Sodium-ion capacitors(SICs)have great potential in energy storage due to their low cost,the abundance of Na,and the potential to deliver high energy and power simultaneously.This article demonstrates a template-assist...Sodium-ion capacitors(SICs)have great potential in energy storage due to their low cost,the abundance of Na,and the potential to deliver high energy and power simultaneously.This article demonstrates a template-assisted method to induce graphitic nanodomains and micro-mesopores into nitrogen-doped carbons.This study elucidates that these graphitic nanodomains are beneficial for Na+storage.The obtained N-doped carbon(As8Mg)electrode achieved a reversible capacity of 254 mA h g^(-1)at 0.1 A g^(-1).Moreover,the As8Mg-based SIC device achieves high combinations of power/energy densities(53 W kg^(-1)at 224 Wh kg^(-1)and 10410 W kg^(-1)at 51 Wh kg^(-1))with outstanding cycle stability(99.7%retention over 600 cycles at 0.2 A g^(-1)).Our findings provide insights into optimizing carbon’s microstructure to boost sodium storage in the pseudocapacitive mode.展开更多
Energy density,the Achilles’heel of aqueous supercapacitors,is simultaneously determined by the voltage window and specific capacitance of the carbon materials,but the strategy of synchronously boosting them has rare...Energy density,the Achilles’heel of aqueous supercapacitors,is simultaneously determined by the voltage window and specific capacitance of the carbon materials,but the strategy of synchronously boosting them has rarely been reported.Herein,we demonstrate that the rational utilization of the interaction between redox mediators(RMs)and carbon electrode materials,especially those with rich intrinsic defects,contributes to extended potential windows and more stored charges concurrently.Using 4-hydroxy-2,2,6,6-tetramethylpiperidinyloxyl(4OH-TEMPO)and intrinsic defect-rich carbons as the RMs and electrode materials,respectively,the potential window and capacitance are increased by 67%and sixfold in a neutral electrolyte.Moreover,this strategy could also be applied to alkaline and acid electrolytes.The first-principle calculation and experimental results demonstrate that the strong interaction between 4OH-TEMPO and defectrich carbons plays a key role as preferential adsorbed RMs may largely prohibit the contact of free water molecules with the electrode materials to terminate the water splitting at elevated potentials.For the RMs offering weaker interaction with the electrode materials,the water splitting still proceeds with a thus sole increase of the stored charges.The results discovered in this work could provide an alternative solution to address the low energy density of aqueous supercapacitors.展开更多
The chemical activation of various precursors is effective for creating additional closed pores in hard carbons for sodium storage.However,the formation mechanism of closed pores under the influence of pore-forming ag...The chemical activation of various precursors is effective for creating additional closed pores in hard carbons for sodium storage.However,the formation mechanism of closed pores under the influence of pore-forming agents is not well understood.Herein,an effective chemical activation followed by a high-temperature self-healing strategy is employed to generate interconnected closed pores in lignin-derived hard carbon(HCs).By systematic experimental design combined with electron paramagnetic res-onance spectroscopy,it can be found that the content of free radicals in the carbon matrix influences the closure of open pores at high temperatures.Excessively high activation temperature(>700 C)leads to a low free radical concentration,making it difficult to achieve self-healing of open pores at high tempera-tures.By activation at 700°C,a balance between pore making and self-healing is achieved in the final hard carbon.A large number of free radicals triggers rapid growth and aggregation of carbon microcrys-tals,blocking pre-formed open micropores and creating additional interconnected closed pores in as-obtained hard carbons.As a result,the optimized carbon anode(LK-700-1300)delivers a high reversible capacity of 330.8 mA h g^(-1) at 0.03 A g^(-1),which is an increase of 86 mA h g^(-1) compared to the pristine lignin-derived carbon anode(L-700-1300),and exhibits a good rate performance(202.1 mA h g^(-1) at 1 A g^(-1)).This work provides a universal and effective guidance for tuning closed pores of hard carbons from otherprecursors.展开更多
The preparation of a synthetic pitch from aromatic monomers could easily regulate structure orientation at the molecu-lar level,which would be useful in fabrication.An isotropic synthetic pitch was prepared by a chlor...The preparation of a synthetic pitch from aromatic monomers could easily regulate structure orientation at the molecu-lar level,which would be useful in fabrication.An isotropic synthetic pitch was prepared by a chlorine-and/or nitrogen-induced sub-stitution polymerization reaction method using aromatic hydrocarbon precursors containing Cl and N,which for this study were chloromethyl naphthalene and quinoline.This method was verified by investigating the structural changes under different synthesis conditions,and the synthesis mechanism induced by aromatics containing Cl was also probed.The result shows that the pyridinic N in quinoline contains a lone pair of electrons,and is an effective active site to induce the polymerization reaction by coupling with aromatic hydrocarbons containing Cl.The reaction between such free radicals causes strong homopolymerization and oligomeriza-tion.A higher reaction temperature and longer reaction time significantly increased the degree of polymerization and thus increased the softening point of the pitch.A linear molecular structure was formed by the Cl substitution reaction,which produced a highly spinnable pitch with a softening point of 258.6℃,and carbon fibers with a tensile strength of 1163.82 MPa were obtained.This study provides a relatively simple and safe method for the preparation of high-quality spinnable pitch.展开更多
Activated carbon preparation from sugarcane leaves and rice straw by carbonization(250℃–400℃)and activation at 500℃were studied.The effects of pre-oxidation,hydrolysis of derived charcoals by boiled KMnO4 aqueous ...Activated carbon preparation from sugarcane leaves and rice straw by carbonization(250℃–400℃)and activation at 500℃were studied.The effects of pre-oxidation,hydrolysis of derived charcoals by boiled KMnO4 aqueous solution were evaluated.The derived charcoals products were pretreated using oxidation-hydrolysis with 1–5 wt.%KMnO4 at 100℃and then activated at 500℃.The derived charcoal and activated carbon products were characterized by FTIR,XRD,SEM-EDS and BET.Iodine number and methylene blue number of derived products were also used for the analysis of the products.It was found that fabricated charcoal materials made at 350℃–400℃possess good characteristics with low content of surface functional groups and high carbon content.After pre-oxidation-hydrolysis and activation at 500℃,the resulting derived activated carbon materials from charcoals with 400℃carbonization temperature have high content of oxygen containing surface functional groups such as Mn-O,Si-O,Si-O-Si,C-O,or O-H.In addition,MnO_(2) accumulated on the surface of the derived activated carbon products.The surface area and pore volume of the activated carbon products have also increased with increasing of KMnO_(4) concentration from 1 to 3 wt.%and then decreased with 5 wt.%used during activation.Therefore,activated carbon products made by pre-oxidation-hydrolysis with 3 wt.%KMnO_(4) were used for Fe(Ⅲ)adsorption experiments.It was found that Fe(Ⅲ)adsorption on the activated carbon materials can be fitted with both the Freundlich and the Langmuir models.The calculated maximum Fe(Ⅲ)adsorption capacities of sugarcane leaves derived activated carbon and rice straw derived activated carbon products were 50.00 and 39.37 mg/g,respectively.It was shown that the effect of pre-oxidation-hydrolysis by KMnO_(4) and activation at 500℃are beneficial for activated carbon preparation with environmentally friendly and low-cost simplified operation.展开更多
Lignin-derived porous carbons have emerged as promising electrode materials for supercapacitors.However,the challenge remains in designing and controlling their structure to achieve ideal electrochemical performance d...Lignin-derived porous carbons have emerged as promising electrode materials for supercapacitors.However,the challenge remains in designing and controlling their structure to achieve ideal electrochemical performance due to the complex molecular structure of lignin and its intricate chemical reactions during the activation process.In this study,three porous carbons were synthesized from lignin by spray drying and chemical activation with vary-ing KOH ratios.The specific surface area and structural order of the prepared porous carbon continued to increase with the increase of the KOH ratio.Thermogravimetric-mass spectrometry(TG-MS)was employed to track the molecular fragments generated during the pyrolysis of KOH-activated lignin,and the mechanism of the thermochemical conversion was investigated.During the thermochemical conversion of lignin,KOH facili-tated the removal of H2 and CO,leading to the formation of not only more micropores and mesopores,but also more ordered carbon structures.The pore structure exhibited a greater impact than the carbon structure on the electrochemical performance of porous carbon.The optimized porous carbon exhibited a capacitance of 256 F g-1 at a current density of 0.2 A g-1,making it an ideal electrode material for high-performance supercapacitors.展开更多
Radar Absorbing Materials(RAM)are a class of composites that can attenuate incident electromagnetic waves to avoid radar detection.Most carbon allotropes that have the potential to be used as RAM are either carbon nan...Radar Absorbing Materials(RAM)are a class of composites that can attenuate incident electromagnetic waves to avoid radar detection.Most carbon allotropes that have the potential to be used as RAM are either carbon nano-tubes(CNTs),graphene,carbon black(CB)and ultimately,sustainable porous carbon(SPC).Here,black wattle bark waste(following tannin extraction)was used as a sustainable source to produce SPC made from biomass waste.It was characterized and used as afiller for a silicone rubber matrix to produce aflexible RAM.The elec-tromagnetic performance of this composite was compared with composites made with commercial CB and CNT through reflection loss(RL),where-10 dB is equivalent to 90%of attenuation.These composites were evaluated in single-layer,double-layer,and as radar absorbing structures(RAS)with the aim of improving their effective absorption bandwidth(EAB)performances and a reduction in costs.The CNT composite presented a RL of-26.85 dB at 10.89 GHz and an EAB of 2.6 GHz with a 1.9 mm thickness,while the double-layer structures using CNT and SPC provided a RL of-19.74 dB at 10.75 GHz and an EAB of 2.51 GHz.Furthermore,the double-layer structures are~42%cheaper than the composite using only CNT since less material is used.Finally,the largest EAB was achieved with a RAS using SPC,reaching~2.8 GHz and a RL of-49.09 dB at 10.4 GHz.Summarizing,SPC made of black wattle bark waste can be a competitive,alternative material for use as RAM and RAS since it is cheaper,sustainable,and suitable for daily life uses such as absorbers for anechoic chambers,sensors,and elec-tromagnetic interference shields for electronics,wallets,vehicles,and others.展开更多
Activated carbons (ACs) calcined at 400˚C, 500˚C, and 600˚C (AC-400, AC-500, and AC-600) were prepared using palm nut shells from Gabon as raw material and zinc chloride (ZnCl2) as a chemical activating agent. Prepare...Activated carbons (ACs) calcined at 400˚C, 500˚C, and 600˚C (AC-400, AC-500, and AC-600) were prepared using palm nut shells from Gabon as raw material and zinc chloride (ZnCl2) as a chemical activating agent. Prepared ACs were characterized by physisorption of nitrogen (N2), determination of diode and methylene blue numbers for studies of porosity and by quantification and determination of surface functional groups and pH at point of zero charge (pHpzc) respectively, for studies of chemical properties of prepared ACs. Then, effects of calcination temperature (Tcal) on porosity and chemical properties of prepared ACs were studied. The results obtained showed that when the calcination temperature increases from 500˚C to 600˚C, the porosity and chemical properties of prepared ACs are modified. Indeed, the methylene blue and iodine numbers determined for activated carbons AC-400 (460 and 7.94 mg·g−1, respectively) and AC-500 (680 and 8.90 mg·g−1, respectively) are higher than those obtained for AC-600 (360 and 5.75 mg·g−1, respectively). Compared to the AC-500 adsorbent, specific surface areas (SBET) and microporous volume losses for AC-600 were estimated to 44.7% and 45.8%, respectively. Moreover, in our experimental conditions, the effect of Tcal on the quantities of acidic and basic functional groups on the surface of the ACs appears negligible. In addition, results of the pHpzc of prepared ACs showed that as Tcal increases, the pH of the adsorbents increases and tends towards neutrality. Indeed, a stronger acidity was determined on AC-400 (pHpzc = 5.60) compared to those on AC-500 and AC-600 (pHpzc = 6.85 and 6.70, respectively). Also according to the results of porosity and chemical characterizations, adsorption being a surface phenomenon, 500˚C appears to be the optimal calcination temperature for the preparation of activated carbons from palm nut shells in our experimental conditions.展开更多
This work investigated the removal, kinetics and thermodynamics of iron(II) ions (Fe(II)) by adsorption in static and dynamic conditions in aqueous media on activated carbons (AC-i30min, AC-i1h, and AC-i24h), prepared...This work investigated the removal, kinetics and thermodynamics of iron(II) ions (Fe(II)) by adsorption in static and dynamic conditions in aqueous media on activated carbons (AC-i30min, AC-i1h, and AC-i24h), prepared from palm nut shells collected in the city of Franceville to Gabon, using potassium hydroxide (KOH) as the activating agent. Results on the elimination of Fe(II) in static and dynamic adsorption on prepared activated carbons (ACs) showed that the AC-i24h adsorbent has the best Fe(II) adsorption capacities at saturation (Qsat). The Qsat obtained on AC-i24h in static and dynamic conditions (17.87 and 10.38 mg/g, respectively) were higher than those of AC-i30min (13.89 and 5.54 mg/g respectively) and AC-i1h (14.92 and 8.64 mg/g respectively). Moreover, the static adsorption was more effective in the removal of Fe(II) ions in aqueous media in our experimental conditions. The percentage removal (%E) of Fe(II) obtained on prepared activated carbons in static conditions was better than those obtained in dynamic conditions, especially on AC-i24h, where the %E was 89.27% in static and 61.56% in dynamic. In kinetics, results showed that the pseudo-second-order kinetic model best described the adsorption mechanisms of Fe(II) on prepared activated carbons in static adsorption, with mainly of chemisorption on the solid surfaces. However, in dynamic conditions, the pseudo-first-order kinetic model was more suitable. In addition to the weak interactions between Fe(II) and the activated carbon surfaces, strong interactions (chemisorption) were also observed. Also, thermodynamic data obtained on AC-i24h in static adsorption indicated that the adsorption of Fe(II) was spontaneous and increased with temperature (ΔG˚ H˚ = 503.54 KJ/mol).展开更多
Despite the upsurge in hydrocarbon exploration in the Lake Albert Rift Basin(LARB)over the past three decades,systematic characterization of hydrocarbon compositions remains lacking,leading to uncertainties in source ...Despite the upsurge in hydrocarbon exploration in the Lake Albert Rift Basin(LARB)over the past three decades,systematic characterization of hydrocarbon compositions remains lacking,leading to uncertainties in source rock and oil generation determination.We characterized crude oil compositions and oil sand samples in the northern and southern subbasins of LARB.The relative abundance of normal and branched linear alkanes,hopanes,steranes,and aromatic hydrocarbon suggest that northern and southern hydrocarbons were deposited in anoxic to suboxic lacustrine environments and share similar biological source compositions(i.e.,a mixture of plants and aquatic algae and bacteria).Relative to southern samples,northern samples show more negative δ^(13)C values for oils,saturates and aromatics,indicating longer migration paths,and exhibit higher MPI-1,DNR-1 and 4-/1-MDBT ratios,indicating higher maturity.Between the two possible sets of source rocks(upper Miocene and Jurassic strata),the positive δ^(13)C values of saturated hydrocarbons(average=-20.5‰)suggest that the upper Miocene lacustrine shale is the most likely candidate.Oleanane index(<5% in our samples)does not exclude either source rock possibility,and C_(28)/C_(29) regular sterane(average=0.63)may be biased by high terrestrial inputs in a lacustrine setting.Together,our data show that northern and southern oils originate from the same source rocks but different oil kitchens.Given the similar geochemical characteristics of southern and northern oils,previous exploration successes in the northern subbasin likely suggest similar potential in the southern sector,while other elements influencing exploration success must be also evaluated.展开更多
Nitrogen‐doped ordered mesoporous carbon (N‐OMC) catalysts were directly synthesized using SBA‐15 as a hard template and sucrose as a carbon source. Urea, which was used as the nitrogen source, was carbonized wit...Nitrogen‐doped ordered mesoporous carbon (N‐OMC) catalysts were directly synthesized using SBA‐15 as a hard template and sucrose as a carbon source. Urea, which was used as the nitrogen source, was carbonized with sucrose. A 3.6 wt% nitrogen doping of the carbon framework was achieved, with more than 70%of the nitrogen incorporated as quaternary nitrogen species. Only 0.2 wt% nitrogen doping, with only 32.7% quaternary nitrogen incorporation was obtained in an N‐OMC catalyst (N‐OMC‐T) prepared using a two‐step post‐synthesis method. The acetylene hy‐drochlorination activities of N‐OMC catalysts prepared via the one‐step method were higher than that of the N‐OMC‐T catalyst because of the higher nitrogen loadings.展开更多
The activated nitrogen-enriched novel carbons (NENCs) were prepared by direct carbonization using polyaniline coating activated mesocarbon microbead composites as the precursor. Herein the influences of the carbonizat...The activated nitrogen-enriched novel carbons (NENCs) were prepared by direct carbonization using polyaniline coating activated mesocarbon microbead composites as the precursor. Herein the influences of the carbonization temperature on the structure and morphology of the NENCs samples were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and N2 adsorption/desorption isotherm at 77 K. The electrochemical properties of the supercapacitors were characterized by cyclic voltammetry, galvanostatic charge/discharge, electrochemical impedance spectroscopy (EIS), cycle life, leakage current and self-discharge measurements in 6 mol/L KOH solution. The results demonstrate that the NENC samples carbonized at 600 °C show the highest specific capacitance of 385 F/g at the current density of 1 A/g and the lowest ESR value (only 0.93?). Furthermore, the capacity retention ratio of the NENCs-600 supercapacitor is 92.8 % over 2500 cycles.展开更多
Nanocarbon materials have been used as important metal-free catalysts for various reactions including alkane dehydrogenation.However,clarifying the active sites and tuning the nanocarbon structure for direct dehydroge...Nanocarbon materials have been used as important metal-free catalysts for various reactions including alkane dehydrogenation.However,clarifying the active sites and tuning the nanocarbon structure for direct dehydrogenation have always been significantly challenging owing to the lack of fundamental understanding of the structure and surface properties of carbon materials.Herein,mesoporous carbon materials with different pore ordering and surface properties were synthesized through a soft-templating method with different formaldehyde/resorcinol ratios and carbonization temperatures and used for catalytic dehydrogenation of propane to propylene.The highly ordered mesoporous carbons were found to have higher catalytic activities than disordered and ordered mesoporous carbons,mainly because the highly ordered mesopores favor mass transportation and provide more accessible active sites.Furthermore,mesoporous carbons can provide a large amount of surface active sites owing to their high surface areas,which is favorable for propane dehydrogenation reaction.To control the surface oxygenated functional groups,highly ordered mesoporous carbons were carbonized at different temperatures(600,700,and 800℃).The propylene formation rates exhibit an excellent linear relationship with the number of ketonic C=O groups,suggesting that C=O groups are the most possible active sites.展开更多
Various ordered mesoporous carbons (OMCs) have been prepared by evaporation-induced trieonstituent co-assembly method. Their mesostructural stability under different carbon content, aging time and acidity were conve...Various ordered mesoporous carbons (OMCs) have been prepared by evaporation-induced trieonstituent co-assembly method. Their mesostructural stability under different carbon content, aging time and acidity were conveniently monitored by X-ray diffraction, transmission electron microscopy, and N2 sorption isotherms techniques. The results show mesostruetural stability of OMCs is enhanced as the carbon content increases from 36% to 46%, further increasing carbon content deteriorates the mesostructural stability. Increasing aging time from 0.5 h to 5.0 h make the mesostructural stability go through an optimum (2.0 h) and gradually reduce framework shrinkage of the OMCs. Highly OMCs can only be obtained in the acidity range of 0.2-1.2 mol/L HC1, when the acidity is near the isoelectrie point of silica, the resulting OMCs have the best mesostructure stability. Under the optimum condition, the carbon content of 46%, aging time of 2.0 h, and 0.2 mol/L HCl, the resulting OMCs have the best mesostrueture stability and the highest BET surface areas of 2281 m2/g.展开更多
The hierarchically porous carbons (HPCs) were prepared by sol-gel selassembly technology in different surfactant concentrations and were used as the potential electrode for lithium oxygen batteries. The physical and...The hierarchically porous carbons (HPCs) were prepared by sol-gel selassembly technology in different surfactant concentrations and were used as the potential electrode for lithium oxygen batteries. The physical and electrochemical properties of the as-prepared HPCs were investigated by filed emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), nitrogen adsorption-desorption isotherm and galvanostatic charge/discharge. The results indicate that all of the HPCs mainly possess mesoporous structure with nearly similar pore size distribution. Using the HPCs as the electrode, a high discharge capacity for lithium oxygen battery can be achieved, and the discharge capacity increases with the specific surface area. Especially, the HPCs-3 oxygen electrode with CTAB concentration of 0.27 mol/L exhibits good capacity retention through controlling discharge depth to 800 mA·h/g and the highest discharge capacity of 2050 mA·h/g at a rate of 0.1 mA/cm2.展开更多
The adsorption of dibenzofuran on three commercial granular activated carbons (ACs) was investigated by dynamic experiment to correlate the adsorption equilibrium and kinetics with the structure of activated carbons.P...The adsorption of dibenzofuran on three commercial granular activated carbons (ACs) was investigated by dynamic experiment to correlate the adsorption equilibrium and kinetics with the structure of activated carbons.Physical properties including surface area, average pore diameter, micropore area and micropore volume of the activated carbons were characterized by N2 adsorption experiment on ASAP2010. To calculate the adsorption parameters, adsorption isotherm data were fitted to the Langmuir equation, and adsorption kinetic data were fitted to the linear driving force (LDF) diffusion model. From the correlation results, it is concluded that the adsorption equilibrium and diffusion coefficient of dibenzofuran on activated carbon are controlled respectively by the total adsorbent surface area and the adsorbent pore diameter.展开更多
Chemically modified carbonaceous materials have attained utmost attention in the fields of renewable energy storage and conversion,due to the controllable physicochemical properties,tailorable micro-/nanostructures,an...Chemically modified carbonaceous materials have attained utmost attention in the fields of renewable energy storage and conversion,due to the controllable physicochemical properties,tailorable micro-/nanostructures,and respectable stability.Herein,P-doped mesoporous carbons were synthesized by using F127 as the soft template,organophosphonic acid as the P source and phenolic resin as the carbon source.Small amounts of iron species were introduced to act as a graphitization catalyst.The synthesized carbons exhibit the well-defined wormhole-like pore structure featuring high specific surface area and homogenously doped P heteroatoms.Notably,introducing iron species during the synthesis process can optimize the textural properties and the degree of graphitization of carbon materials.The doping amount of P has an important effect on the porous structure and the defect degree,which correspondingly influence the active sites and the oxygen reduction reaction(ORR)activity.The resultant material presents superior catalytic activity for the ORR,together with remarkably enhanced durability and methanol tolerance in comparison with the commercial Platinum catalyst,demonstrating the possibility for its use in electrode materials and electronic nanodevices for metal-air batteries and fuel cells.展开更多
Glucose-derived carbons were prepared by hydrothermal carbonization of glucose followed by carbonization or activation to obtain carbon materials with different microporosities. These microporous carbons and carbon na...Glucose-derived carbons were prepared by hydrothermal carbonization of glucose followed by carbonization or activation to obtain carbon materials with different microporosities. These microporous carbons and carbon nanotubes(CNTs) were functionalized with melamine and/or iron(Ⅱ) phthalocyanine(FePc)following three different methodologies:(i) Functionalization with melamine via thermal treatment,(ii)incorporation of the lowest amount of FePc reported in the literature via incipient wetness impregnation followed by thermal treatment and(iii) functionalization with melamine followed by Fe Pc incorporation.The chemical and textural characterization of the prepared materials and their electrochemical assessment allowed to understand the role of microporosity in the incorporation of FePc and its effect on the oxygen reduction reaction(ORR). It was observed that FePc was preferentially incorporated inside the porous structure, especially in samples with more developed microporosity. However, functionalization with melamine modified the textural properties and the surface chemistry, favoring the incorporation of FePc on the surface. Regarding the electrochemical performance, the presence of FePc greatly enhanced the electroactivity of the microporous catalysts. An onset potential of 0.88 V and a four-electron pathway were obtained for glucose-derived carbons, whereas the limiting current densities and kinetic current densities rose by 126% and 222%, respectively, in comparison to the base sample. Notwithstanding, the highest electrochemical activity was observed for the sample prepared with CNTs, due to the synergy between the active metal centers and their highly graphitic carbon structure. The electrochemical parameters of CNTFeP csurpass the commercial Pt/C. The half-wave potential is 40 mV higher, the limiting current density increases by 17%, and a negligible production of by-products(< 1%) was observed.展开更多
Hard carbons are widely investigated as potential anodes for lithium and sodium ion batteries owing to their internally well-tailored textures(closed pores and defects) and large microcrystalline interlayer spacing. T...Hard carbons are widely investigated as potential anodes for lithium and sodium ion batteries owing to their internally well-tailored textures(closed pores and defects) and large microcrystalline interlayer spacing. The renewable biomass is a green and economically attractive carbon source to produce hard carbons. However, the chemical and structural complexity of biomass has plagued the understanding of evolution mechanism from organic precursors to hard carbons and the structure-property relationship.This makes it difficult to finely tune the microstructure of biomass-derived hard carbons, thus greatly restricting their high-performance applications. Most recently, the optimal utilization and controllable conversion of biomass-derived biopolymers(such as starch, cellulose and lignin) at the molecular level have become a burgeoning area of research to develop hard carbons for advanced batteries.Considering the principal source of carbonaceous materials is from biomass pyrolysis, we firstly overview the chemical structures and pyrolysis behaviors of three main biopolymers. Then, the controllable preparation of hard carbons using various physicochemical properties of biopolymers at the molecular level is systematically discussed. Furthermore, we highlight present challenges and further opportunities in this field. The Review will guide future research works on the design of sustainable hard carbons and the optimization of battery performance.展开更多
Supercapacitors(SCs) are energy storage devices with the ability to charge and discharge at very high rates. The fast accumulation and release of charges occurs either electrostatically or electrochemically. There are...Supercapacitors(SCs) are energy storage devices with the ability to charge and discharge at very high rates. The fast accumulation and release of charges occurs either electrostatically or electrochemically. There are two types of capacitors: electric double layer capacitors(EDLCs) and pseudocapacitors. EDLCs are the most commercially available.展开更多
基金the China Scholarship Council for financial supportthe Max Planck Society for financial supportOpen Access funding enabled and organized by Projekt DEAL
文摘Sodium-ion capacitors(SICs)have great potential in energy storage due to their low cost,the abundance of Na,and the potential to deliver high energy and power simultaneously.This article demonstrates a template-assisted method to induce graphitic nanodomains and micro-mesopores into nitrogen-doped carbons.This study elucidates that these graphitic nanodomains are beneficial for Na+storage.The obtained N-doped carbon(As8Mg)electrode achieved a reversible capacity of 254 mA h g^(-1)at 0.1 A g^(-1).Moreover,the As8Mg-based SIC device achieves high combinations of power/energy densities(53 W kg^(-1)at 224 Wh kg^(-1)and 10410 W kg^(-1)at 51 Wh kg^(-1))with outstanding cycle stability(99.7%retention over 600 cycles at 0.2 A g^(-1)).Our findings provide insights into optimizing carbon’s microstructure to boost sodium storage in the pseudocapacitive mode.
基金financially supported by the National Natural Science Foundation of China(22179145,22138013,and 21975287)Shandong Provincial Natural Science Foundation(ZR2020ZD08)+1 种基金Taishan Scholar Project(no.ts201712020)the startup support grant from China University of Petroleum(East China)
文摘Energy density,the Achilles’heel of aqueous supercapacitors,is simultaneously determined by the voltage window and specific capacitance of the carbon materials,but the strategy of synchronously boosting them has rarely been reported.Herein,we demonstrate that the rational utilization of the interaction between redox mediators(RMs)and carbon electrode materials,especially those with rich intrinsic defects,contributes to extended potential windows and more stored charges concurrently.Using 4-hydroxy-2,2,6,6-tetramethylpiperidinyloxyl(4OH-TEMPO)and intrinsic defect-rich carbons as the RMs and electrode materials,respectively,the potential window and capacitance are increased by 67%and sixfold in a neutral electrolyte.Moreover,this strategy could also be applied to alkaline and acid electrolytes.The first-principle calculation and experimental results demonstrate that the strong interaction between 4OH-TEMPO and defectrich carbons plays a key role as preferential adsorbed RMs may largely prohibit the contact of free water molecules with the electrode materials to terminate the water splitting at elevated potentials.For the RMs offering weaker interaction with the electrode materials,the water splitting still proceeds with a thus sole increase of the stored charges.The results discovered in this work could provide an alternative solution to address the low energy density of aqueous supercapacitors.
基金supported by the National Natural Science Foundation of China (22379157,22179139)the Key Research and Development (R&D) Projects of Shanxi Province(202102040201003)+1 种基金the Research Program of Shanxi Province(202203021211203)the ICC CAS (SCJC-XCL-2023-10 and SCJC-XCL-2023-13)
文摘The chemical activation of various precursors is effective for creating additional closed pores in hard carbons for sodium storage.However,the formation mechanism of closed pores under the influence of pore-forming agents is not well understood.Herein,an effective chemical activation followed by a high-temperature self-healing strategy is employed to generate interconnected closed pores in lignin-derived hard carbon(HCs).By systematic experimental design combined with electron paramagnetic res-onance spectroscopy,it can be found that the content of free radicals in the carbon matrix influences the closure of open pores at high temperatures.Excessively high activation temperature(>700 C)leads to a low free radical concentration,making it difficult to achieve self-healing of open pores at high tempera-tures.By activation at 700°C,a balance between pore making and self-healing is achieved in the final hard carbon.A large number of free radicals triggers rapid growth and aggregation of carbon microcrys-tals,blocking pre-formed open micropores and creating additional interconnected closed pores in as-obtained hard carbons.As a result,the optimized carbon anode(LK-700-1300)delivers a high reversible capacity of 330.8 mA h g^(-1) at 0.03 A g^(-1),which is an increase of 86 mA h g^(-1) compared to the pristine lignin-derived carbon anode(L-700-1300),and exhibits a good rate performance(202.1 mA h g^(-1) at 1 A g^(-1)).This work provides a universal and effective guidance for tuning closed pores of hard carbons from otherprecursors.
文摘The preparation of a synthetic pitch from aromatic monomers could easily regulate structure orientation at the molecu-lar level,which would be useful in fabrication.An isotropic synthetic pitch was prepared by a chlorine-and/or nitrogen-induced sub-stitution polymerization reaction method using aromatic hydrocarbon precursors containing Cl and N,which for this study were chloromethyl naphthalene and quinoline.This method was verified by investigating the structural changes under different synthesis conditions,and the synthesis mechanism induced by aromatics containing Cl was also probed.The result shows that the pyridinic N in quinoline contains a lone pair of electrons,and is an effective active site to induce the polymerization reaction by coupling with aromatic hydrocarbons containing Cl.The reaction between such free radicals causes strong homopolymerization and oligomeriza-tion.A higher reaction temperature and longer reaction time significantly increased the degree of polymerization and thus increased the softening point of the pitch.A linear molecular structure was formed by the Cl substitution reaction,which produced a highly spinnable pitch with a softening point of 258.6℃,and carbon fibers with a tensile strength of 1163.82 MPa were obtained.This study provides a relatively simple and safe method for the preparation of high-quality spinnable pitch.
文摘Activated carbon preparation from sugarcane leaves and rice straw by carbonization(250℃–400℃)and activation at 500℃were studied.The effects of pre-oxidation,hydrolysis of derived charcoals by boiled KMnO4 aqueous solution were evaluated.The derived charcoals products were pretreated using oxidation-hydrolysis with 1–5 wt.%KMnO4 at 100℃and then activated at 500℃.The derived charcoal and activated carbon products were characterized by FTIR,XRD,SEM-EDS and BET.Iodine number and methylene blue number of derived products were also used for the analysis of the products.It was found that fabricated charcoal materials made at 350℃–400℃possess good characteristics with low content of surface functional groups and high carbon content.After pre-oxidation-hydrolysis and activation at 500℃,the resulting derived activated carbon materials from charcoals with 400℃carbonization temperature have high content of oxygen containing surface functional groups such as Mn-O,Si-O,Si-O-Si,C-O,or O-H.In addition,MnO_(2) accumulated on the surface of the derived activated carbon products.The surface area and pore volume of the activated carbon products have also increased with increasing of KMnO_(4) concentration from 1 to 3 wt.%and then decreased with 5 wt.%used during activation.Therefore,activated carbon products made by pre-oxidation-hydrolysis with 3 wt.%KMnO_(4) were used for Fe(Ⅲ)adsorption experiments.It was found that Fe(Ⅲ)adsorption on the activated carbon materials can be fitted with both the Freundlich and the Langmuir models.The calculated maximum Fe(Ⅲ)adsorption capacities of sugarcane leaves derived activated carbon and rice straw derived activated carbon products were 50.00 and 39.37 mg/g,respectively.It was shown that the effect of pre-oxidation-hydrolysis by KMnO_(4) and activation at 500℃are beneficial for activated carbon preparation with environmentally friendly and low-cost simplified operation.
基金funding from the Key Research and Development Projects of Zhejiang Province(2022C01236)and the Ningbo Top Talent Project.
文摘Lignin-derived porous carbons have emerged as promising electrode materials for supercapacitors.However,the challenge remains in designing and controlling their structure to achieve ideal electrochemical performance due to the complex molecular structure of lignin and its intricate chemical reactions during the activation process.In this study,three porous carbons were synthesized from lignin by spray drying and chemical activation with vary-ing KOH ratios.The specific surface area and structural order of the prepared porous carbon continued to increase with the increase of the KOH ratio.Thermogravimetric-mass spectrometry(TG-MS)was employed to track the molecular fragments generated during the pyrolysis of KOH-activated lignin,and the mechanism of the thermochemical conversion was investigated.During the thermochemical conversion of lignin,KOH facili-tated the removal of H2 and CO,leading to the formation of not only more micropores and mesopores,but also more ordered carbon structures.The pore structure exhibited a greater impact than the carbon structure on the electrochemical performance of porous carbon.The optimized porous carbon exhibited a capacitance of 256 F g-1 at a current density of 0.2 A g-1,making it an ideal electrode material for high-performance supercapacitors.
文摘Radar Absorbing Materials(RAM)are a class of composites that can attenuate incident electromagnetic waves to avoid radar detection.Most carbon allotropes that have the potential to be used as RAM are either carbon nano-tubes(CNTs),graphene,carbon black(CB)and ultimately,sustainable porous carbon(SPC).Here,black wattle bark waste(following tannin extraction)was used as a sustainable source to produce SPC made from biomass waste.It was characterized and used as afiller for a silicone rubber matrix to produce aflexible RAM.The elec-tromagnetic performance of this composite was compared with composites made with commercial CB and CNT through reflection loss(RL),where-10 dB is equivalent to 90%of attenuation.These composites were evaluated in single-layer,double-layer,and as radar absorbing structures(RAS)with the aim of improving their effective absorption bandwidth(EAB)performances and a reduction in costs.The CNT composite presented a RL of-26.85 dB at 10.89 GHz and an EAB of 2.6 GHz with a 1.9 mm thickness,while the double-layer structures using CNT and SPC provided a RL of-19.74 dB at 10.75 GHz and an EAB of 2.51 GHz.Furthermore,the double-layer structures are~42%cheaper than the composite using only CNT since less material is used.Finally,the largest EAB was achieved with a RAS using SPC,reaching~2.8 GHz and a RL of-49.09 dB at 10.4 GHz.Summarizing,SPC made of black wattle bark waste can be a competitive,alternative material for use as RAM and RAS since it is cheaper,sustainable,and suitable for daily life uses such as absorbers for anechoic chambers,sensors,and elec-tromagnetic interference shields for electronics,wallets,vehicles,and others.
文摘Activated carbons (ACs) calcined at 400˚C, 500˚C, and 600˚C (AC-400, AC-500, and AC-600) were prepared using palm nut shells from Gabon as raw material and zinc chloride (ZnCl2) as a chemical activating agent. Prepared ACs were characterized by physisorption of nitrogen (N2), determination of diode and methylene blue numbers for studies of porosity and by quantification and determination of surface functional groups and pH at point of zero charge (pHpzc) respectively, for studies of chemical properties of prepared ACs. Then, effects of calcination temperature (Tcal) on porosity and chemical properties of prepared ACs were studied. The results obtained showed that when the calcination temperature increases from 500˚C to 600˚C, the porosity and chemical properties of prepared ACs are modified. Indeed, the methylene blue and iodine numbers determined for activated carbons AC-400 (460 and 7.94 mg·g−1, respectively) and AC-500 (680 and 8.90 mg·g−1, respectively) are higher than those obtained for AC-600 (360 and 5.75 mg·g−1, respectively). Compared to the AC-500 adsorbent, specific surface areas (SBET) and microporous volume losses for AC-600 were estimated to 44.7% and 45.8%, respectively. Moreover, in our experimental conditions, the effect of Tcal on the quantities of acidic and basic functional groups on the surface of the ACs appears negligible. In addition, results of the pHpzc of prepared ACs showed that as Tcal increases, the pH of the adsorbents increases and tends towards neutrality. Indeed, a stronger acidity was determined on AC-400 (pHpzc = 5.60) compared to those on AC-500 and AC-600 (pHpzc = 6.85 and 6.70, respectively). Also according to the results of porosity and chemical characterizations, adsorption being a surface phenomenon, 500˚C appears to be the optimal calcination temperature for the preparation of activated carbons from palm nut shells in our experimental conditions.
文摘This work investigated the removal, kinetics and thermodynamics of iron(II) ions (Fe(II)) by adsorption in static and dynamic conditions in aqueous media on activated carbons (AC-i30min, AC-i1h, and AC-i24h), prepared from palm nut shells collected in the city of Franceville to Gabon, using potassium hydroxide (KOH) as the activating agent. Results on the elimination of Fe(II) in static and dynamic adsorption on prepared activated carbons (ACs) showed that the AC-i24h adsorbent has the best Fe(II) adsorption capacities at saturation (Qsat). The Qsat obtained on AC-i24h in static and dynamic conditions (17.87 and 10.38 mg/g, respectively) were higher than those of AC-i30min (13.89 and 5.54 mg/g respectively) and AC-i1h (14.92 and 8.64 mg/g respectively). Moreover, the static adsorption was more effective in the removal of Fe(II) ions in aqueous media in our experimental conditions. The percentage removal (%E) of Fe(II) obtained on prepared activated carbons in static conditions was better than those obtained in dynamic conditions, especially on AC-i24h, where the %E was 89.27% in static and 61.56% in dynamic. In kinetics, results showed that the pseudo-second-order kinetic model best described the adsorption mechanisms of Fe(II) on prepared activated carbons in static adsorption, with mainly of chemisorption on the solid surfaces. However, in dynamic conditions, the pseudo-first-order kinetic model was more suitable. In addition to the weak interactions between Fe(II) and the activated carbon surfaces, strong interactions (chemisorption) were also observed. Also, thermodynamic data obtained on AC-i24h in static adsorption indicated that the adsorption of Fe(II) was spontaneous and increased with temperature (ΔG˚ H˚ = 503.54 KJ/mol).
基金funded by National Natural Science Foundation of China(Grant No.42072149)support of US National Science Foundation grant(Grant No.EAR-1255724)。
文摘Despite the upsurge in hydrocarbon exploration in the Lake Albert Rift Basin(LARB)over the past three decades,systematic characterization of hydrocarbon compositions remains lacking,leading to uncertainties in source rock and oil generation determination.We characterized crude oil compositions and oil sand samples in the northern and southern subbasins of LARB.The relative abundance of normal and branched linear alkanes,hopanes,steranes,and aromatic hydrocarbon suggest that northern and southern hydrocarbons were deposited in anoxic to suboxic lacustrine environments and share similar biological source compositions(i.e.,a mixture of plants and aquatic algae and bacteria).Relative to southern samples,northern samples show more negative δ^(13)C values for oils,saturates and aromatics,indicating longer migration paths,and exhibit higher MPI-1,DNR-1 and 4-/1-MDBT ratios,indicating higher maturity.Between the two possible sets of source rocks(upper Miocene and Jurassic strata),the positive δ^(13)C values of saturated hydrocarbons(average=-20.5‰)suggest that the upper Miocene lacustrine shale is the most likely candidate.Oleanane index(<5% in our samples)does not exclude either source rock possibility,and C_(28)/C_(29) regular sterane(average=0.63)may be biased by high terrestrial inputs in a lacustrine setting.Together,our data show that northern and southern oils originate from the same source rocks but different oil kitchens.Given the similar geochemical characteristics of southern and northern oils,previous exploration successes in the northern subbasin likely suggest similar potential in the southern sector,while other elements influencing exploration success must be also evaluated.
基金supported by the National Natural Science Foundation of China (20803064)the Natural Science Foundation of Zhejiang Province (Y4090348)~~
文摘Nitrogen‐doped ordered mesoporous carbon (N‐OMC) catalysts were directly synthesized using SBA‐15 as a hard template and sucrose as a carbon source. Urea, which was used as the nitrogen source, was carbonized with sucrose. A 3.6 wt% nitrogen doping of the carbon framework was achieved, with more than 70%of the nitrogen incorporated as quaternary nitrogen species. Only 0.2 wt% nitrogen doping, with only 32.7% quaternary nitrogen incorporation was obtained in an N‐OMC catalyst (N‐OMC‐T) prepared using a two‐step post‐synthesis method. The acetylene hy‐drochlorination activities of N‐OMC catalysts prepared via the one‐step method were higher than that of the N‐OMC‐T catalyst because of the higher nitrogen loadings.
基金Projects(51072173,51272221)supported by the National Natural Science Foundation of ChinaProject(20094301110005)supported by Specialized Research Fund for the Doctoral Program of Higher Education,ChinaProject(2013FJ4062)supported by Science and Technology Plan Foundation of Hunan Province,China
文摘The activated nitrogen-enriched novel carbons (NENCs) were prepared by direct carbonization using polyaniline coating activated mesocarbon microbead composites as the precursor. Herein the influences of the carbonization temperature on the structure and morphology of the NENCs samples were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and N2 adsorption/desorption isotherm at 77 K. The electrochemical properties of the supercapacitors were characterized by cyclic voltammetry, galvanostatic charge/discharge, electrochemical impedance spectroscopy (EIS), cycle life, leakage current and self-discharge measurements in 6 mol/L KOH solution. The results demonstrate that the NENC samples carbonized at 600 °C show the highest specific capacitance of 385 F/g at the current density of 1 A/g and the lowest ESR value (only 0.93?). Furthermore, the capacity retention ratio of the NENCs-600 supercapacitor is 92.8 % over 2500 cycles.
基金supported by the National Natural Science Foundation of China(21421001,21573115)the Fundamental Research Funds for the Central Universities(63185015)the Foundation of State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering(2017-K13)~~
文摘Nanocarbon materials have been used as important metal-free catalysts for various reactions including alkane dehydrogenation.However,clarifying the active sites and tuning the nanocarbon structure for direct dehydrogenation have always been significantly challenging owing to the lack of fundamental understanding of the structure and surface properties of carbon materials.Herein,mesoporous carbon materials with different pore ordering and surface properties were synthesized through a soft-templating method with different formaldehyde/resorcinol ratios and carbonization temperatures and used for catalytic dehydrogenation of propane to propylene.The highly ordered mesoporous carbons were found to have higher catalytic activities than disordered and ordered mesoporous carbons,mainly because the highly ordered mesopores favor mass transportation and provide more accessible active sites.Furthermore,mesoporous carbons can provide a large amount of surface active sites owing to their high surface areas,which is favorable for propane dehydrogenation reaction.To control the surface oxygenated functional groups,highly ordered mesoporous carbons were carbonized at different temperatures(600,700,and 800℃).The propylene formation rates exhibit an excellent linear relationship with the number of ketonic C=O groups,suggesting that C=O groups are the most possible active sites.
基金This work was supported by the National Natural Science Foundation of China (No.20872135).
文摘Various ordered mesoporous carbons (OMCs) have been prepared by evaporation-induced trieonstituent co-assembly method. Their mesostructural stability under different carbon content, aging time and acidity were conveniently monitored by X-ray diffraction, transmission electron microscopy, and N2 sorption isotherms techniques. The results show mesostruetural stability of OMCs is enhanced as the carbon content increases from 36% to 46%, further increasing carbon content deteriorates the mesostructural stability. Increasing aging time from 0.5 h to 5.0 h make the mesostructural stability go through an optimum (2.0 h) and gradually reduce framework shrinkage of the OMCs. Highly OMCs can only be obtained in the acidity range of 0.2-1.2 mol/L HC1, when the acidity is near the isoelectrie point of silica, the resulting OMCs have the best mesostructure stability. Under the optimum condition, the carbon content of 46%, aging time of 2.0 h, and 0.2 mol/L HCl, the resulting OMCs have the best mesostrueture stability and the highest BET surface areas of 2281 m2/g.
基金Projects (51272221,51072173,21203161) supported by the National Natural Science Foundation of ChinaProject (10CY005) supported by Industrial Project of Colleges and Universities of Hunan Province,China
文摘The hierarchically porous carbons (HPCs) were prepared by sol-gel selassembly technology in different surfactant concentrations and were used as the potential electrode for lithium oxygen batteries. The physical and electrochemical properties of the as-prepared HPCs were investigated by filed emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), nitrogen adsorption-desorption isotherm and galvanostatic charge/discharge. The results indicate that all of the HPCs mainly possess mesoporous structure with nearly similar pore size distribution. Using the HPCs as the electrode, a high discharge capacity for lithium oxygen battery can be achieved, and the discharge capacity increases with the specific surface area. Especially, the HPCs-3 oxygen electrode with CTAB concentration of 0.27 mol/L exhibits good capacity retention through controlling discharge depth to 800 mA·h/g and the highest discharge capacity of 2050 mA·h/g at a rate of 0.1 mA/cm2.
文摘The adsorption of dibenzofuran on three commercial granular activated carbons (ACs) was investigated by dynamic experiment to correlate the adsorption equilibrium and kinetics with the structure of activated carbons.Physical properties including surface area, average pore diameter, micropore area and micropore volume of the activated carbons were characterized by N2 adsorption experiment on ASAP2010. To calculate the adsorption parameters, adsorption isotherm data were fitted to the Langmuir equation, and adsorption kinetic data were fitted to the linear driving force (LDF) diffusion model. From the correlation results, it is concluded that the adsorption equilibrium and diffusion coefficient of dibenzofuran on activated carbon are controlled respectively by the total adsorbent surface area and the adsorbent pore diameter.
基金supported by the National Natural Science Foundation of China(21421001,21573115)~~
文摘Chemically modified carbonaceous materials have attained utmost attention in the fields of renewable energy storage and conversion,due to the controllable physicochemical properties,tailorable micro-/nanostructures,and respectable stability.Herein,P-doped mesoporous carbons were synthesized by using F127 as the soft template,organophosphonic acid as the P source and phenolic resin as the carbon source.Small amounts of iron species were introduced to act as a graphitization catalyst.The synthesized carbons exhibit the well-defined wormhole-like pore structure featuring high specific surface area and homogenously doped P heteroatoms.Notably,introducing iron species during the synthesis process can optimize the textural properties and the degree of graphitization of carbon materials.The doping amount of P has an important effect on the porous structure and the defect degree,which correspondingly influence the active sites and the oxygen reduction reaction(ORR)activity.The resultant material presents superior catalytic activity for the ORR,together with remarkably enhanced durability and methanol tolerance in comparison with the commercial Platinum catalyst,demonstrating the possibility for its use in electrode materials and electronic nanodevices for metal-air batteries and fuel cells.
基金“UniRCell”,with the reference POCI-01-0145-FEDER-016422“AIProcMat@N2020–Advanced Industrial Processes and Materials for a Sustainable Northern Region of Portugal 2020”,with the reference NORTE-010145-FEDER-000006,supported by Norte Portugal Regional Operational Programme(NORTE 2020),under the Portugal 2020 Partnership Agreement,through the European Regional Development Fund(ERDF)+1 种基金Base Funding–UIDB/50020/2020 of the Associate Laboratory LSRE-LCM–funded by national funds through FCT/MCTES(PIDDAC)PDEQB(PD9989)。
文摘Glucose-derived carbons were prepared by hydrothermal carbonization of glucose followed by carbonization or activation to obtain carbon materials with different microporosities. These microporous carbons and carbon nanotubes(CNTs) were functionalized with melamine and/or iron(Ⅱ) phthalocyanine(FePc)following three different methodologies:(i) Functionalization with melamine via thermal treatment,(ii)incorporation of the lowest amount of FePc reported in the literature via incipient wetness impregnation followed by thermal treatment and(iii) functionalization with melamine followed by Fe Pc incorporation.The chemical and textural characterization of the prepared materials and their electrochemical assessment allowed to understand the role of microporosity in the incorporation of FePc and its effect on the oxygen reduction reaction(ORR). It was observed that FePc was preferentially incorporated inside the porous structure, especially in samples with more developed microporosity. However, functionalization with melamine modified the textural properties and the surface chemistry, favoring the incorporation of FePc on the surface. Regarding the electrochemical performance, the presence of FePc greatly enhanced the electroactivity of the microporous catalysts. An onset potential of 0.88 V and a four-electron pathway were obtained for glucose-derived carbons, whereas the limiting current densities and kinetic current densities rose by 126% and 222%, respectively, in comparison to the base sample. Notwithstanding, the highest electrochemical activity was observed for the sample prepared with CNTs, due to the synergy between the active metal centers and their highly graphitic carbon structure. The electrochemical parameters of CNTFeP csurpass the commercial Pt/C. The half-wave potential is 40 mV higher, the limiting current density increases by 17%, and a negligible production of by-products(< 1%) was observed.
基金the support of this work by the Fundamental Research Program of Shanxi Province(20210302123008,20210302124101)the Youth Innovation Promotion Association of CAS(2019178)+1 种基金the National Science Foundation for Excellent Young Scholars of China(21922815)the National Natural Science Foundation of China(21975275,22179139)。
文摘Hard carbons are widely investigated as potential anodes for lithium and sodium ion batteries owing to their internally well-tailored textures(closed pores and defects) and large microcrystalline interlayer spacing. The renewable biomass is a green and economically attractive carbon source to produce hard carbons. However, the chemical and structural complexity of biomass has plagued the understanding of evolution mechanism from organic precursors to hard carbons and the structure-property relationship.This makes it difficult to finely tune the microstructure of biomass-derived hard carbons, thus greatly restricting their high-performance applications. Most recently, the optimal utilization and controllable conversion of biomass-derived biopolymers(such as starch, cellulose and lignin) at the molecular level have become a burgeoning area of research to develop hard carbons for advanced batteries.Considering the principal source of carbonaceous materials is from biomass pyrolysis, we firstly overview the chemical structures and pyrolysis behaviors of three main biopolymers. Then, the controllable preparation of hard carbons using various physicochemical properties of biopolymers at the molecular level is systematically discussed. Furthermore, we highlight present challenges and further opportunities in this field. The Review will guide future research works on the design of sustainable hard carbons and the optimization of battery performance.
基金supported by AJS’s UKRI Future Leaders Fellowship(MR/T041412/1)。
文摘Supercapacitors(SCs) are energy storage devices with the ability to charge and discharge at very high rates. The fast accumulation and release of charges occurs either electrostatically or electrochemically. There are two types of capacitors: electric double layer capacitors(EDLCs) and pseudocapacitors. EDLCs are the most commercially available.