Intraocular pressure elevation can induce retinal ganglion cell death and is a clinically reversible risk factor for glaucoma,the leading cause of irreversible blindness.We previously demonstrated that casein kinase-2...Intraocular pressure elevation can induce retinal ganglion cell death and is a clinically reversible risk factor for glaucoma,the leading cause of irreversible blindness.We previously demonstrated that casein kinase-2 inhibition can promote retinal ganglion cell survival and axonal regeneration in rats after optic nerve injury.To investigate the underlying mechanism,in the current study we increased the intraocular pressure of adult rats to 75 mmHg for 2 hours and then administered a casein kinase-2 inhibitor(4,5,6,7-tetrabromo-2-azabenzimidazole or 2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole)by intravitreal injection.We found that intravitreal injection of 4,5,6,7-tetrabromo-2-azabenzimidazole or 2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole promoted retinal ganglion cell survival and reduced the number of infiltrating macrophages.Transcriptomic analysis showed that the mitogen activated protein kinase signaling pathway was involved in the response to intraocular pressure elevation but was not modulated by the casein kinase-2 inhibitors.Furthermore,casein kinase-2 inhibition downregulated the expression of genes(Cck,Htrsa,Nef1,Htrlb,Prph,Chat,Slc18a3,Slc5a7,Scn1b,Crybb2,Tsga10ip,and Vstm21)involved in intraocular pressure elevation.Our data indicate that inhibition of casein kinase-2 can enhance retinal ganglion cell survival in rats after acute intraocular pressure elevation via macrophage inactivation.展开更多
Tiller number and grain size are important agronomic traits that determine grain yield in rice.Here,we demonstrate that DEFECTIVE TILLER GROWTH 1(DTG1),a member of the casein kinase 1 protein family,exerts a co-regula...Tiller number and grain size are important agronomic traits that determine grain yield in rice.Here,we demonstrate that DEFECTIVE TILLER GROWTH 1(DTG1),a member of the casein kinase 1 protein family,exerts a co-regulatory effect on tiller number and grain size.We identified a single amino acid substitution in DTG1(I357K)that caused a decrease in tiller number and an increase in grain size in NIL-dtg1.Genetic analyses revealed that DTG1 plays a pivotal role in regulation of tillering and grain size.The DTG1^(I357K) allelic variant exhibited robust functionality in suppressing tillering.We show that DTG1 is preferentially expressed in tiller buds and young panicles,and negatively regulates grain size by restricting cell proliferation in spikelet hulls.We further confirm that DTG1 functioned in grain size regulation by directly interacting with Grain Width 2(GW2),a critical grain size regulator in rice.The CRISPR/Cas9-mediated elimination of DTG1 significantly enhanced tiller number and grain size,thereby increasing rice grain yield under field conditions,thus highlighting potential value of DTG1 in rice breeding.展开更多
Objective Machado-Joseph disease (MJD)/Spinocerebellar ataxia type 3 (SCA3) is an autosomal dominant neurodegenerative disorder caused by an expansion of polyglutamine tract near the C-terminus of the MJD1 gene pr...Objective Machado-Joseph disease (MJD)/Spinocerebellar ataxia type 3 (SCA3) is an autosomal dominant neurodegenerative disorder caused by an expansion of polyglutamine tract near the C-terminus of the MJD1 gene product, ataxin-3. The precise mechanism of the MJD/SCA3 pathogenesis remains unclear. A growing body of evidence demonstrates that phosphorylation plays an important role in the pathogenesis of many neurodegenerative diseases. However, few kinases are known to phosphorylate ataxin-3. The present study is to explore whether ataxin-3 is a substrate of casein kinase 2 (CK2). Methods The interaction between ataxin-3 and CK2 was identified by glutathione S-transferase (GST) pull-down assay and co-immunoprecipition assay. The phosphorylation of ataxin-3 by CK2 was measured by in vitro phosphorylation assays. Results (1) Both wild type and expanded ataxin-3 interacted with CK2α and CK2β in vitro. (2) In 293 cells, both wild type and expanded ataxin-3 interacted with CK2β, but not CK2α. (3) CK2 phosphorylated wild type and expanded ataxin-3. Conclusion Ataxin-3 is a substrate of protein kinase CK2.展开更多
The kinetics of casein tryptic hydrolysis to prepare activepeptides was investigated. Taking into account the reaction mechanismincluding single substrate hydrolysis, irreversible enzymeinactivation, and substrate inh...The kinetics of casein tryptic hydrolysis to prepare activepeptides was investigated. Taking into account the reaction mechanismincluding single substrate hydrolysis, irreversible enzymeinactivation, and substrate inhibition, a set of exponentialequations was established to characterize the enzymatic hydrolysiscurves. The verification was carried out by a series of experimentalresults and indicated that the average regressive error was less than5/100. According to the proposed kinetic model, the kinetic constantsand thermodynamic constants of the reaction system were alsocalculated.展开更多
Background:High-protein diets can increase the colonic health risks.A moderate reduction of dietary crude-protein(CP)level can improve the colonic bacterial community and mucosal immunity of pigs.However,greatly reduc...Background:High-protein diets can increase the colonic health risks.A moderate reduction of dietary crude-protein(CP)level can improve the colonic bacterial community and mucosal immunity of pigs.However,greatly reducing the dietary CP level,even supplemented with all amino acids(AAs),detrimentally affects the colonic health,which may be due to the lack of protein-derived peptides.Therefore,this study evaluated the effects of supplementation of casein hydrolysate(peptide source)in low-protein(LP)diets,in comparison with AAs supplementation,on the colonic microbiota,microbial metabolites and mucosal immunity in pigs,aiming to determine whether a supplementation of casein hydrolysate can improve colonic health under very LP level.Twenty-one pigs(initial BW 19.90±1.00 kg,63±1 days of age)were assigned to three groups and fed with control diet(16%CP),LP diets(13%CP)supplemented with free AAs(LPA)or casein hydrolysate(LPC)for 4 weeks.Results:Compared with control diet,LPA and LPC diet decreased the relative abundance of Streptococcus and Escherichia coli,and LPC diet further decreased the relative abundance of Proteobacteria.LPC diet also increased the relative abundance of Lactobacillus reuteri.Both LP diets decreased concentrations of ammonia and cadaverine,and LPC diet also reduced concentrations of putrescine,phenol and indole.Moreover,LPC diet increased total short-chain fatty acid concentration.In comparison with control diet,both LP diets decreased protein expressions of Toll-like receptor-4,nuclear factor-κB,interleukin-1βand tumor necrosis factor-α,and LPC diet further decreased protein expressions of nucleotide-binding oligomerization domain protein-1 and interferon-γ.LPC diet also increased protein expressions of G-protein coupled receptor-43,interleukin-4,transforming growth factor-β,immunoglobulin A and mucin-4,which are indicators for mucosal defense activity.Conclusions:The results showed that supplementing casein hydrolysate showed beneficial effects on the colonic microbiota and mucosal immunity and barrier function in comparison with supplementing free AAs in LP diets.These findings may provide new framework for future nutritional interventions for colon health in pigs.展开更多
Whey protein concentrate (WPC 80) and sodium caseinate were hydrolyzed by Protamex to 5%, 10%, 15%, and 20% degree of hydrolysis (DH). WPC 80, sodium caseinate and their hydrolysates were then analyzed, compared and e...Whey protein concentrate (WPC 80) and sodium caseinate were hydrolyzed by Protamex to 5%, 10%, 15%, and 20% degree of hydrolysis (DH). WPC 80, sodium caseinate and their hydrolysates were then analyzed, compared and evaluated for their nutritional qualities. Their chemical composition, protein solubility, amino acid composition, essential amino acid index (EAA index), biological value (BV), nutritional index (NI), chemical score, enzymic protein efficiency ratio (E-PER) and in vitro protein digestibility (IVPD) were determined. The results indicated that the enzymatic hydrolysis of WPC 80 and sodium caseinate by Protamex improved the solubility and IVPD of their hydrolysates. WPC 80, sodium caseinate and their hydrolysates were high-quality proteins and had a surplus of essential amino acids compared with the FAO/WHO/UNU (1985) reference standard. The nutritive value of WPC 80 and its hydrolysates was superior to that of sodium caseinate and its hydrolysates as indicated by some nutritional parameters such as the amino acid composition, chemical score, EAA index and predicted BV. However, the E-PER was lower for the WPC hydrolysates as compared to unhydrolyzed WPC 80 but sodium caseinate and its hydrolysates did not differ significantly. The nutritional qualities of WPC 80, sodium caseinate and their hydrolysates were good and make them appropriate for food formulations or as nutritional supplements.展开更多
There is no study on food-derived peptide with both anticoagulant and angiotensin I-converting enzyme inhibitory (ACEI) activities yet. In this work, the anticoagulant and ACEI activities of the casein hydrolysates re...There is no study on food-derived peptide with both anticoagulant and angiotensin I-converting enzyme inhibitory (ACEI) activities yet. In this work, the anticoagulant and ACEI activities of the casein hydrolysates released by pepsin digestion were evaluated for the first time to the best of our knowledge. Results indicated that the casein hydrolysate exhibited potent anticoagulant activity by prolonging the thrombin time (TT) and the activated partial thromboplastin time (APTT). Compared with control samples, at 10 mg/mL, the TT and APTT of casein hydrolysate were 186.0 % ± 6.6 % and 163.5 % ± 7.4 %, respectively. The casein hydrolysate also showed a strong ACEI activity with an IC50 value of 1.775 mg/mL. The components of the bioactive casein hydrolysate were analyzed by nanoscale liquid chromatography quadrupole time-of-flight tandem mass spectrometry (NanoLC-Q-TOF-MS/MS). Total of 115 peptides were identified, among which 34, 9, 55 and 17 peptides were derived from α_(s1-), α_(s2-), β-, and κ-casein, respectively. The results of PeptideRanker and PepSite 2 analysis showed that 6 peptides (FRQFYQL, NENLLRF, NPWDQVKR, PVVVPPFLQ, PVRGPFPIIV, and ARHPHPHLSF) have both ACEI and anticoagulant activities by binding to the active sites of ACE and thrombin. This study indicated that casein is a potential functional food supplement that can be used for medical purposes.展开更多
Casein kinase I is a group of ubiquitous Serine/Threonine kinases that have been implicated in both normal cellular functions and several pathological conditions including Alzheimer's disease and cancer.Recent fin...Casein kinase I is a group of ubiquitous Serine/Threonine kinases that have been implicated in both normal cellular functions and several pathological conditions including Alzheimer's disease and cancer.Recent findings in colon and pancreatic cancer have brought tremendous attention to these molecules as potential therapeutic targets in treatment of digestive cancers.In this review,we summarize up to date what is known about this family of kinases and their involvement in carcinogenesis and other pathological conditions.Our emphasis is on their implications in digestive cancers and their potential for cancer screening and therapy.展开更多
The present study here establishes a complete and effective method for isolating,purifying and identifying extracellular and intracellular peptides,and also describes the characters and bioactivities of peptides from ...The present study here establishes a complete and effective method for isolating,purifying and identifying extracellular and intracellular peptides,and also describes the characters and bioactivities of peptides from fermented casein with Lactobacillus helveticus.Intracellular peptides are much larger in quantity and more complex in composition than extracellular peptides,between which the correlation reveals proteolytic and metabolic mechanisms.In addition,totally 241 different peptide sequences were identified by Nano LC–MS/MS from casein(212)and Lactobacillus helveticus proteins(29).These casein-derived peptides mostly originated from-casein,followed byS1-casein,-casein,andS2-casein,and came from extracell(69)and intracell(143),in which common peptides have a total of 27.Forty-four of the identified peptides were previously described as bioactive,including angiotensinconverting enzyme(ACE)-inhibitory,antioxidant,immunomodulating,antimicrobial,DPP-IV inhibitory,antiamnesic and anticancer effects and so on.Thirteen peptides with the potential of some biological activities are obtained,which were described in previous studies.A total of 47 novel peptides of 5 to 26 amino acids that were not disclosed were obtained.The new sources of natural bioactive peptides may have the very high application value as potential new peptide drugs for treatment human diseases.The product peptide DELQDKIHPF found in both extracell and intracell was quantitatively analyzed using the MRM mode of UPLC-U3Q,23.1 and 9.76 ng/mL,respectively.The quantitative analysis of the potential bioactive peptide may also advance the production of peptide products in the future.展开更多
Protein colloidal nanoparticles(NPs)are ubiquitous present in nature and function as building blocks with multiple functions in both food formulations and biological processes.Food scientists are inspired by naturally...Protein colloidal nanoparticles(NPs)are ubiquitous present in nature and function as building blocks with multiple functions in both food formulations and biological processes.Food scientists are inspired by naturally occurring proteins to induce self-assembly behavior of protein by manipulating environmental parameters,providing opportunities to construct special and expected NPs.Zein and casein,the main proteins derived from corn and milk,are two examples of the most prevalently studied food proteins for nanoarchitectures in recent years.In this article,the compositions,structures,and physicochemical properties of these two proteins and casein derivatives are summarized as well as their interactions and characterizations.Strategies to fabricate zein-sodium caseinate based NPs are critically highlighted and illustrated.Particularly,applications such as encapsulation and delivery of bioactive compounds,producing food packaging for enhanced antioxidative and antimicrobial effects,and stabilization of emulsions to achieve fat replacement.Due to the imperative role of food proteins in diet composition,this review not only provides cutting-edge knowledge for nanoparticle construction but also opens new avenues for efficient utilization and exploitation of food proteins.展开更多
The aim of this work was to develop an alginate-casein composite microsphere as a bioaetive vehicle for oral administration of nutrients by a simple extrusion dripping method. Riboflavin was selected as a model drug, ...The aim of this work was to develop an alginate-casein composite microsphere as a bioaetive vehicle for oral administration of nutrients by a simple extrusion dripping method. Riboflavin was selected as a model drug, and the microencapsulation efficiency was raised to 97.94% after optimizing the preparation conditions by response surface methodology. In vitro release studies showed that riboflavin was released completely from alginate-casein microspheres in simulated intestinal fluids. Meanwhile, the morphology, structure and interaction between alginate and casein were characterized by scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectra.展开更多
In this study, we examined the varia- tions between the difference method and the enzyme- hydrolyzed casein method for determining endogenous amino acid loss and the true amino acid digestibility in ducks fed normal p...In this study, we examined the varia- tions between the difference method and the enzyme- hydrolyzed casein method for determining endogenous amino acid loss and the true amino acid digestibility in ducks fed normal protein-containing diets. These methods were compared to the nitrogen-free (N-free) diet method. The difference method was based on soy- bean meal as the only protein source, with the experi- mental diets containing crude protein levels at 15% and 20%. The enzyme-hydrolyzed casein method was based on enzyme-hydrolyzed casein meal as the pro- tein source, with the experimental diet containing a crude protein level of 17.5%. The N-free diet was prepared with starches and paper fibers. In each meth- od,64 Tianfu meat drakes (7-weeks-old) with an av- erage body weight of 2.77±0.16 kg were used and divided into four groups, and fed four different diets. Each group contained four replicates of four drakes and they were force fed trial diets according to the Sirbald method for detecting their apparent amino aciddigestibility, endogenous amino acid loss and true a- mino acid digestibility. The results demonstrated that using the difference, enzyme-hydrolyzed casein and N-free diet methods, endogenous amino acid losses were 0. 9946,1. 2243 and 0. 9297 mg/g dry matter in- take ( DMI), respectively. The true amino acid digest- ibility measured by the difference method was 88.93 %±4.43 %. Using the enzyme-hydrolyzed ca- sein method with two dietary crude protein levels of 15% and 20%, the digestibility was 91.15%±4.33% and 91.97%±4. 16%, respectively, and by the N-free diet methods with two dietary crude protein levels of 15% and 20% ,it was 88.55%±4.29% and 88.82 %±4.61%, respectively. The results suggested that when the dietary protein level was 15% to 20 %, the true amino acid digestibility and endogenous ami- no acid loss as determined by the difference method was more accurate than the values determined by the enzyme-hydrolyzed casein method.展开更多
Protein phosphorylation is an important post-translational modification that regulates milk protein structure and function.The objective of this study was to analyze the presence of phosphorylated casein.Bovine milk p...Protein phosphorylation is an important post-translational modification that regulates milk protein structure and function.The objective of this study was to analyze the presence of phosphorylated casein.Bovine milk proteins were first separated by SDS polyacrylamide gel electrophoresis.After in gels digestion and extraction,phosphorylated peptides were enriched by titanium dioxide and identified by ultra performance liquid chromatography coupled with nano electrospray ionization tandem mass spectrometry.This method ensured the identification of 20 phosphorylated peptides,including 7 phosphorylated forms of α_s1-casein,8 α_s2-casein,and 5 β-casein.Eight phosphorylated sites derived from 3 α_s1-caseins,3 α_s2-caseins,and 2 β-caseins were also identified,and localized on residues Ser^61,Ser^63 and Ser^130 in α_s1-casein;Thr^145,Ser^146 and Ser^158 in α_s2-casein;and Ser^50 and Thr^56 in β-casein.These findings provide valuable information for investigating casein phosphorylation of the bovine milk.展开更多
基金supported by the National Natural Science Foundation of China,Nos.81570849,81100931the Natural Science Foundation of Guangdong Province of China,Nos.2015A030313446,2020A1515011413(all to LPC).
文摘Intraocular pressure elevation can induce retinal ganglion cell death and is a clinically reversible risk factor for glaucoma,the leading cause of irreversible blindness.We previously demonstrated that casein kinase-2 inhibition can promote retinal ganglion cell survival and axonal regeneration in rats after optic nerve injury.To investigate the underlying mechanism,in the current study we increased the intraocular pressure of adult rats to 75 mmHg for 2 hours and then administered a casein kinase-2 inhibitor(4,5,6,7-tetrabromo-2-azabenzimidazole or 2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole)by intravitreal injection.We found that intravitreal injection of 4,5,6,7-tetrabromo-2-azabenzimidazole or 2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole promoted retinal ganglion cell survival and reduced the number of infiltrating macrophages.Transcriptomic analysis showed that the mitogen activated protein kinase signaling pathway was involved in the response to intraocular pressure elevation but was not modulated by the casein kinase-2 inhibitors.Furthermore,casein kinase-2 inhibition downregulated the expression of genes(Cck,Htrsa,Nef1,Htrlb,Prph,Chat,Slc18a3,Slc5a7,Scn1b,Crybb2,Tsga10ip,and Vstm21)involved in intraocular pressure elevation.Our data indicate that inhibition of casein kinase-2 can enhance retinal ganglion cell survival in rats after acute intraocular pressure elevation via macrophage inactivation.
基金supported by the Sichuan Science and Technology Support Project (2022ZDZX0012,2021YFYZ0016,2023YFN0007,2021YFYZ0027)the National Natural Science Foundation of China (32171966,U23A20180).
文摘Tiller number and grain size are important agronomic traits that determine grain yield in rice.Here,we demonstrate that DEFECTIVE TILLER GROWTH 1(DTG1),a member of the casein kinase 1 protein family,exerts a co-regulatory effect on tiller number and grain size.We identified a single amino acid substitution in DTG1(I357K)that caused a decrease in tiller number and an increase in grain size in NIL-dtg1.Genetic analyses revealed that DTG1 plays a pivotal role in regulation of tillering and grain size.The DTG1^(I357K) allelic variant exhibited robust functionality in suppressing tillering.We show that DTG1 is preferentially expressed in tiller buds and young panicles,and negatively regulates grain size by restricting cell proliferation in spikelet hulls.We further confirm that DTG1 functioned in grain size regulation by directly interacting with Grain Width 2(GW2),a critical grain size regulator in rice.The CRISPR/Cas9-mediated elimination of DTG1 significantly enhanced tiller number and grain size,thereby increasing rice grain yield under field conditions,thus highlighting potential value of DTG1 in rice breeding.
基金the National Natural Sciences Foundation of China (No. 30770664)a grant from Educational Committee of Anhui Province, China (No. ZD2008008-2).
文摘Objective Machado-Joseph disease (MJD)/Spinocerebellar ataxia type 3 (SCA3) is an autosomal dominant neurodegenerative disorder caused by an expansion of polyglutamine tract near the C-terminus of the MJD1 gene product, ataxin-3. The precise mechanism of the MJD/SCA3 pathogenesis remains unclear. A growing body of evidence demonstrates that phosphorylation plays an important role in the pathogenesis of many neurodegenerative diseases. However, few kinases are known to phosphorylate ataxin-3. The present study is to explore whether ataxin-3 is a substrate of casein kinase 2 (CK2). Methods The interaction between ataxin-3 and CK2 was identified by glutathione S-transferase (GST) pull-down assay and co-immunoprecipition assay. The phosphorylation of ataxin-3 by CK2 was measured by in vitro phosphorylation assays. Results (1) Both wild type and expanded ataxin-3 interacted with CK2α and CK2β in vitro. (2) In 293 cells, both wild type and expanded ataxin-3 interacted with CK2β, but not CK2α. (3) CK2 phosphorylated wild type and expanded ataxin-3. Conclusion Ataxin-3 is a substrate of protein kinase CK2.
基金Supported by National Natural Science Foundation of China (No. 20276052) and Tianjin Science & Technology Commission (No. 023105411).
文摘The kinetics of casein tryptic hydrolysis to prepare activepeptides was investigated. Taking into account the reaction mechanismincluding single substrate hydrolysis, irreversible enzymeinactivation, and substrate inhibition, a set of exponentialequations was established to characterize the enzymatic hydrolysiscurves. The verification was carried out by a series of experimentalresults and indicated that the average regressive error was less than5/100. According to the proposed kinetic model, the kinetic constantsand thermodynamic constants of the reaction system were alsocalculated.
基金supported by National Key Basic Research Program of China(2013CB127300)Natural Science Foundation of China(31430082).
文摘Background:High-protein diets can increase the colonic health risks.A moderate reduction of dietary crude-protein(CP)level can improve the colonic bacterial community and mucosal immunity of pigs.However,greatly reducing the dietary CP level,even supplemented with all amino acids(AAs),detrimentally affects the colonic health,which may be due to the lack of protein-derived peptides.Therefore,this study evaluated the effects of supplementation of casein hydrolysate(peptide source)in low-protein(LP)diets,in comparison with AAs supplementation,on the colonic microbiota,microbial metabolites and mucosal immunity in pigs,aiming to determine whether a supplementation of casein hydrolysate can improve colonic health under very LP level.Twenty-one pigs(initial BW 19.90±1.00 kg,63±1 days of age)were assigned to three groups and fed with control diet(16%CP),LP diets(13%CP)supplemented with free AAs(LPA)or casein hydrolysate(LPC)for 4 weeks.Results:Compared with control diet,LPA and LPC diet decreased the relative abundance of Streptococcus and Escherichia coli,and LPC diet further decreased the relative abundance of Proteobacteria.LPC diet also increased the relative abundance of Lactobacillus reuteri.Both LP diets decreased concentrations of ammonia and cadaverine,and LPC diet also reduced concentrations of putrescine,phenol and indole.Moreover,LPC diet increased total short-chain fatty acid concentration.In comparison with control diet,both LP diets decreased protein expressions of Toll-like receptor-4,nuclear factor-κB,interleukin-1βand tumor necrosis factor-α,and LPC diet further decreased protein expressions of nucleotide-binding oligomerization domain protein-1 and interferon-γ.LPC diet also increased protein expressions of G-protein coupled receptor-43,interleukin-4,transforming growth factor-β,immunoglobulin A and mucin-4,which are indicators for mucosal defense activity.Conclusions:The results showed that supplementing casein hydrolysate showed beneficial effects on the colonic microbiota and mucosal immunity and barrier function in comparison with supplementing free AAs in LP diets.These findings may provide new framework for future nutritional interventions for colon health in pigs.
文摘Whey protein concentrate (WPC 80) and sodium caseinate were hydrolyzed by Protamex to 5%, 10%, 15%, and 20% degree of hydrolysis (DH). WPC 80, sodium caseinate and their hydrolysates were then analyzed, compared and evaluated for their nutritional qualities. Their chemical composition, protein solubility, amino acid composition, essential amino acid index (EAA index), biological value (BV), nutritional index (NI), chemical score, enzymic protein efficiency ratio (E-PER) and in vitro protein digestibility (IVPD) were determined. The results indicated that the enzymatic hydrolysis of WPC 80 and sodium caseinate by Protamex improved the solubility and IVPD of their hydrolysates. WPC 80, sodium caseinate and their hydrolysates were high-quality proteins and had a surplus of essential amino acids compared with the FAO/WHO/UNU (1985) reference standard. The nutritive value of WPC 80 and its hydrolysates was superior to that of sodium caseinate and its hydrolysates as indicated by some nutritional parameters such as the amino acid composition, chemical score, EAA index and predicted BV. However, the E-PER was lower for the WPC hydrolysates as compared to unhydrolyzed WPC 80 but sodium caseinate and its hydrolysates did not differ significantly. The nutritional qualities of WPC 80, sodium caseinate and their hydrolysates were good and make them appropriate for food formulations or as nutritional supplements.
基金The China Postdoctoral Science Foundation(2019M661072)the Basic Research Program of Liaoning Education Department(2017J080)the National Natural Science Foundation of China(31771926)funded this study.
文摘There is no study on food-derived peptide with both anticoagulant and angiotensin I-converting enzyme inhibitory (ACEI) activities yet. In this work, the anticoagulant and ACEI activities of the casein hydrolysates released by pepsin digestion were evaluated for the first time to the best of our knowledge. Results indicated that the casein hydrolysate exhibited potent anticoagulant activity by prolonging the thrombin time (TT) and the activated partial thromboplastin time (APTT). Compared with control samples, at 10 mg/mL, the TT and APTT of casein hydrolysate were 186.0 % ± 6.6 % and 163.5 % ± 7.4 %, respectively. The casein hydrolysate also showed a strong ACEI activity with an IC50 value of 1.775 mg/mL. The components of the bioactive casein hydrolysate were analyzed by nanoscale liquid chromatography quadrupole time-of-flight tandem mass spectrometry (NanoLC-Q-TOF-MS/MS). Total of 115 peptides were identified, among which 34, 9, 55 and 17 peptides were derived from α_(s1-), α_(s2-), β-, and κ-casein, respectively. The results of PeptideRanker and PepSite 2 analysis showed that 6 peptides (FRQFYQL, NENLLRF, NPWDQVKR, PVVVPPFLQ, PVRGPFPIIV, and ARHPHPHLSF) have both ACEI and anticoagulant activities by binding to the active sites of ACE and thrombin. This study indicated that casein is a potential functional food supplement that can be used for medical purposes.
基金Supported by The Merit Review grant (the Department of Veterans Affairs of the United States) and the Grant-in-Aid (the American Heart Association) to Dr. Chai
文摘Casein kinase I is a group of ubiquitous Serine/Threonine kinases that have been implicated in both normal cellular functions and several pathological conditions including Alzheimer's disease and cancer.Recent findings in colon and pancreatic cancer have brought tremendous attention to these molecules as potential therapeutic targets in treatment of digestive cancers.In this review,we summarize up to date what is known about this family of kinases and their involvement in carcinogenesis and other pathological conditions.Our emphasis is on their implications in digestive cancers and their potential for cancer screening and therapy.
文摘The present study here establishes a complete and effective method for isolating,purifying and identifying extracellular and intracellular peptides,and also describes the characters and bioactivities of peptides from fermented casein with Lactobacillus helveticus.Intracellular peptides are much larger in quantity and more complex in composition than extracellular peptides,between which the correlation reveals proteolytic and metabolic mechanisms.In addition,totally 241 different peptide sequences were identified by Nano LC–MS/MS from casein(212)and Lactobacillus helveticus proteins(29).These casein-derived peptides mostly originated from-casein,followed byS1-casein,-casein,andS2-casein,and came from extracell(69)and intracell(143),in which common peptides have a total of 27.Forty-four of the identified peptides were previously described as bioactive,including angiotensinconverting enzyme(ACE)-inhibitory,antioxidant,immunomodulating,antimicrobial,DPP-IV inhibitory,antiamnesic and anticancer effects and so on.Thirteen peptides with the potential of some biological activities are obtained,which were described in previous studies.A total of 47 novel peptides of 5 to 26 amino acids that were not disclosed were obtained.The new sources of natural bioactive peptides may have the very high application value as potential new peptide drugs for treatment human diseases.The product peptide DELQDKIHPF found in both extracell and intracell was quantitatively analyzed using the MRM mode of UPLC-U3Q,23.1 and 9.76 ng/mL,respectively.The quantitative analysis of the potential bioactive peptide may also advance the production of peptide products in the future.
文摘Protein colloidal nanoparticles(NPs)are ubiquitous present in nature and function as building blocks with multiple functions in both food formulations and biological processes.Food scientists are inspired by naturally occurring proteins to induce self-assembly behavior of protein by manipulating environmental parameters,providing opportunities to construct special and expected NPs.Zein and casein,the main proteins derived from corn and milk,are two examples of the most prevalently studied food proteins for nanoarchitectures in recent years.In this article,the compositions,structures,and physicochemical properties of these two proteins and casein derivatives are summarized as well as their interactions and characterizations.Strategies to fabricate zein-sodium caseinate based NPs are critically highlighted and illustrated.Particularly,applications such as encapsulation and delivery of bioactive compounds,producing food packaging for enhanced antioxidative and antimicrobial effects,and stabilization of emulsions to achieve fat replacement.Due to the imperative role of food proteins in diet composition,this review not only provides cutting-edge knowledge for nanoparticle construction but also opens new avenues for efficient utilization and exploitation of food proteins.
基金Supported by the National High Technology Research and Development Program of China("863"Program,No.2013AA102204)National Natural Science Foundation of China(No.31071509)+2 种基金program of Ministry of Science and Technology of China(No.2012YQ090194)Program of Beiyang Young Scholar of Tianjin University(2012)Program of Introducing Talents of Discipline to Universities of China(No.B06006)
文摘The aim of this work was to develop an alginate-casein composite microsphere as a bioaetive vehicle for oral administration of nutrients by a simple extrusion dripping method. Riboflavin was selected as a model drug, and the microencapsulation efficiency was raised to 97.94% after optimizing the preparation conditions by response surface methodology. In vitro release studies showed that riboflavin was released completely from alginate-casein microspheres in simulated intestinal fluids. Meanwhile, the morphology, structure and interaction between alginate and casein were characterized by scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectra.
文摘In this study, we examined the varia- tions between the difference method and the enzyme- hydrolyzed casein method for determining endogenous amino acid loss and the true amino acid digestibility in ducks fed normal protein-containing diets. These methods were compared to the nitrogen-free (N-free) diet method. The difference method was based on soy- bean meal as the only protein source, with the experi- mental diets containing crude protein levels at 15% and 20%. The enzyme-hydrolyzed casein method was based on enzyme-hydrolyzed casein meal as the pro- tein source, with the experimental diet containing a crude protein level of 17.5%. The N-free diet was prepared with starches and paper fibers. In each meth- od,64 Tianfu meat drakes (7-weeks-old) with an av- erage body weight of 2.77±0.16 kg were used and divided into four groups, and fed four different diets. Each group contained four replicates of four drakes and they were force fed trial diets according to the Sirbald method for detecting their apparent amino aciddigestibility, endogenous amino acid loss and true a- mino acid digestibility. The results demonstrated that using the difference, enzyme-hydrolyzed casein and N-free diet methods, endogenous amino acid losses were 0. 9946,1. 2243 and 0. 9297 mg/g dry matter in- take ( DMI), respectively. The true amino acid digest- ibility measured by the difference method was 88.93 %±4.43 %. Using the enzyme-hydrolyzed ca- sein method with two dietary crude protein levels of 15% and 20%, the digestibility was 91.15%±4.33% and 91.97%±4. 16%, respectively, and by the N-free diet methods with two dietary crude protein levels of 15% and 20% ,it was 88.55%±4.29% and 88.82 %±4.61%, respectively. The results suggested that when the dietary protein level was 15% to 20 %, the true amino acid digestibility and endogenous ami- no acid loss as determined by the difference method was more accurate than the values determined by the enzyme-hydrolyzed casein method.
基金supported by an earmark fund for the National Key Basic Research Program of China(2011CB100805)
文摘Protein phosphorylation is an important post-translational modification that regulates milk protein structure and function.The objective of this study was to analyze the presence of phosphorylated casein.Bovine milk proteins were first separated by SDS polyacrylamide gel electrophoresis.After in gels digestion and extraction,phosphorylated peptides were enriched by titanium dioxide and identified by ultra performance liquid chromatography coupled with nano electrospray ionization tandem mass spectrometry.This method ensured the identification of 20 phosphorylated peptides,including 7 phosphorylated forms of α_s1-casein,8 α_s2-casein,and 5 β-casein.Eight phosphorylated sites derived from 3 α_s1-caseins,3 α_s2-caseins,and 2 β-caseins were also identified,and localized on residues Ser^61,Ser^63 and Ser^130 in α_s1-casein;Thr^145,Ser^146 and Ser^158 in α_s2-casein;and Ser^50 and Thr^56 in β-casein.These findings provide valuable information for investigating casein phosphorylation of the bovine milk.