期刊文献+
共找到220篇文章
< 1 2 11 >
每页显示 20 50 100
Hapln1 promotes dedifferentiation and proliferation of iPSC-derived cardiomyocytes by promoting versican-based GDF11 trapping
1
作者 Ding-Jun Hao Yue Qin +5 位作者 Shi-Jie Zhou Bu-Huai Dong Jun-Song Yang Peng Zou Li-Ping Wang Yuan-Ting Zhao 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2024年第3期335-347,共13页
Hyaluronan and proteoglycan link protein 1(Hapln1)supports active cardiomyogenesis in zebrafish hearts,but its regulation in mammal cardiomyocytes is unclear.This study aimed to explore the potential regulation of Hap... Hyaluronan and proteoglycan link protein 1(Hapln1)supports active cardiomyogenesis in zebrafish hearts,but its regulation in mammal cardiomyocytes is unclear.This study aimed to explore the potential regulation of Hapln1 in the dedifferentiation and proliferation of cardiomyocytes and its therapeutic value in myocardial infarction with human induced pluripotent stem cell(hiPSC)-derived cardiomyocytes(CMs)and an adult mouse model of myocardial infarction.HiPSC-CMs and adult mice with myocardial infarction were used as in vitro and in vivo models,respectively.Previous single-cell RNA sequencing data were retrieved for bioinformatic exploration.The results showed that recombinant human Hapln1(rhHapln1)promotes the proliferation of hiPSC-CMs in a dose-dependent manner.As a physical binding protein of Hapln1,versican interacted with Nodal growth differentiation factor(NODAL)and growth differentiation factor 11(GDF11).GDF11,but not NODAL,was expressed by hiPSC-CMs.GDF11 expression was unaffected by rhHapln1 treatment.However,this molecule was required for rhHapln1-mediated activation of the transforming growth factor(TGF)-β/Drosophila mothers against decapentaplegic protein(SMAD)2/3 signaling in hiPSC-CMs,which stimulates cell dedifferentiation and proliferation.Recombinant mouse Hapln1(rmHapln1)could induce cardiac regeneration in the adult mouse model of myocardial infarction.In addition,rmHapln1 induced hiPSC-CM proliferation.In conclusion,Hapln1 can stimulate the dedifferentiation and proliferation of iPSC-derived cardiomyocytes by promoting versican-based GDF11 trapping and subsequent activation of the TGF-β/SMAD2/3 signaling pathway.Hapln1 might be an effective hiPSC-CM dedifferentiation and proliferation agent and a potential reagent for repairing damaged hearts. 展开更多
关键词 Hapln1 VERSICAN GDF11 iPSC-CMs cardiomyocyte proliferation
下载PDF
Chlorogenic acid ameliorates heart failure by attenuating cardiomyocyte ferroptosis
2
作者 Kai Huang Fanghe Li +4 位作者 Jiayang Tang Haiyin Pu Vasily Sukhorukov Alexander N.Orekhov Shuzhen Guo 《Journal of Traditional Chinese Medical Sciences》 CAS 2024年第2期191-198,共8页
Objective:To elucidate the effects of chlorogenic acid(CGA),a bioactive polyphenol compound prevalent in traditional Chinese medicine and various foods,including Lonicera japonica Thunb.(Jin Yin Hua),Eucommia ulmoides... Objective:To elucidate the effects of chlorogenic acid(CGA),a bioactive polyphenol compound prevalent in traditional Chinese medicine and various foods,including Lonicera japonica Thunb.(Jin Yin Hua),Eucommia ulmoides Oliv.(Du Zhong Ye),tea,and coffee,on cardiomyocyte ferroptosis and heart failure.Methods: We assessed the effect of CGA on cardiac function using a mouse model of heart failure induced by transverse aortic constriction(TAC).These indicators included the left ventricular ejection fraction(LVEF),fractional shortening(LVFS),end-systolic volume(LVESV),end-diastolic volume(LVEDV),end-systolic diameter(LVESD),and end-diastolic diameter(LVEDD).An isoprenaline hydrochloride(ISO)-induced H9c2 cardiomyocyte cell model was also established,and the cells were treated with various concentrations of CGA.To assess the effect of CGA on ferroptosis in cardiomyocytes,we measured cell viability and evaluated the levels of intracellular reactive oxygen species(ROS),ferrous ions(Fe^(2+)),and lipid peroxidation using fluorescent staining.To clarify the ferroptosis signaling pathway regulated by CGA,western blotting was used to examine the expression of ferroptosis biomarkers,specifically solute carrier family 7 member 11(SLC7A11)and glutathione peroxidase 4(GPX4),in H9c2 cardiomyocytes and mouse myocardial tissues.Results: CGA significantly enhanced cardiac performance indices such as LVEF,LVFS,LVESV,LVEDV,LVESD,and LVEDD.H9c2 cardiomyocytes exposed to ISO showed decreased cell viability and increased ROS levels,Fe^(2+)content,and lipid peroxidation levels.However,CGA treatment significantly ameliorated these changes.Additionally,in both H9c2 cardiomyocytes and myocardial tissue obtained from mice with TAC,CGA increased the expression of ferroptosis-related proteins,including SLC7A11 and GPX4.Conclusion: CGA has the potential to enhance cardiac function and diminish lipid peroxidation and ROS levels in cardiomyocytes via the SLC7A11/GPX4 signaling pathway.This process alleviates ferroptosis in cardiomyocytes.These results provide new insights into the clinical use of CGA and the management of heart failure. 展开更多
关键词 Chlorogenic acid Heart failure Ferroptosis H9c2 cardiomyocyte Traditional Chinesemedicine
下载PDF
LncRNA ZFAS1 regulates cardiomyocyte differentiation of human embryonic stem cells
3
作者 YANG CAO YINING LIU +13 位作者 YANG YU XIAOFEI GUO XIUXIU WANG WENYA MA HANJING LI ZHONGYU REN XINLU GAO SIJIA LI HAOYU JI HONGYANG CHEN HONG YAN YANAN TIAN XIN WANG BENZHI CAI 《BIOCELL》 SCIE 2023年第6期1407-1416,共10页
Background:Cardiomyocytes derived from human embryonic stem cells(hESCs)are regulated by complex and stringent gene networks during differentiation.Long non-coding RNAs(lncRNAs)exert critical epigenetic regulatory fun... Background:Cardiomyocytes derived from human embryonic stem cells(hESCs)are regulated by complex and stringent gene networks during differentiation.Long non-coding RNAs(lncRNAs)exert critical epigenetic regulatory functions in multiple differentiation processes.However,the involvement of lncRNAs in the differentiation of hESCs into cardiomyocytes has not yet been fully elucidated.Here,we identified the key roles of ZFAS1(lncRNA zinc finger antisense 1)in the differentiation of cardiomyocytes from hESCs.Methods:A model of cardiomyocyte differentiation from stem cells was established using the monolayer differentiation method,and the number of beating hESCs-derived cardiomyocytes was calculated.Gene expression was analyzed by quantitative real-time PCR(qRTPCR).Immunofluorescence assays were performed to assess the expression of cardiac troponin T(cTnT)andα-actinin protein in cardiomyocytes.Results:qRT-PCR showed that ZFAS1 expression in the mesoderm was significantly higher than that in embryonic stem cells,cardiac progenitor cells,and cardiomyocytes.Knockdown of ZFAS1 inhibited cardiomyocyte differentiation from hESCs,which was characterized by reduced expression of the cardiac-specific markers cTnT,α-actinin,myosin heavy chain 6(MYH6),and myosin heavy chain 7(MYH7).In contrast,ZFAS1 overexpression remarkably increased the percentage of spontaneously beating cardiomyocytes.In terms of the mechanism,we found that ZFAS1 is an antisense lncRNA at the 5′end of the protein-coding gene ZNFX1.Knockdown of ZFAS1 could increase the mRNA expression level of ZNFX1.Furthermore,qRT-PCR demonstrated that the silencing of ZNFX1 led to an increase in cardiac-specific markers that predicted the promotion of cardiomyocyte differentiation.Conclusion:Altogether,these data suggest that lncRNA-ZFAS1 is required for cardiac differentiation by functionally inhibiting the expression of ZNFX1,which may provide a reference for the treatment of heart disease to a certain extent. 展开更多
关键词 Long non-coding RNAs cardiomyocyte differentiation ZFAS1 ZNFX1
下载PDF
Selenium nanoparticles reduce oxidative stress-induced cardiomyocyte apoptosis in ascites syndrome in broiler chickens via the ATF6-DR5 signaling pathway
4
作者 Xiaoqi Yang Xin Liu +7 位作者 Jiaqi Liu Peiling Wu Yang Fu San Loon Kyein Jiabin Zhang Mengdi Zhang Yuxuan Peng Donghai Zhou 《Animal Diseases》 CAS 2023年第3期153-165,共13页
Broiler ascites syndrome(AS)is one of the main diseases threatening the health of broilers.It is well documented that myocardial hypertrophy and failure is one of the key mechanisms of broiler ascites syndrome.Therefo... Broiler ascites syndrome(AS)is one of the main diseases threatening the health of broilers.It is well documented that myocardial hypertrophy and failure is one of the key mechanisms of broiler ascites syndrome.Therefore,prevention of cardiac hypertrophy and failure would be one goal to reduce broiler ascites syndrome incidence.Myocardial hyper-trophy and failure are closely related to endoplasmic reticulum stress(ERS)in cardiac myocytes,and the endoplasmic reticulum stress signaling system(ATF6-DR5)is one of the important pathways of myocardial apoptosis.Excessive hyper-trophy will affect the heart muscle's normal contraction and diastole function,and the heart will turn from compen-sated to decompensate thus causing myocardial injury.Myocardial apoptosis is a core component of the pathological changes of this myocardial injury.Nano-selenium is a kind of red elemental selenium nanoparticle.Due to its excellent physical,chemical and biological properties,it has attracted extensive academic attention in recent years.It has been proven to have excellent antioxidant,antibacterial,antitumor,antihypertrophic,and antiapoptotic abilties.Herein,nano-selenium(1μmol/L)can inhibit hydrogen peroxide(H_(2)O_(2))-induced oxidative stress in broiler primary cardiomyocytes,and at the same time reduce cardiomyocyte apoptosis.In vivo,nano-selenium can reduce broiler myocardial injury-related enzyme indicators(AST,CK and LDH),and alleviate myocardial injury.It can also activate the antioxidant enzyme system(SOD,GSH-Px and CAT)and reduce MDA,and make the recovery ofT-AOC ability in the organization.Meanwhile,nano-selenium can down-regulate the genes and proteins expression of ATF-6,GRP-78,CHOP and caspase 12 in the ERS-related signaling pathway,and inhibit that of downstream-related caspase 3,Bax and caspase 9,and increase that of the downstream anti-apoptotic Bcl-2,thereby maintaining the homeostasis of the endoplasmic reticulum and alleviating cardiomyocyte apoptosis.It can be seen that nano-selenium can protect the damaged myocardium in the broiler ascites caused by high-salt drinking by regulating the ATF6-DR5 signaling pathway.This study was performed in chickens and cardiomyocyte cells and attempted to demonstrate that selenium nanoparticles can protect the damaged myocar-dium in broiler ascites.This paper provides a new idea for preventing and treating broiler ascites syndrome. 展开更多
关键词 Broiler ascites syndrome cardiomyocyte apoptosis NANO-SELENIUM ATF6-DR5 signaling pathway
下载PDF
Effects of docosahexaenoic acid or arachidonic acid supplementation on the behavior of cardiomyocytes derived from human pluripotent stem cells
5
作者 MIZUNA YANO KOTA HIROI +5 位作者 TETSUYA YUASA KENJI INOUE OSAMU YAMAMOTO TAKAO NAKAMURA DAISUKE SATO ZHONGGANG FENG 《BIOCELL》 SCIE 2023年第5期1095-1106,共12页
Background:Human heart changes its energetic substrates from lactate and glucose to fatty acids during the neonatal period.Noticing the lack of fatty acids in media for the culture of cardiomyocytes derived from human... Background:Human heart changes its energetic substrates from lactate and glucose to fatty acids during the neonatal period.Noticing the lack of fatty acids in media for the culture of cardiomyocytes derived from human pluripotent stem cells(hiPS-CM),researchers have supplemented mixtures of fatty acids to hiPS-CM and reported the enhancement in the maturation of hiPS-CM.In our previous studies,we separately supplemented two polyunsaturated fatty acids(PUFAs),docosahexaenoic acid(DHA)or arachidonic acid(AA),to rat fetal cardiomyocytes and found that the supplementations upregulated the expressions of mRNAs for cardiomyocyte differentiation,fatty acid metabolism,and cellular adhesion.The enhancement in cellular contractility was attributed to the improvement in intercellular connection rather than a direct enhancement of the contractile force.Methods:This study reports the successive results of the effects of DHA or AA supplementation on hiPS-CM.In addition to the contractile force and mRNA measurements used in the previous study,we further investigated the effect of different cellular aggregations on the contractile force output by means of finite element analysis,measured glucose and fatty acids metabolites,and assessed cTNT and MLC2v expressions through immunofluorecsence evaluation.Results:It showed that the sole supplementation of albumin-conjugated DHA or AA can be taken up by hiPS-CM without other uptake-enhancing factors,and the supplementations may activate the CD36_ERRγmetabolic pathway.DHA or AA supplementation increased the cellular contractile ratio on collagen gels and AA supplementation stimulated hiPS-CM aggregation to form cellular clusters.The enhancement effect on the hiPS-CM contractile force was modest since the increase in contractile force was not significant.AA supplementation was more effective than DHA supplementation because it significantly upregulated mRNA expressions of P300 and CD36.However,finite element analysis showed that the formation of clusters on a collagen gel attenuated the contractile force exerted by the gel on its surroundings.Conclusion:DHA and AA,as having been supplemented in infant formulas,have no direct and significant enhancement effect on the performance of the hiPS-CM when they were supplemented individually,although they were able to enter the cellular metabolic system.The AA supplementation showed some auxiliary effect on the maturation of hiPS-CM,which is worthy of further investigation under the consideration of membrane composition alteration and remodeling of membrane molecules. 展开更多
关键词 Human iPS cells cardiomyocyteS Polyunsaturated fatty acid mRNA expression CONTRACTILITY Fatty acid metabolism
下载PDF
Disease modeling of desmosome-related cardiomyopathy using induced pluripotent stem cell-derived cardiomyocytes
6
作者 Shuichiro Higo 《World Journal of Stem Cells》 SCIE 2023年第3期71-82,共12页
Cardiomyopathy is a pathological condition characterized by cardiac pump failure due to myocardial dysfunction and the major cause of advanced heart failure requiring heart transplantation.Although optimized medical t... Cardiomyopathy is a pathological condition characterized by cardiac pump failure due to myocardial dysfunction and the major cause of advanced heart failure requiring heart transplantation.Although optimized medical therapies have been developed for heart failure during the last few decades,some patients with cardiomyopathy exhibit advanced heart failure and are refractory to medical therapies.Desmosome,which is a dynamic cell-to-cell junctional component,maintains the structural integrity of heart tissues.Genetic mutations in desmo-somal genes cause arrhythmogenic cardiomyopathy(AC),a rare inheritable disease,and predispose patients to sudden cardiac death and heart failure.Recent advances in sequencing technologies have elucidated the genetic basis of cardiomyopathies and revealed that desmosome-related cardiomyopathy is concealed in broad cardiomyopathies.Among desmosomal genes,mutations in PKP2(which encodes PKP2)are most frequently identified in patients with AC.PKP2 deficiency causes various pathological cardiac phenotypes.Human cardiomyocytes differentiated from patient-derived induced pluripotent stem cells(iPSCs)in combination with genome editing,which allows the precise arrangement of the targeted genome,are powerful experimental tools for studying disease.This review summarizes the current issues associated with practical medicine for advanced heart failure and the recent advances in disease modeling using iPSC-derived cardiomyocytes targeting desmosome-related cardiomyopathy caused by PKP2 deficiency. 展开更多
关键词 CARDIOMYOPATHY Advanced heart failure Induced pluripotent stem cell-derived cardiomyocytes DESMOSOME Genome editing Gene therapy
下载PDF
Effects of fructose-1,6-diphosphate on concentration of calcium and activities of sarcoplosnic Ca^(2+)-ATPase in cardiomyocytes of Adriamycin-treated rats 被引量:9
7
作者 蔡巍 陈君柱 +1 位作者 阮黎明 王懿娜 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2005年第7期622-625,共4页
Objective: To observe the effects of fructose-1,6-diphosphate (FDP) on serum levels of cardiac troponin 1 (cTnl) and creatine kinase-MB (CK-MB), as well as the concentration of calcium in cardiomyocytes (Myo[Ca2+]) an... Objective: To observe the effects of fructose-1,6-diphosphate (FDP) on serum levels of cardiac troponin 1 (cTnl) and creatine kinase-MB (CK-MB), as well as the concentration of calcium in cardiomyocytes (Myo[Ca2+]) and activity of sarcoplosnic Ca2+-ATPase (SRCa2+-ATPase) in Adriamycin (ADR)-treated rats. Methods: Rats were intraperitoneally injected with ADR (2.5 mg/kg every other day for 6 times) and then with different dosages of FDP (every other day for twenty-one times). Bi-antibodies sandwich Enzyme linked immune absorption assay (ELISA) was performed to detect serum level of cTnl. CK-MB was detected by monoclonal antibody, Myo[Ca2+] was detected by fluorescent spectrophotometry and the activity of SRCa2+-ATPase was detected by inorganic phosphate method. Results: FDP (300, 600, 1200 mg/kg) significantly reduced the serum levels of cTnl and CK-MB, while at the same time decreased calcium concentration and increased SRCa2+-ATPase activity in cardiomyocytes of ADR-treated rats (P<0.01). Conclusions: FDP might alleviate the cardiotoxic effects induced by ADR through decreasing calcium level as well as increasing SRCa2+-ATPase activity in cardiomyocytes. 展开更多
关键词 Fructose-1 6-diphosphate ADRIAMYCIN cardiomyocyte CALCIUM Sarcoplosnic reticulum Ca2+-ATPase
下载PDF
Panax quinquefolium saponin attenuates cardiomyocyte apoptosis induced by thapsigargin through inhibition of endoplasmic reticulum stress 被引量:10
8
作者 Mi LIU Mei XUE +4 位作者 Xiao-Reng WANG Tian-Qi TAO Fei-Fei XU Xiu-Hua LIU Da-Zhuo SHI 《Journal of Geriatric Cardiology》 SCIE CAS CSCD 2015年第5期540-546,共7页
Background Endoplasmic reticulum (ER) stress-related apoptosis is involved in the pathophysiology of many cardiovascular diseases, and Panax quinquefolium saponin (PQS) is able to inhibit excessive ER stress-relat... Background Endoplasmic reticulum (ER) stress-related apoptosis is involved in the pathophysiology of many cardiovascular diseases, and Panax quinquefolium saponin (PQS) is able to inhibit excessive ER stress-related apoptosis of cardiomyocytes following hypoxia/reoxygenation and myocardial infarction. However, the pathway by which PQS inhibits the ER stress-related apoptosis is not well understood. To further investigate the protective effect of PQS against ER stress-related apoptosis, primary cultured eardiomyocytes were stimulated with thapsigargin (TG), which is widely used to model cellular ER stress, and it could induce apoptotic cell death in sufficient concentration. Methods Primary cultured cardiomyocytes from neonatal rats were exposed to TG (1 μmol/L) treatment for 24 h, following PQS pre-treatment (160 μg/mL) for 24 h or pre-treatment with small interfering RNA directed against protein kinase-like endoplasmic reticulum kinase (Si-PERK) for 6 h. The viability and apoptosis rate of cardiomyocytes were detected by cell counting kit-8 and flow cytometry respectively. ER stress-related protein expression, such as glucose-regulated protein 78 (GRP78), calreticulin, PERK, eukaryotic translation initiation factor 2α (elF2c0, activating transcription factor 4 (ATF4), and C/EBP homologous protein (CHOP) were assayed by western blotting. Results Both PQS pre-treatment and PERK knockdown remarkably inhibited the cardiomyocyte apoptosis induced by TG, increased cell viability, decreased phosphorylation of both PERK and eIF2α, and decreased protein levels of both ATF4 and CHOP. There was no statistically significant difference between PQS pre-treatment and PERK knockdown in the cardioprotective effect. Conclusions Our data indicate that the PERK-eIF2α-ATF4-CHOP pathway of ER stress is involved in the apoptosis induced by TG, and PQS might prevent TG-induced cardiomyocyte apoptosis through a mechanism involving the suppression of this pathway. These findings provide novel data regarding the molecular mechanisms by which PQS inhibits cardiomyocyte apoptosis. 展开更多
关键词 cardiomyocyte apoptosis Endoplasmic reticulum stress Panax quinqueJblium saponin THAPSIGARGIN
下载PDF
Liraglutide directly protects cardiomyocytes against reperfusion injury possibly via modulation of intracellular calcium homeostasis 被引量:8
9
作者 Shun-Ying HU Ying ZHANG +2 位作者 Ping-Jun ZHU Hao ZHOU Yun-Dai CHEN 《Journal of Geriatric Cardiology》 SCIE CAS CSCD 2017年第1期57-66,共10页
Background Liraglutide is glucagon-like peptide-1 receptor agonist for treating patients with type 2 diabetes mellitus. Our previous studies have demonstrated that liraglutide protects cardiac function through improvi... Background Liraglutide is glucagon-like peptide-1 receptor agonist for treating patients with type 2 diabetes mellitus. Our previous studies have demonstrated that liraglutide protects cardiac function through improving endothelial function in patients with acute myocardial infarction undergoing percutaneous coronary intervention. The present study will investigate whether liraglntide can perform direct protective effects on cardiomyocytes against reperfusion injury. Methods In vitro experiments were performed using H9C2 cells and neonatal rat ventricular cadiomyocytes undergoing simulative hypoxia/reoxygenation (H/R) induction. Cardiomyocytes apoptosis was detected by fluorescence TUNEL. Mitochondrial membrane potential (AWm) and intracellular reactive oxygen species (ROS) was assessed by JC-1 and DHE, respectively. Fura-2/AM was used to measure intracellular Ca2+ concentration and calcium transient. Immtmofluorescence staining was used to assess the expression level of sarcoplasmic reticulum Ca2+-ATPase (SERCA2a). In vivo experiments, myocardial apoptosis and expression of SERCA2a were detected by colorimetric TUNEL and by immunofluorescence staining, respectively. Results In vitro liraglutide inhibited cardiomyotes apoptosis against H/R. △mψ of cardiomyocytes was higher in liraglntide group than H/R group. H/R increased ROS production in H9C2 cells which was attenuated by liraglutide. Liraglutide significantly lowered Ca2+ overload and improved calcium transient compared with H/R group, lmmunofluorescence staining results showed liraglutide promoted SERCA2a expression which was decreased in H/R group. In ischemia/reperfusion rat hearts, apoptosis was significantly attenuated and SERCA2a expression was increased by liraglutide compared with H/R group. Conclusions Liraglutide can directly protect cardiomyocytes against reperfusion injury which is possibly through modulation of intracellular calcium homeostasis. 展开更多
关键词 Calcium overload cardiomyocyte LIRAGLUTIDE Reperfusion injury Sarcoplasmic reticulum Ca2+-ATPase
下载PDF
Changes of c-fos and c-jun mRNA Expression in Angiotensin Ⅱ-induced Cardiomyocyte Hypertrophy and Effects of Sodium Tanshinone ⅡA Sulfonate 被引量:9
10
作者 周代星 梁黔生 +1 位作者 何雪心 占成业 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2008年第5期531-534,共4页
The changes of proto-oncogene c-fos and c-jun mRNA expression in angiotensin Ⅱ (AngⅡ)-induced hypertrophy and effects of sodium tanshinone ⅡA sulfonate (STS) in the primary culture of neonatal rat cardiomyocyte... The changes of proto-oncogene c-fos and c-jun mRNA expression in angiotensin Ⅱ (AngⅡ)-induced hypertrophy and effects of sodium tanshinone ⅡA sulfonate (STS) in the primary culture of neonatal rat cardiomyocytes were investigated. Twelve neonatal clean grade Wistar rats were selected. The cardiomyocytes were isolated, cultured and divided according to different treatments in the medium. The cardiomyocyte size was determined by phase contrast microscope, and the rate of protein synthesis was measured by [3H]-Leucine incorporation. The c-fos and c-jun mRNA expression in cardiomyocytes was detected by reverse transcription polymerase chain reaction (RT-PCR). It was found after cardiomyocytes were treated with AngⅡ for 30 min, the c-fos and c-jun mRNA expression in cardiomyocytes was increased significantly (P〈0.01). After treatment with AngⅡ for 24 h, the rate of protein synthesis in AngⅡ group was significantly increased as compared with control group (P〈0.01). After treatment with AngⅡ for 7 days, the size of cardiomyocytes in AngⅡ group was increased obviously as compared with control group (P〈0.05). After pretreatment with STS or Valsartan before AngⅡ treatment, both of them could inhibit the above effects of AngⅡ (P〈0.05 or P〈0.01). It was suggested that STS could ameliorate AngⅡ-induced cardiomyocyte hy- pertrophy by inhibiting c-fos and c-jun mRNA expression and reducing protein synthesis rate of cardiomyocytes. 展开更多
关键词 sodium tanshinone A sulfonate angiotensin cardiomyocyte hypertrophy C-LOS C-JUN
下载PDF
Expression of Wnt and NCX1 and its correlation with cardiomyocyte apoptosis in mouse with myocardial hypertrophy 被引量:5
11
作者 Jing He Yi Cai +1 位作者 Leiming Luo Rong Wang 《Asian Pacific Journal of Tropical Medicine》 SCIE CAS 2015年第11期909-914,共6页
Objective:To study the correlation between expression of Wnt and NCXl and cardiomyocyte apoptosis in mouse with myocardial hypertrophy.Methods:C57B/16 male mice were given the subcutaneous injection of 1 mg/kg isopren... Objective:To study the correlation between expression of Wnt and NCXl and cardiomyocyte apoptosis in mouse with myocardial hypertrophy.Methods:C57B/16 male mice were given the subcutaneous injection of 1 mg/kg isoprenaline to build the myocardial hypertrophy model.After 14 d of model building,mice were executed by cervical vertebra luxation.The ratio of heart weight/body weight(HW/BW) and heart weight/tibia length(HW/TL) was observed and proved using HE staining mat detected the size of eaidiomyocytes.40 male C57B/16 mice were randomly divided into the sham group(normal saline) and model group(isoprenaline),with 20 mice in each group.The terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling was applied to detect the cardiomyocyte apoptosis;while Western blot and immunohistochemistry were employed to detect the expression of Wnt and NCX1.Meanwhile,the correlation between these two proteins and cardiomyocyte apoptosis was explored.Results:Compared with the sham group,the ratio of HW/BW and HW/TL was increased in the model group,as well as the bigger and hypertrophied cardiomyocytes,decreased number and increased apoptosis of eaidiomyocytes,and increased positive expression of Wnt3 a,WntSa and NCXl in the cardiac muscle tissue.Besides,there was positive correlation between the expression of Wnt and NCXl and the cardiomyocyte apoptosis.Conclusions:The expression of Wnt3 a,Wnt5a and NCXl in mouse with myocardial hypertrophy is increased and positively correlated with the cardiomyocyte apoptosis. 展开更多
关键词 MYOCARDIAL HYPERTROPHY WNT NCX1 cardiomyocyte apop
下载PDF
Mechanical stretch induces mitochondria-dependent apoptosis in neonatal rat cardiomyocytes and G_(2)/M accumulation in cardiac fibroblasts 被引量:6
12
作者 XuDongLIAO XiaoHuiWANG +2 位作者 HaiJingJIN LanYingCHEN QuanCHEN 《Cell Research》 SCIE CAS CSCD 2004年第1期16-26,共11页
Heart remodeling is associated with the loss of cardiomyocytes and increase of fibrous tissue owing to abnormal mechanical load in a number of heart disease conditions. In present study, a well-described in vitro sust... Heart remodeling is associated with the loss of cardiomyocytes and increase of fibrous tissue owing to abnormal mechanical load in a number of heart disease conditions. In present study, a well-described in vitro sustained stretch model was employed to study mechanical stretch-induced responses in both neonatal cardiomyocytes and cardiac fibroblasts. Cardiomyocytes, but not cardiac fibroblasts, underwent mitochondria-dependent apoptosis as evidenced by cytochrome c (cyto c) and Smac/DIABLO release from mitochondria into cytosol accompanied by mitochondrial membrane potential (△ψ_m) reduction, indicative of mitochondrial permeability transition pore (PTP) opening. Cyclosporin A, an inhibitor of PTP, inhibited stretch-induced cyto c release, △ψ_m reduction and apoptosis, suggesting an important role of mitochondrial PTP in stretch-induced apoptosis. The stretch also resulted in increased expression of the pro-apoptotic Bcl-2 family proteins, including Bax and Bad, in cardiomyocytes, but not in fibroblasts. Bax was accumulated in mitochondria following stretch. Cell permeable Bid-BH3 peptide could induce and facilitate stretch-induced apoptosis and △ψ_m reduction in cardiomyocytes. These results suggest that Bcl-2 family proteins play an important role in coupling stretch signaling to mitochondrial death machinery, probably by targeting to PTP. Interestingly, the levels of p53 were increased at 12 h after stretch although we observed that Bax upregulation and apoptosis occurred as early as 1 h. Adenovirus delivered dominant negative p53 blocked Bax upregulation in cardiomyocytes but showed partial effect on preventing stretch-induced apoptosis, suggesting that p53 was only partially involved in mediating stretch-induced apoptosis. Furthermore, we showed that p21 was upregulated and cyclin B1 was downregulated only in cardiac fibroblasts, which may be associated with G_2/M accumulation in response to mechanical stretch. 展开更多
关键词 APOPTOSIS mechanical stretch Bcl-2 and its family proteins MITOCHONDRIA cardiomyocyte.
下载PDF
Effect of emulsified isoflurane on apoptosis of anoxia-reoxygenation neonatal rat cardiomyocytes 被引量:6
13
作者 Xiao Liu Qu-Lian Guo +2 位作者 Zhong Zhang Long Long Yang Yang 《Asian Pacific Journal of Tropical Medicine》 SCIE CAS 2013年第12期977-981,共5页
Objective:To explore the effect of emulsified isoflurane(EI)on apoptosis of anoxia-reoxygenation neonatal rat cardiomyocytea and relevant protein expression.Methods:Cardiac muscle anoxiareoxygenation damage model was ... Objective:To explore the effect of emulsified isoflurane(EI)on apoptosis of anoxia-reoxygenation neonatal rat cardiomyocytea and relevant protein expression.Methods:Cardiac muscle anoxiareoxygenation damage model was established with culture in vitro neonatal rat cardiomyocytes.The cardiomyocytes were divided into control group,model group,fat emulsion group and EI group.The cardiomyocytes apoptosis rates and lactic dehydrogenase(LDH),superoxide dismutase(SOD)and malondialdehyde(MDA)index standardization were detected after relevant treatment The expression of apoptosis-related proteins Bel-2,Bax and Caspase-3 were detected with Western blot approach.Results:After hypoxia/reoxygenation(H/R)model was treated by EI,the cells apoptosis rate decreased and was dramatically below the fat emulsion group(P<0.05),Cardiomyocytes biochemical index detection presented that,compared with the control group that the LDH activity and MDA content dramatically increased(P<0.05),while the SOD activity notably decreased(P<0.05);compared with the H/R group,the SOD activity of the fat emulsion group and EI group increased(P<0.05);while the LDH activity and MDA content decreased(P<0.05).And the change of the EI group was more remarkable than the fat emulsion group(P<0.05).The Western blot analysis presented that,compared with the control group,the Bcl-2 protein expression of the other groups significantly decreased(P<0.05),the expressions of Bax protein and Caspase-3protein increased significantly(P<0.05);compared with H/R group,cardiomyocytes Bc1-2protein expression of EI group increased significantly(P<0.05),the expressions of Bax protein and Caspase-3 protein decreased significantly(P<0.05),and the change of EI group was more remarkable than the fat emulsion group(P<0.05).Conclusions:EI can inhabit the apoptosis of anoxia-reoxygenation damage model cardiomyocytes,and may he related to the up-regulation of expression of Bcl-2 and down-regulation of expression of Caspase-3 protein. 展开更多
关键词 EMULSIFIED ISOFLURANE APOPTOSIS Anoxia-reoxygenation Neonatal rat cardiomyocyteS
下载PDF
Effectof Ginsenoside Re on Cardiomyocyte Apoptosis and Expression of Bcl-2/Bax Gene after Ischemia and Reperfusion in Rats 被引量:7
14
作者 刘正湘 李志刚 刘晓春 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2002年第4期305-309,共5页
To observe the effectof ginsenoside Re on cardiomyocyte apoptosis and Bcl- 2 / Bax gene expression after ischemia (30 m in) and reperfusion (6 h) in rats and to elucidate the possible m echanism s of ginsenoside Re ... To observe the effectof ginsenoside Re on cardiomyocyte apoptosis and Bcl- 2 / Bax gene expression after ischemia (30 m in) and reperfusion (6 h) in rats and to elucidate the possible m echanism s of ginsenoside Re on inhibition of cardiom yocyte apoptosis,the ischem ia/ reperfusion heart m odel was established by ligating the left anterior descending branch of coronary artery in Wistar rats.The apoptotic cardiom yocytes were confirmed by transm ission electron m icroscopy and counted by in situ nick end labeling(TU NEL) method and lightm icroscopy.The m RNA and protein expression of Bcl- 2 and Bax genes were studied by in situ hybridization and im munohis- tochemical staining.Mean optical density (OD) value of the positive fields of m RNA and protein expression was quantitatively exam ined by im age analysis system.The results were as follows: (1) The apoptotic cardiomyocytes were found in ischemic fields in the ischem ia/ reperfusion group and weren't observed in the sham- operation group by transmission electron microscopy;(2 ) The num bers of the apoptotic cells were134.4 5± 4 5 .6 1/ field in the ischemia/ reperfusion group,and 90 .6 6± 19.2 2 / field in the ginsenoside Re- treated group.The differences was significant between two groups(P<0 .0 1) ;(3) Gene expression of Bcl- 2 and Bax were increased significantly in the is- chemia/ reperfusion group and ginsenoside Re- treated group when compared with the sham - opera- tion group.There was no significant difference in the gene expression of Bcl- 2 between the gin- senoside Re- treated group and ischemia/ reperfusion group(P>0 .0 5 ) ,but gene expression of Bax was decreased significantly in the ginsenoside Re- treated group as compared with the ischem ia/ reperfusion group(P<0 .0 1) .The ratio of Bcl- 2 / Bax was increased significantly in the ginseno- side Re- treated group when com pared with the ischem ia/ reperfusion group and sham- operation group.These findings suggest that m yocardial ischem ia- reperfusion can induce cardiom yocyte apoptosis,and ginsenoside Re can significantly inhibit cardiom yocyte apoptosis induced by ischemi- a- reperfusion in rats.It is concluded that ginsenoside Re inhibits cardiomyocyte apoptosis by in- hibiting expression of pro- apoptotic Bax gene and raising the ratio of Bcl- 2 / Bax. 展开更多
关键词 ginsenoside Re ischemia/ reperfusion cardiomyocyte apoptosis Bcl- 2 / Bax
下载PDF
Ischemia/hypoxia inhibits cardiomyocyte autophagy and promotes apoptosis via the Egr-1/Bim/Beclin-1 pathway 被引量:5
15
作者 Bo SU Xian-Tao WANG +4 位作者 Yu-Han SUN Man-Yun LONG Jing ZHENG Wen-Hao WU Lang LI 《Journal of Geriatric Cardiology》 SCIE CAS CSCD 2020年第5期284-293,共10页
Background Myocardial injury caused by microvascular obstruction(MVO)is characterized by persistent ischemia/hypoxia(IH)of cardiomyocytes after microembolization.Autophagy and Egr-1 were closely associated with variou... Background Myocardial injury caused by microvascular obstruction(MVO)is characterized by persistent ischemia/hypoxia(IH)of cardiomyocytes after microembolization.Autophagy and Egr-1 were closely associated with various cardiovascular diseases,including MVO.Bim and Beclin-1 are the important genes for autophagy and apoptosis.We aimed to explore whether the Egr-1/Bim/Beclin-1 pathway is involved in regulating autophagy and apoptosis in IH-exposed cardiomyocytes.Methods Neonatal rat cardiomyocytes exposed to the IH environment in vitro were transfected with lentivirus expressing Egr-1 or Egr-1 sh RNA,or further treated with 3-methyladenine(3-MA).The expressions of autophagy and apoptosis-associated genes were evaluated using RT-q PCR and Western blots assays.Autophagic vacuoles and autophagic flux were detected by transmission electron microscopy(TEM)and confocal microscope,respectively.Cell injury was assessed by lactate dehydrogenase(LDH)leakage,and apoptosis was determined by flow cytometry.Results IH exposure elevated Egr-1 and Bim expressions,and decreased Beclin-1 expression in rat cardiomyocytes.Egr-1 overexpression in IH-exposed cardiomyocytes significantly up-regulated the levels of Egr-1 and Bim,and down-regulated the level of Beclin-1.Egr-1 knockdown resulted in down-regulated expressions of Egr-1 and Bim,as well as up-regulated expression of Beclin-1.In addition,Egr-1 knockdown induced autophagy was suppressed by 3-MA treatments.TEM and autophagic flux experiments also confirmed that Egr-1 inhibited autophagy progression in IH-exposed cardiomyocytes.Egr-1 suppression protected cardiomyocytes from IH-induced injury,as evidenced by the positive correlations between Egr-1 expression and LDH leakage or apoptosis index in IH-exposed cardiomyocytes.Conclusions IH-induced cardiomyocyte autophagy and apoptosis are regulated by the Egr-1/Bim/Beclin-1 pathway,which is a potential target for treating cardiomyocyte injury caused by MVO in the IH environment. 展开更多
关键词 AUTOPHAGY Apoptosis cardiomyocyte EGR-1 Ischemia/hypoxia
下载PDF
Current methods for the maturation of induced pluripotent stem cellderived cardiomyocytes 被引量:8
16
作者 Pranav Machiraju Steven C Greenway 《World Journal of Stem Cells》 SCIE CAS 2019年第1期33-43,共11页
Induced pluripotent stem cells(iPSCs) were first generated by Yamanaka and colleagues over a decade ago. Since then, iPSCs have been successfully differentiated into many distinct cell types, enabling tissue-, disease... Induced pluripotent stem cells(iPSCs) were first generated by Yamanaka and colleagues over a decade ago. Since then, iPSCs have been successfully differentiated into many distinct cell types, enabling tissue-, disease-, and patientspecific in vitro modelling. Cardiovascular disease is the greatest cause of mortality worldwide but encompasses rarer disorders of conduction and myocardial function for which a cellular model of study is ideal. Although methods to differentiate iPSCs into beating cardiomyocytes(iPSC-CMs) have recently been adequately optimized and commercialized, the resulting cells remain largely immature with regards to their structure and function,demonstrating fetal gene expression, disorganized morphology, reliance on predominantly glycolytic metabolism and contractile characteristics that differ from those of adult cardiomyocytes. As such, disease modelling using iPSC-CMs may be inaccurate and of limited utility. However, this limitation is widely recognized, and numerous groups have made substantial progress in addressing this problem. This review highlights successful methods that have been developed for the maturation of human iPSC-CMs using small molecules,environmental manipulation and 3-dimensional(3 D) growth approaches. 展开更多
关键词 INDUCED PLURIPOTENT STEM cells INDUCED PLURIPOTENT STEM cell-derived cardiomyocyteS Regenerative medicine STEM CELL biology Translational research
下载PDF
Real-time Microwave Exposure Induces Calcium Efflux in Primary Hippocampal Neurons and Primary Cardiomyocytes 被引量:7
17
作者 WANG Hui ZHANG Jing +4 位作者 HU Shao Hua TAN Sheng Zhi ZHANG Bo ZHOU Hong Mei PENG Rui Yun 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2018年第8期561-571,共11页
Objective To detect the effects of microwave on calcium levels in primary hippocampal neurons and primary cardiomyocytes by the real-time microwave exposure combined with laser scanning confocal microscopy. Methods Th... Objective To detect the effects of microwave on calcium levels in primary hippocampal neurons and primary cardiomyocytes by the real-time microwave exposure combined with laser scanning confocal microscopy. Methods The primary hippocampal neurons and primary cardiomyocytes were cultured and labeled with probes, including Fluo-4 AM, Mag-Fluo-AM, and Rhod-2, to reflect the levels of whole calcium [Ca], endoplasmic reticulum calcium [Ca]ER, and mitochondrial calcium [Ca]MIT, respectively. Then, the cells were exposed to a pulsed microwave of 2.856 GHz with specific absorption rate(SAR) values of 0, 4, and 40 W/kg for 6 min to observe the changes in calcium levels. Results The results showed that the 4 and 40 W/kg microwave radiation caused a significant decrease in the levels of [Ca], [Ca]ER, and [Ca]MIT in primary hippocampal neurons. In the primary cardiomyocytes, only the 40 W/kg microwave radiation caused the decrease in the levels of [Ca], [Ca]ER, and [Ca]MIT. Primary hippocampal neurons were more sensitive to microwave exposure than primary cardiomyocytes. The mitochondria were more sensitive to microwave exposure than the endoplasmic reticulum. Conclusion The calcium efflux was occurred during microwave exposure in primary hippocampal neurons and primary cardiomyocytes. Additionally, neurons and mitochondria were sensitive cells and organelle respectively. 展开更多
关键词 Real time MICROWAVE CALCIUM Primary hippocampal neurons Primary cardiomyocytes
下载PDF
Sphingosine 1 phosphate receptor-1 (S1PR1) signaling protects cardiac function by inhibiting cardiomyocyte autophagy 被引量:5
18
作者 Yong-Zeng CHEN Fan WANG +1 位作者 Hai-Jun WANG Hong-Bin LIU 《Journal of Geriatric Cardiology》 SCIE CAS CSCD 2018年第5期334-345,共12页
Objective To investigate the role of sphingosine-l-phosphate (S1P) and its receptors in cardiomyocyte autophagy, cardiomyocyte hypertrophy and cardiac function. Methods Cardiomyocytes were isolated from neonatal Vis... Objective To investigate the role of sphingosine-l-phosphate (S1P) and its receptors in cardiomyocyte autophagy, cardiomyocyte hypertrophy and cardiac function. Methods Cardiomyocytes were isolated from neonatal Vista rats. Autophagy and hypertrophy of car- diomyocytes were induced via starvation culture and phenylephrine (PE), respectively, and S 1 P was used to treat the cardiomyocytes. The effect of S1P on cardiomyocyte autophagy was evaluated by the number of autophagosomes, the expression of autophagy-related proteins and autophagic marker genes in cardiomyocytes. The effect of S1P on cardiomyocyte hypertrophy was evaluated by examining the surface area of cardiomyoeytes and the expression of hypertrophic genes. Subsequently, different small interfering RNAs (siRNAs) were used to knockdown the expression of the three types of S 1P receptors on cardiomyocytes and to analyze the type of receptor that mediates S 1P sig- naling in cardiomyocytes. Finally, sphingosine 1 phosphate receptor-1 (S1PR1) was knockout in the mouse cardiomyocytes using the Cas9 technique. The effect of S 1PR1 on cardiac autophagy and cardiac hypertrophy was examined by assessing cardiomyocyte autophagy, car- diomyocyte hypertrophy and cardiac function. Results Starvation-induced cardiomyocyte autophagy and PE -induced cardiomyocyte hy- pertrophy were significantly attenuated by SIP. The results showed that the formation of autophagosomes was decreased, the auto- phagy-associated protein LC3 II/I and the expression of autophagic marker genes Atg5, Atgl2, Beclinl and LC3B decreased after SIP treatment. The surface area of the cardiomyocytes was decreased, and the expression of hypertrophic genes, including atrial natriuretic factor (ANF), skeletal muscle and cardiac actin (SKA), myosin heavy chain (β-MHC) and brain natriuretic peptide (BNP) were all decreased after S 1 P treatment. The autophagy and hypertrophy of cardiomyocytes in the S 1PR 1 knocked-down group were significantly increased compared to those in the control group, the SIPR2 and the S1PR3 knocked-down groups. In vivo, the knockout of S1PR1 in cardiomyocytes exacer- bated stress-induced cardiac autophagy, cardiac hypertrophy and the impairment of cardiac function. Conclusion SIP could inhibit car- diomyocyte autophagy, thereby inhibiting cardiomyocyte hypertrophy and protecting cardiac function by activating S1PR1 in pres- sure-overloaded cardiomyocytes in mice. 展开更多
关键词 AUTOPHAGY cardiomyocyte HYPERTROPHY S1PR1
下载PDF
Cardiomyocyte-like differentiation of human bone marrow mesenchymal stem cells after exposure to 5-azacytidine in vitro 被引量:5
19
作者 Feng CAO Lili NIU Ling MENG Lianxu ZHAO Dongmei Wang Ming ZHENG Cixian BAI Guoliang JIA Xuetao PEI 《Journal of Geriatric Cardiology》 SCIE CAS CSCD 2004年第2期101-107,共7页
Objective To investigate the potential of adult mesenchymal stem cells (MSCs) derived from human bone marrow to undergo cardiomyogenic differentiation after exposure to 5-azacytidine (5-aza) in vitro. Methods A small ... Objective To investigate the potential of adult mesenchymal stem cells (MSCs) derived from human bone marrow to undergo cardiomyogenic differentiation after exposure to 5-azacytidine (5-aza) in vitro. Methods A small bone marrow aspirate was taken from the iliac crest of human volunteers, and hMSCs were isolated by 1.073g/mL Percoll and propagated in the right cell culturing medium as previously described. The phenotypes of hMSCs were characterized with the use of flow cytometry. The hMSCs were cultured in cell culture medium (as control) and medium mixed with 5-aza for cellular differentiation. We examined by immunohistochemistry at 21 days the inducement of desmin, cardiac-specific cardiac troponin I (cTnI), GATA 4 and connexin-43 respectively. Results The hMSCs are fibroblast-like morphology and express CD44+ CD29+ CD90+ / CD34- CD45- CD31- CD11a. After 5-aza treatment, 20-30% hMSCs connected with adjoining cells and coalesced into myotube structures after 14days. Twenty-one days after 5-aza treatment, immunofluorescence showed that some cells expressed desmin,GATA4, cTnI and connexin-43 in 5,10 μmol/L 5-aza groups, but no cardiac specific protein was found in neither 3μmol/L 5-aza group nor in the control group. The ratio of cTnI positively stained cells in 10 μmol/L group was higher than that in 5 μmol/L group (65.3 ± 4.7% vs 48.2 ± 5.4%, P < 0.05). Electron microscopy revealed that myofilaments were formed. The induced cells expressed cardiac-myosin heavy chain (MyHC) gene by reverse transcription-polymerase chain reaction (RT-PCR). Conclusions Theses findings suggest that hMSCs from adult bone marrow can be differentiated into cardiac-like muscle cells with 5-aza inducement in vitro and the differentiation is in line with the 5-aza concentration. (J Geriatr Cardiol 2004;1(2) :101-107. ) 展开更多
关键词 human bone MARROW MESENCHYMAL stem cells cardiomyocyteS DIFFERENTIATION 5-AZACYTIDINE
下载PDF
Salubrinal protects against tunicamycin and hypoxia induced cardiomyocyte apoptosis via the PERK-eIF2a signaling pathway 被引量:8
20
作者 Chun-Lei Liu Xin Li +6 位作者 Guo-Liang Hu Rui-Jun Li Yun-Yun He Wu Zhong Song Li Kun-Lun He Li-Li Wang 《Journal of Geriatric Cardiology》 CAS CSCD 2012年第3期258-268,共11页
Objectives This study examined the protective effect of salubrinal and the mechanism underlying this protection against tunicamycin (TM)- and hypoxia-induced apoptosis in rat cardiomyocytes. Methods Neonatal rat car... Objectives This study examined the protective effect of salubrinal and the mechanism underlying this protection against tunicamycin (TM)- and hypoxia-induced apoptosis in rat cardiomyocytes. Methods Neonatal rat cardiomyocytes were cultured from the ventricles of l-day-old Wistar rats. Cells were exposed to different concentrations of salubrinal (10, 20, and 40 gmol/L) for 30 min followed by TM treatment or hypoxia for 36 h. Apoptosis was measured by a multiparameter HCS (high content screening) apoptosis assay, TUNEL assay and flow cytometry. The phosphorylation of eukaryotic translation initiation factor 2 subunit alpha (eIF2c0 and the expression of cleaved caspase-12 were determined by Western blotting. C/EBP homologous protein (CHOP) was detected by immunocytochemistry. Results HCS, TUNEL assays and flow cytometry showed that salubrinal protected cardiomyocytes against apoptosis induced by TM or hypoxia. Western blotting showed that salubrinal protected cardiomyocytes against apoptosis by inducing eIF2ct phosphorylation and down-regulating the expression of the endoplasmic reticulum stress-mediated apoptotic proteins, CHOP and cleaved caspase-12. Conclusions Our study suggests that salubrinal protects rat cardiomyocytes against TM- or hypoxia-associated apoptosis via a mechanism involving the inhibition of ER stress-mediated apoptosis. 展开更多
关键词 Endoplasmic reticulum stress Rat cardiomyocytes APOPTOSIS Salubrinal Cell protection
下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部