thickness of the samples. Hydrogen and carbon atoms from carbonitriding formed a diffusion-barrier layer that can be used as the first step for DLC deposition. This carbonitriding can also provide a carbide layer, which serves as the precursor for the nucleation and growth of DLC films.
基金the Natural Science Foundation of Chongqing (2006BB4391)
文摘The microstructure, thickness, microhardness and wear resistance of single-boronizing, carbonitriding+boronizing and carbonitriding+RE-boronizing layers of 16Mn steel were investigated respectively. Effect of rare earths on microstructure and properties of the penetrated layer were studied and the mechanism of effects of rare earths was discussed. The result showed that the structure, microhardness, brittleness and wear resistance of the penetrated layer after carbonitriding+ RE-boronizing were better than that of conventional boronizing and carbonitriding, especially the wear resistance of boronized layer was increased remarkably. The RE-boronizing layer of the steel is single phase Fe2B, and RE elements enhanced Fe2B (002) direction texture. The distribution of rare earth element (La) in the layer was non-uniform. RE content is higher between borides than that of the interior of borides. An optimum value of the addition of RE element in the agent was 8%. The average service life of the 16Mn steel brick mould treated by carbonitriding+RE-boronizing was 1.5 times as long as the service life of the mould treated by carbonitriding-boronizing.
文摘The application of rolling for fabricating grate on titanium stripe has been explored in this paper. Then the mechanically robust Ti(C,N) diffusion layer was synthetized directly on the grates by laser carbonitriding in the mixture gas of nitrogen and methane. The results shows that the carbonitriding process is accelerated by temperature enhancement with decreasing scanning speed, The Ti(C,N) diffusion layer is kept at 2 ~nn in thickness, when the scanning speed is smaller than 4 mm/s. The contact angle increases from 20~ to 143.6~ by designing an appropriate grate size and surface roughness. Meanwhile, the relationship between hydrophobicity, hardness performance and scanning speed is also discussed. The hardness of diffusion layer increases with decreasing laser scanning speed, and is up to 11.2 GPa. The surface structure and hydrophobic state are maintained after three cycles of sandpaper abrasion, which has improved the robustness of surface grate.
基金supported by NSFC(51001039)National Basic Research Program of China(No.2007CB607602)+1 种基金The Program of Excellent Teams of Harbin Institute of TechnologyScience Found for Distinguished Yong Schoolars of Heilongjiang Province(JC200901)
文摘The composition and structure of PIII(plasma immersion ion implantation)carbonitrided Cr4Mo4V steel were analyzed using X-ray photoelectron spectroscopy(XPS),X-ray diffraction(XRD),optical microscopy(OM)and SEM.The results indicate that the nitride and carbide are dispersion phase precipitation and except formation of compound other implantation atoms dissolve into martensite matrix.The total concentration of carbon and nitrogen is about 30 at%near the surface,and still keeps at about 20 at%even at the depth of 8μm.The effect of treatment temperature,implantation time and ratio of N2 to CH4 on the hardness and wear resistance of carbonitrided layer are investigated.It is found that the hardness of Cr4Mo4V steel increases after treatment.The highest hardness of samples is 22.3 GPa,which is about 1.8 times than initial steel.The dry-wear resistance of the samples is also improved after treatment,and the sample with higher hardness shows the better wear resistance.
基金Item Sponsored by National Natural Science Foundation of China(50901031)Fundamental Research Funds for Central Universities of China(2012B07414)
文摘The plasma electrolytic carbonitriding (PEC/N) on the Q235 steel was investigated in an aqueous solution containing monoethanolamine and KC1 in a very short period of time. The microdischarge characteristics of the volt- age/current on the Q235 were observed using real-time imaging during the PEC/N. The microstructure and element distribution of the carbonitriding layer were examined using scanning electron microscope (SEM) equipped with energy dispersive spectroscope (EDS). The effect of microdischarge on roughness, thickness and microhardness was evalua- ted. The formation of the carbonitriding layer was discussed. Research shows that it is similar in the microstructure and properties between the plasma electrolytic carbonitriding and the traditional gas carbonitriding. The formation of the carbonitriding layer results from the carbon and nitrogen fluctuation in PEC/N process. The microhardness and thickness can be up to HV 779 and 0. 360 mm in 180 s, respectively, which is close to the results of the gas carboni- triding in the microhardness. Therefore, the plasma electrolytic carbonit^riding has a potential to substitute the gas carbonitriding.
基金Project(51075075)supported by the National Natural Science Foundation of China
文摘Titanium carbonitride (TiCN) coating was prepared on 45# carbon steel by electrical discharge coating (EDC), and the compositions, morphology and microstructure of the coating were studied. In addition, its friction and wear behaviors relative to the physical vapor deposition (PVD) TiN coating were investigated. The results show that the TiCN coating features a thickness of 15μm with a primary phase of TiC 0.3 N 0.7 . The wear rates of the two coatings have no clear distinction at low applied loads. However, severe abrasive wear appears in the PVD TiN coating when the applied load exceeds 30 N, while the TiCN coating features better wear resistance. The abrasive wear with coating peelings is found to be the predominant wear mechanism at high applied loads.
基金financially supported by the National Natural Science Foundation of China(No.51101050)Natural Science Foundation of Jiangsu Province of China(No.BK2011257)
文摘Niobium, as the most effective second-phase forming element, was added in the Fe-Crl3-C-N hard- facing alloy to get carbonitride precipitates. Morphology and composition of carbonitride in the hardfacing alloy were studied by optical microscopy, scanning electron microscopy, and electron probe microanalyzer. The ther- modynamics and the effect on the matrix of the formation of carbonitride were also discussed. It was found that niobium carbonitrides are complex Nb(C, N) precipitate distributed on grain boundary and matrix of the hardfacing alloy. Under as-welded condition, primary carbonitride particles were readily precipitated from the hardfacing alloy with large size and morphology as they were formed already during solidification. Under heat treatment condi- tion, a large number of secondary carbonitrides can pre- cipitate out with very fine size and make a great secondary hardening effect on the matrix. As a result, addition of niobium in the hardfacing alloy can prevent the formation of chromium-rich phase on grain boundaries and inter- granular chromium depletion.
基金supported by the National Science and Technology Support Program for the 11th Five-Year Plan of China (No.2006BAE03A06)
文摘The precipitation behaviors of X80 acicular ferrite pipeline steel were investigated by using transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS). The results show that dendritic precipitates in the as-cast steel slabs precipitate mainly in grain boundaries, and these dendritic precipitates dissolve and re-precipitate to two kinds of carbonitrides: Ti- and Nb-rich (Ti, Nb)(C, N) carbonitrides during reheating. Four types of precipitates mainly exist in the hot rolled plate: Ti-rich carbonitrides resulted from the dendritic carbonitrides undissolved during the reheating process; Ti-rich carbonitrides re-precipitated along austenite grain boundaries during the re-heating process; NbC carbides mainly heterogeneously nucleated on the small pre-existing Nb-rich carbonitrides in the hot rolling process; and NbC carbides precipitated on dislocations during hot rolling.
文摘To investigate the microsegregation phenomena and complex (Ti, Nb)(C, N) precipitation behavior during continuous casting, a unidirectional solidification unit was employed to simulate the solidification process. The samples of Ti, Nb-addition steels after unidirectional solidification were examined using field emission scanning electron microscope (FE-SEM) and electron probe X-ray microanalyzer (EPMA). In such specimens, dendrite structure and mushy zone can be detected along the solidification direction. It shows that the addition of titanium, niobium to high-strength low-alloyed (HSLA) steel results in undesirable (Ti, Nb)(C, N) precipitation because of microsegregation. The effect of cooling rate on (Ti, Nb)(C, N) precipitation was investigated. The composition of large precipitates was determined using FE-SEM with EDS. Large (Ti, Nb)(C, N) precipitates could be divided into three kinds according to the composition and morphology. With the cooling rate increasing, Ti-rich (Ti, Nb)(C, N) precipitates are transformed to Nb-rich (Ti, Nb)(C, N) precipitates.
基金the China National Funds for Distinguished Young Scientists (No.51325401)the National High Technology Research and Development Program of China (No.2015AA042504)the National Natural Science Foundation of China (No.51474156) for financial support
文摘In this work, the growth kinetics of MX (M - metal, X - C/N) nanoprecipitates in type 347H austenitic steel was systematically studied. To investigate the coarsening behavior and the growth mechanism of MX carbonitrides during long-term aging, experiments were performed at 700, 800, 850, and 900℃ for different periods (1, 24, 70, and 100 h). The precipitation behavior of carbonitrides in specimens subjected to various aging conditions was explored using carbon replicas and transmission electron microscopy (TEM) observations. The corresponding sizes ofMX carbonitrides were measured. The results demonstrates that MX carbonitrides precipitate in type 347H austenitic steel as Nb(C,N). The coarsening rate constant is time-independent; however, an increase in aging temperature results in an increase in coarsening rate of Nb(C,N). The coarsening process was analyzed according to the calculated diffusion activation energy of Nb(C,N). When the aging temperature was 800-900℃, the mean activation energy was 294 kJ·mol -1, and the coarsening behavior was controlled primarily by the diffusion of Nb atoms.
文摘The morphology, structure, and chemical composition of precipitates in the final microstructure of Nb-V-Ti microalloyed X70 acicular ferrite pipeline steel were investigated using transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS). Precipitates observed by TEM can be classified into two groups. The large precipitates are complex compounds that comprise square-shaped TiN precipitate as core with fine Nb-containing precipitate nucleated on pre-existing TiN precipitate as caps on one or more faces at high temperature. In contrast, the fine and spherical Nb carbides and/or carbonitrides precipitate heterogeneously on dislocations and sub-boundaries at low temperature. From the analysis in terms of thermodynamics, EDS and chemical cornposition of the steel, NbC precipitation is considered to be the predominant precipitation behavior in the tested steel under the processing conditions of this research.
基金supported by the Hunan Provincial Natural Science Fund for Distinguished Young Scholars of China(No.08JJ1007)the Hunan Provincial Key Science Research Program of China(No.2008GK2009)the Scientific Research Fund of Fujian Provincial Education Department of China(No.JK2009029)
文摘Ultra-fine titanium carbonitride (TiCN) matrix materials with a grain size less than 1μm were successfully prepared by vacuum microwave sintering. The milling process for raw TiCN particles and the microstructure and properties of cermets produced with a composition of 15wt.%WC-17wt.%(Co+Ni)-9wt.%Mo2C-59wt.%Ti0.TN0.3 and sintered by vacuum microwave were analyzed by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results show that a ball-to-powder mass ratio of 8:1 and a milling time of 50 h provided appropriate conditions for the production of ultra-fine TiCN solid solution powders. The use of vacuum microwave sintering produced cermets with much finer grain and black core structures and higher relative density and hardness than those produced by vacuum sintering technology.
基金financial support from the National Natural Science Foundation of China (No. 51872023)
文摘An Al–AlN core–shell structure is beneficial to the performance of Al–Al2O3 composites. In this paper, the phase evolution and microstructure of Al–Al2O3–TiO2 composites at high temperatures in flowing N2 were investigated after the Al–AlN core–shell structure was created at 853 K for 8 h. The results show that TiO2 can convert Al into Al3Ti(~1685 K), which reduces the content of metal Al and rearranges the structure of the composite. Under N2 conditions, Al3Ti is further transformed into a novelty non-oxide phase, TiCN. The transformation process can be expressed as follows: Al3Ti reacts with C and other carbides(Al4C3 and Al4O4C) to form TiCx(x < 1). As the firing temperature increases, Al3Ti transforms into a liquid phase and produces Ti(g) and TiO(g). Finally, Ti(g) and TiO(g) are nitrided and solid-dissolved into the TiCx crystals to form a TiCN solid solution.
文摘According to the misfitting dislocation theory,a method of theoretical calculation was devel- oped for the specific energy of the semicoherent interface between microalloy carbonitrides and austenite matrix.The calculating formulae were derived and the results were satisfactorily applied on the research works.
基金financially supported by the National Natural Science Foundation of China (Nos.51774075 and52174307)Liao Ning Revitalization Talents Program,China(No.XLYC1802032)
文摘The effect of titanium content on the refinement of austenite grain size in as-cast peritectic carbon steel was investigated by fast directional solidification experiments with simulating the solidification and growth of surface and subsurface austenite in continuously cast slabs.Transmission electron microscope(TEM)and scanning electron microscope(SEM)were used to analyze the size and distribution of Ti(C,N)precipitates during solidification.Based on these results,the pinning pressure of Ti(C,N)precipitates on the growth of coarse columnar grains(CCGs)was studied.The results show that the austenite microstructure of as-cast peritectic carbon steel is mainly composed of the regions of CCGs and fine columnar grains(FCGs).Increasing the content of titanium reduces the region and the short axis of the CCGs.When the content of titanium is 0.09wt%,there is no CCG region.Dispersed microscale particles will firstly form in the liquid,which will decrease the transition temperature from FCGs to CCGs.The chain-like nanoscale Ti(C,N)will precipitate with the decrease of the transition temperature.Furthermore,calculations shows that the refinement of the CCGs is caused by the pinning effect of Ti(C,N)precipitates.
文摘Fe3Mo3C has been prepared and its activity for ammonia synthesis was evaluated.As had been observed previously for Co3Mo3C,it was found to be inactive at 400℃.At 500℃activity developed and this can be related to the substitution of lattice carbon by nitrogen.Application of a simple topotactic route to prepare Ni2Mo3C from Ni2Mo3N proved unsuccessful,with the resultant carbonitride formed under optimal synthesis conditions being active for ammonia synthesis at 400℃.
文摘The nitrogen-alloying hardfacing alloy of the martensitic stainless steel was deposited on a low carbon steel substrate using hardfacing flux-cored wire. Microstructure and surface hardness of hardfacing alloy were investigated and measured by optical microscope and microhardness tester. Carbonitrides of the hardfacing alloy were observed by electron probe. The wear behaviour of the hardfacing alloy was studied using the belt abrasion test apparatus and the worn surface was analyzed by scanning electron microscopy. The results showed that carbonitride particles in the hardfacing alloy are complex MX ( M: alloy elements ; X: C, N) precipitate with fine size. These carbonitride particles distributed homogeneously in the hardfacing alloy and had a good strengthening effect on the wear property. The wear property of the hardfacing alloy with nitrogen was better than the one without nitrogen.
基金funded by the National Elite Foundation of Iran and Iranian Nanotechnology Initia-tive is appreciated
文摘The distribution of nano-carbonitrides produced by the treatments of surface nanocrystallization and plasma electrolytic carbonitriding on a γ-TiAl was investigated by means of figure analysis. The skewness and kurtosis of Gaussian shape distribution curves were studied and the effect of electrolyte temperature was determined. The usage of lower temperatures of the electrolyte is more suitable for achieving lower sizes of complex nano-carbonitrides. The surface roughness of treated samples was measured and it was observed that there is an optimum level of electrolyte temperature for surface roughness increase (difference between two measured data).