The basic requirement of mechanical construction of cast-in-situ concrete is that it could not only conduct quality qualification and safety production, but also achieve most economic benefits with less investment und...The basic requirement of mechanical construction of cast-in-situ concrete is that it could not only conduct quality qualification and safety production, but also achieve most economic benefits with less investment under the condition to meet the needs of project duration. Therefore, the selection of construction machinery scheme plays an important role. However, in the actual construction, it is usually that operators rely on their own experience and field conditions to determine the mechanics. Such a method is subjective and arbitrary, and it is not conducive to make the construction rationally. Considering the above reasons, an improved weight coefficient method was used to establish an estimation model to estimate the construction machinery scheme of cast-in-situ concrete, so as to make the procedure much rational.展开更多
Cantilever casting concrete arch bridge using form traveller has a broad application prospect.However,it is difficult to obtain reasonable initial cable force in construction stage.In this study,stress balance and inf...Cantilever casting concrete arch bridge using form traveller has a broad application prospect.However,it is difficult to obtain reasonable initial cable force in construction stage.In this study,stress balance and influence matrix methods were developed to determine the initial cable force of cantilever casting concrete arch bridge.The stress balance equation and influence matrix of arch rib critical section were established,and the buckle cable force range was determined by the allowable stress of arch rib critical section.Then a group of buckle cable forces were selected and substituted into the stress balance equation,and the reasonable initial buckle cable force was determined through iteration.Based on the principle of force balance,the initial anchor cable force was determined.In an engineering application example,it is shown that the stress balance and influence matrix methods for the determination of initial cable force are feasible and reliable.The initial cable forces of arch rib segments only need to be adjusted once in the corresponding construction process,which improves the working efficiency and reduces the construction risk.It is found that the methods have great advantages for determining initial cable force in cantilever casting construction process of concrete arch bridge.展开更多
Wall cracking and mold expanding due to concrete vibrations can be effectively solved through the application of precast normal-concrete composite shear walls infilled with self-compacting concrete(SCC). However, the ...Wall cracking and mold expanding due to concrete vibrations can be effectively solved through the application of precast normal-concrete composite shear walls infilled with self-compacting concrete(SCC). However, the high liquidity of SCC will induce a higher lateral pressure. Therefore, it is important to obtain a better understanding of the template lateral pressure. In this work, nine composite shear walls were experimentally investigated, focusing on the effects of two parameters, i.e., the casting rate and the section width of the formwork. The time-varying pressure was monitored during the SCC pouring. It is found that the increase of casting rate from 3.2 m/h to 10.3 m/h resulted in a higher maximum lateral pressure. The higher casting rate led to a longer time required for the lateral pressure to drop to a steady value. There was no correlation between the section width and the rate of decrease in the initial formwork pressure and stable value. Based on the test results, a formula considering the effect of casting speed for the calculation of SCC formwork pressure was established to fill the gap in the current standards and for engineering applications.展开更多
Similar to free-standing pile groups, piled raft foundations are conventionally designed in which the piles carry the total load of structure and the raft bearing capacity is not taken into account. Numerous studies i...Similar to free-standing pile groups, piled raft foundations are conventionally designed in which the piles carry the total load of structure and the raft bearing capacity is not taken into account. Numerous studies indicated that this method is too conservative. Only when the pile cap is elevated from the ground level,the raft bearing contribution can be neglected. In a piled raft foundation, pileesoileraft interaction is complicated. Although several numerical studies have been carried out to analyze the behaviors of piled raft foundations, very few experimental studies are reported in the literature. The available laboratory studies mainly focused on steel piles. The present study aims to compare the behaviors of piled raft foundations with free-standing pile groups in sand, using laboratory physical models. Cast-in-place concrete piles and concrete raft are used for the tests. The tests are conducted on single pile, single pile in pile group, unpiled raft, free-standing pile group and piled raft foundation. We examine the effects of the number of piles, the pile installation method and the interaction between different components of foundation. The results indicate that the ultimate bearing capacity of the piled raft foundation is considerably higher than that of the free-standing pile group with the same number of piles. With installation of the single pile in the group, the pile bearing capacity and stiffness increase. Installation of the piles beneath the raft decreases the bearing capacity of the raft. When the raft bearing capacity is not included in the design process, the allowable bearing capacity of the piled raft is underestimated by more than 200%. This deviation intensifies with increasing spacing of the piles.展开更多
The hydration characteristics of pre-cast concrete considering the effects of effective initial steam-curing and water-curing duration were measured and analyzed with XRD, TG, X-ray CT, SEM-BSE and MIP techniques. The...The hydration characteristics of pre-cast concrete considering the effects of effective initial steam-curing and water-curing duration were measured and analyzed with XRD, TG, X-ray CT, SEM-BSE and MIP techniques. The results show that the effective initial steam-curing duration for pre-cast concrete with lower water-binder ratio was 10 14 h at 50 °C and the initial water-curing duration was 7 14 d. And the hydration evolution of cement, fly ash and slag in pre-cast concrete was obtained respectively by combining the hydrochlorides and EDTA selecting dissolution methods, based on which the contents of hydrated and anhydrate in concrete were calculated and the corresponding dynamic capillary porosity was also determined. Moreover, the comparison between calculated results and experimental ones indicates that the proposed evolution models of microscopic characteristics corresponding to hydration kinetics of cemented materials could be adopted to predict the developing trend of capillary porosity and hydration-products content in pre-cast concrete with fly ash and slag under certain curing conditions.展开更多
The compositions, technical principles and construction equipments of a new piling method used for ground improvement plastic tube cast-in-place concrete pile were introduced. The results from static load tests on sin...The compositions, technical principles and construction equipments of a new piling method used for ground improvement plastic tube cast-in-place concrete pile were introduced. The results from static load tests on single piles with different forms of pile shoes and on their composite foundations were analyzed. The distribution patterns of axial force, shaft friction and toe resistance were studied based on the measurements taken from buried strain gauges. From the point of engineering application, the pile has merits in convenient quality control, high bearing capacity and reliable quality, showing higher reasonability, advancement and suitability than other ground improvement methods. The pile can be adopted properly to take place of ordinary ground improvement method, achieving greater economical and social benefits.展开更多
An aluminum-based in-situ composites reinforced with Mg2Si and Si particles were produced by centrifugal casting A1-20Si-5Mg alloy. The microstructure of the composites was examined, and the effects of temperature on ...An aluminum-based in-situ composites reinforced with Mg2Si and Si particles were produced by centrifugal casting A1-20Si-5Mg alloy. The microstructure of the composites was examined, and the effects of temperature on fracture behavior of the composite were investigated. The results show that the average fraction of primary Si and Mg2Si particles in the composites is as high as 38%, and ultimate tensile strengths (UTS) of the composites first increase then decrease with the increase of test temperature. Microstructures of broken specimens show that both the particle fracture and the interface debonding affect the fracture behavior of the composites, and the interface debonding becomes the dominant fracture mechanism with increasing test temperature. Comparative results indicate that rich particles in the composites and excellent interface strength play great roles in enhancing tensile property by preventing the movement of dislocations.展开更多
In-situ observation of porosity formation during directional solidification of two Al-Si alloys (7%Si and 13%Si) was made by using of micro-focus X-ray imaging.In both alloys,small spherical pores initially form in th...In-situ observation of porosity formation during directional solidification of two Al-Si alloys (7%Si and 13%Si) was made by using of micro-focus X-ray imaging.In both alloys,small spherical pores initially form in the melt far away from the eutectic solid-liquid (S/L) interface and then grow and coagulate during solidification.Some pores can float and escape from the solidifying melt front at a relatively high velocity.At the end of solidification,the remaining pores maintain spherical morphology in the near eutectic alloy but become irregular in the hypoeutectic alloy.This is attributed to different solidification modes and aluminum dendrite interactions between the two alloys.The mechanism of the porosity formation is briefly discussed in this paper.展开更多
The effect of concrete creep on the pre-camber of a long-span pre-stressed concrete continuous rigid-frame bridge constructed by cantilever casting method was investigated.The difference of creep coefficients calculat...The effect of concrete creep on the pre-camber of a long-span pre-stressed concrete continuous rigid-frame bridge constructed by cantilever casting method was investigated.The difference of creep coefficients calculated with two Chinese codes was discussed.Based on the calculations,the pre-camber of a pre-stressed concrete continuous rigid-frame box bridge was computed for construction control purpose.The results show that the short-term creep coefficient and long-term creep coefficient calculated with the CC-1985 are larger than those calculated with the CC-2004,while the medium-term creep coefficient calculated with the CC-1985 is smaller than that calculated with the CC-2004.The difference of creep deformation calculated with these two codes is small,and the influences of concrete creep on the pre-camber for most of the segments are negligible.The deflections and stresses of the box girder measured during the construction stages agree very well with the predictions.展开更多
This research presents an attempt of using wastewater from stone slurry waste in production of concrete. Several concrete mixtures were prepared by using tap water and stone slurry wastewater at different w/c ratios a...This research presents an attempt of using wastewater from stone slurry waste in production of concrete. Several concrete mixtures were prepared by using tap water and stone slurry wastewater at different w/c ratios and replacement ratios of wastewater in substitute of tap water. Testing of concrete samples included slump, compressive strength, flexural strength and absorption. Test results showed reduction of workability (slump) at all w/c ratios and replacement ratios. The maximum compressive strength didn’t change significantly at w/c = 0.7 and 28 days of curing compared with compressive strength at w/c = 0.5 and 0.6. From linear regression of the experimental results, the results showed that at 20% replacement ratio of tap water with wastewater, the reduction in compressive strength was insignificant (not greater than 10% to 15%). Test results showed varying reduction of absorption at different w/c and replacement ratios, up to 62% at w/c = 0.5.展开更多
Concrete structures may suffer considerable restraint stresses during their hardening period. This is caused by several deformation impacts, especially temperature field changings due to hydration heat and volume chan...Concrete structures may suffer considerable restraint stresses during their hardening period. This is caused by several deformation impacts, especially temperature field changings due to hydration heat and volume changes due to autogenous shrinkage. Mainly affected are massive concrete members, but also the application of new concrete types or the erection of outstanding constructions requires further investigations in this context. 3D-FEM analyses of hydration heat induced temperature development in combination with the well known shrinkage give sufficient results for the deformation impact. The according elastic restraint stresses can be determined with consideration of the concrete’s rising elastic modulus and the restraint degree of the system. But due to duration of the heat flow process, the height of restraint stresses is strongly dependent from the viscoelasticity of the concrete. The viscoelastic effects consist of many components constituted by changing material properties influencing themselves. In practice, different simplified approaches are available for considering this in calculations. Their implementation in time step analyses is not generally admitted and requires expertise. In contrast, present research develops material models needing specific input parameters for every use case. This contribution focuses on a practicable approach considering the superposition of the viscoelastic behaviour of every stress increment in time step FEM analysis. The differentiation between the pure viscoelastic material behaviour (as it is given in the codes for idealistic conditions like creep or relaxation) and the according viscoelastic system response (addicted to the systems variable restraint degree) allows the transfer of this model into practice. As one application example of this approach, the compatibility check and the FEM-based recalculation of the monitoring program of a massive power plant slab will be presented.展开更多
Heat transfer behaviors of AZ80?1%Y alloy during low frequency electromagnetic casting (LFEC) and direct chilling casting were studied by in-situ temperature measurement. The results demonstrated that the low frequenc...Heat transfer behaviors of AZ80?1%Y alloy during low frequency electromagnetic casting (LFEC) and direct chilling casting were studied by in-situ temperature measurement. The results demonstrated that the low frequency electromagnetic field (EM) caused forced convection in the melt during LFEC. The forced convection led to uniform solidification velocity and temperature field. EM frequency, excitation current intensity and casting temperature could control the heat transfer behavior. The forced convection could improve the microstructure and degrade the difference in microstructure between the edge and center of billet. Appropriate parameters of low frequency EM for casting Mg alloy are 20 Hz of frequency and 60 A of electric current intensity.展开更多
Crack initiation, propagation and microfracture processes of austempered high silicon cast steel have been investigated by using an in-situ tensile stage installed inside a scanning electron microscope chamber. It is ...Crack initiation, propagation and microfracture processes of austempered high silicon cast steel have been investigated by using an in-situ tensile stage installed inside a scanning electron microscope chamber. It is revealed that micro cracks always nucleate at the yielding near imperfections and the boundary of matrix-inclusions due to the stress concentration. There are four types of crack propagations in the matrix: crack propagates along the boundary of two clusters of bainitic ferrite; crack propagates along the boundary of ferrite-austenite in bainitic ferrite laths; crack propagates into bainitic ferrite laths; crack nucleates and propagates in the high carbon brittle plate shape martensite which is transformed from some blocky retained austenite due to plastic deformation. Based on the observation and analysis of microfracture processes, a schematic diagram of the crack nucleation and propagation process of high silicon cast steel is proposed.展开更多
By applying electromagnetic field to a system consisting of tungsten wires and grey cast iron melt,the grey cast iron matrix composite reinforced by either in-situ WC particles or the combination ofin-situ WC particle...By applying electromagnetic field to a system consisting of tungsten wires and grey cast iron melt,the grey cast iron matrix composite reinforced by either in-situ WC particles or the combination ofin-situ WC particles and the residual tungsten wire was obtained.By means of differential thermal analysis(DTA),the pouring temperature ofiron melt was determined at 1,573 K.The microstructures of the composites were analyzed by using of X-ray diffraction(XRD),scanning electron microscopy(SEM) equipped with an energy dispersive spectrum(EDS) and pin-on-disc abrasive wear test.The obtained results indicated that,with the enhancing frequency of electromagnetic field,the amount ofin-situ WC particles gradually increases,leading to continuous decrease of the residual tungsten wires.When the electromagnetic field frequency was up to 4 kHz,tungsten wires reacted completely with carbon atoms in grey cast iron melt,forming WC particals.The electromagnetic field appeared to accelerate the elemental diffusion in the melt,to help relatively quick formation of a series of small FeW-C ternary zones and to improve the kinetic condition ofin-situ WC fabrication.As compared with the composite prepared without the electromagnetic field,the composite fabricated at 4 kHz presented good wear resistance.展开更多
This study summarizes some serious disharmonious problems that ubiquitously exist in the casting residue recycling of steel plants, such as large land occupation, low operational efficiency, hidden hazards, huge resou...This study summarizes some serious disharmonious problems that ubiquitously exist in the casting residue recycling of steel plants, such as large land occupation, low operational efficiency, hidden hazards, huge resource and energy consumption, serious environmental pollution and so on. It analyzes the necessity of the on-line innovation and recycling based on the present situation of Baosteel. It states the innovation of the new grid technology and the achievements of its integrated application at Baosteel. It also summarizes and elaborates some green technology features of the treatment and the utilization of the Baosteel casting residue and the new grid technology, such as safety,energy-saving and environmental protection. In addition,it lays out the prospects for the development and application of the technology.展开更多
The tensile equipment of the advanced confocal scanning laser microscope (CSLM) was used to research the high temperature mechanical properties of low carbon silicon-bearing steel by twin-roll strip casting. The res...The tensile equipment of the advanced confocal scanning laser microscope (CSLM) was used to research the high temperature mechanical properties of low carbon silicon-bearing steel by twin-roll strip casting. The results show that, at the strain rate of 0. 000 5 s ^-1, the strip clearly shows signs of brittleness at around 600 ℃ and its plasticity falls considerably between 750 ℃ and 600 ℃. This is because during the transformation from austenite to ferrite, the low strength ferrite at the austenite grain boundaries greatly reduces the steel' s high temperature plasticity. The subsequent strip coiling process should be controlled at less than the brittle temperature of approximately 600 ℃, so cracks at the coiling stage can be prevented.展开更多
文摘The basic requirement of mechanical construction of cast-in-situ concrete is that it could not only conduct quality qualification and safety production, but also achieve most economic benefits with less investment under the condition to meet the needs of project duration. Therefore, the selection of construction machinery scheme plays an important role. However, in the actual construction, it is usually that operators rely on their own experience and field conditions to determine the mechanics. Such a method is subjective and arbitrary, and it is not conducive to make the construction rationally. Considering the above reasons, an improved weight coefficient method was used to establish an estimation model to estimate the construction machinery scheme of cast-in-situ concrete, so as to make the procedure much rational.
基金Projects(51478049,51778068)supported by the National Natural Science Foundation of ChinaProject(14JJ2075,2019JJ40301)supported by the Hunan Natural Science Foundation of China+1 种基金Project(17A010)supported by the Scientific Research Fund of Hunan Provincial Education Department of ChinaProject(2017GK4034)supported by the Major Technological Achievements Transformation Program of Hunan Strategic Emerging Industries of China
文摘Cantilever casting concrete arch bridge using form traveller has a broad application prospect.However,it is difficult to obtain reasonable initial cable force in construction stage.In this study,stress balance and influence matrix methods were developed to determine the initial cable force of cantilever casting concrete arch bridge.The stress balance equation and influence matrix of arch rib critical section were established,and the buckle cable force range was determined by the allowable stress of arch rib critical section.Then a group of buckle cable forces were selected and substituted into the stress balance equation,and the reasonable initial buckle cable force was determined through iteration.Based on the principle of force balance,the initial anchor cable force was determined.In an engineering application example,it is shown that the stress balance and influence matrix methods for the determination of initial cable force are feasible and reliable.The initial cable forces of arch rib segments only need to be adjusted once in the corresponding construction process,which improves the working efficiency and reduces the construction risk.It is found that the methods have great advantages for determining initial cable force in cantilever casting construction process of concrete arch bridge.
基金Funded by the National Natural Science Foundation of China(No.51178218)the Cooperation Project of Yangzhou Science and Technology Bureau(YZ2016267)
文摘Wall cracking and mold expanding due to concrete vibrations can be effectively solved through the application of precast normal-concrete composite shear walls infilled with self-compacting concrete(SCC). However, the high liquidity of SCC will induce a higher lateral pressure. Therefore, it is important to obtain a better understanding of the template lateral pressure. In this work, nine composite shear walls were experimentally investigated, focusing on the effects of two parameters, i.e., the casting rate and the section width of the formwork. The time-varying pressure was monitored during the SCC pouring. It is found that the increase of casting rate from 3.2 m/h to 10.3 m/h resulted in a higher maximum lateral pressure. The higher casting rate led to a longer time required for the lateral pressure to drop to a steady value. There was no correlation between the section width and the rate of decrease in the initial formwork pressure and stable value. Based on the test results, a formula considering the effect of casting speed for the calculation of SCC formwork pressure was established to fill the gap in the current standards and for engineering applications.
文摘Similar to free-standing pile groups, piled raft foundations are conventionally designed in which the piles carry the total load of structure and the raft bearing capacity is not taken into account. Numerous studies indicated that this method is too conservative. Only when the pile cap is elevated from the ground level,the raft bearing contribution can be neglected. In a piled raft foundation, pileesoileraft interaction is complicated. Although several numerical studies have been carried out to analyze the behaviors of piled raft foundations, very few experimental studies are reported in the literature. The available laboratory studies mainly focused on steel piles. The present study aims to compare the behaviors of piled raft foundations with free-standing pile groups in sand, using laboratory physical models. Cast-in-place concrete piles and concrete raft are used for the tests. The tests are conducted on single pile, single pile in pile group, unpiled raft, free-standing pile group and piled raft foundation. We examine the effects of the number of piles, the pile installation method and the interaction between different components of foundation. The results indicate that the ultimate bearing capacity of the piled raft foundation is considerably higher than that of the free-standing pile group with the same number of piles. With installation of the single pile in the group, the pile bearing capacity and stiffness increase. Installation of the piles beneath the raft decreases the bearing capacity of the raft. When the raft bearing capacity is not included in the design process, the allowable bearing capacity of the piled raft is underestimated by more than 200%. This deviation intensifies with increasing spacing of the piles.
基金Project(51308308) supported by the National Natural Science Foundation of ChinaProject(LQ12E08002) supported by the Natural Science Foundation of Zhejiang Province,China+3 种基金Project(2012A610159) supported by the Natural Science Foundation of Ningbo City,ChinaProjects(XKL11D2081,zj1113) Subject Program of Ningbo University,ChinaProject(2010R50034) supported by the Key Science and Technology Innovation Team Program of Zhejiang Province,ChinaProject supported by K.C Wong Magna Fund in Ningbo University
文摘The hydration characteristics of pre-cast concrete considering the effects of effective initial steam-curing and water-curing duration were measured and analyzed with XRD, TG, X-ray CT, SEM-BSE and MIP techniques. The results show that the effective initial steam-curing duration for pre-cast concrete with lower water-binder ratio was 10 14 h at 50 °C and the initial water-curing duration was 7 14 d. And the hydration evolution of cement, fly ash and slag in pre-cast concrete was obtained respectively by combining the hydrochlorides and EDTA selecting dissolution methods, based on which the contents of hydrated and anhydrate in concrete were calculated and the corresponding dynamic capillary porosity was also determined. Moreover, the comparison between calculated results and experimental ones indicates that the proposed evolution models of microscopic characteristics corresponding to hydration kinetics of cemented materials could be adopted to predict the developing trend of capillary porosity and hydration-products content in pre-cast concrete with fly ash and slag under certain curing conditions.
基金Project (2007H03) supported by Communications Department of Zhejiang Province
文摘The compositions, technical principles and construction equipments of a new piling method used for ground improvement plastic tube cast-in-place concrete pile were introduced. The results from static load tests on single piles with different forms of pile shoes and on their composite foundations were analyzed. The distribution patterns of axial force, shaft friction and toe resistance were studied based on the measurements taken from buried strain gauges. From the point of engineering application, the pile has merits in convenient quality control, high bearing capacity and reliable quality, showing higher reasonability, advancement and suitability than other ground improvement methods. The pile can be adopted properly to take place of ordinary ground improvement method, achieving greater economical and social benefits.
基金Project(51174244) supported by the National Natural Science Foundation of ChinaProject(CDJZR11130005) supported by the Fundamental Research Funds for the Central Universities,China
文摘An aluminum-based in-situ composites reinforced with Mg2Si and Si particles were produced by centrifugal casting A1-20Si-5Mg alloy. The microstructure of the composites was examined, and the effects of temperature on fracture behavior of the composite were investigated. The results show that the average fraction of primary Si and Mg2Si particles in the composites is as high as 38%, and ultimate tensile strengths (UTS) of the composites first increase then decrease with the increase of test temperature. Microstructures of broken specimens show that both the particle fracture and the interface debonding affect the fracture behavior of the composites, and the interface debonding becomes the dominant fracture mechanism with increasing test temperature. Comparative results indicate that rich particles in the composites and excellent interface strength play great roles in enhancing tensile property by preventing the movement of dislocations.
基金funded by the Natural Science Foundation of China under grant No:50771031GM Research Funding under contract No:GM-RP-07-211
文摘In-situ observation of porosity formation during directional solidification of two Al-Si alloys (7%Si and 13%Si) was made by using of micro-focus X-ray imaging.In both alloys,small spherical pores initially form in the melt far away from the eutectic solid-liquid (S/L) interface and then grow and coagulate during solidification.Some pores can float and escape from the solidifying melt front at a relatively high velocity.At the end of solidification,the remaining pores maintain spherical morphology in the near eutectic alloy but become irregular in the hypoeutectic alloy.This is attributed to different solidification modes and aluminum dendrite interactions between the two alloys.The mechanism of the porosity formation is briefly discussed in this paper.
基金Project(2008047B) supported by the Funds for Youth of Control South University of Forestry and Technology
文摘The effect of concrete creep on the pre-camber of a long-span pre-stressed concrete continuous rigid-frame bridge constructed by cantilever casting method was investigated.The difference of creep coefficients calculated with two Chinese codes was discussed.Based on the calculations,the pre-camber of a pre-stressed concrete continuous rigid-frame box bridge was computed for construction control purpose.The results show that the short-term creep coefficient and long-term creep coefficient calculated with the CC-1985 are larger than those calculated with the CC-2004,while the medium-term creep coefficient calculated with the CC-1985 is smaller than that calculated with the CC-2004.The difference of creep deformation calculated with these two codes is small,and the influences of concrete creep on the pre-camber for most of the segments are negligible.The deflections and stresses of the box girder measured during the construction stages agree very well with the predictions.
文摘This research presents an attempt of using wastewater from stone slurry waste in production of concrete. Several concrete mixtures were prepared by using tap water and stone slurry wastewater at different w/c ratios and replacement ratios of wastewater in substitute of tap water. Testing of concrete samples included slump, compressive strength, flexural strength and absorption. Test results showed reduction of workability (slump) at all w/c ratios and replacement ratios. The maximum compressive strength didn’t change significantly at w/c = 0.7 and 28 days of curing compared with compressive strength at w/c = 0.5 and 0.6. From linear regression of the experimental results, the results showed that at 20% replacement ratio of tap water with wastewater, the reduction in compressive strength was insignificant (not greater than 10% to 15%). Test results showed varying reduction of absorption at different w/c and replacement ratios, up to 62% at w/c = 0.5.
文摘Concrete structures may suffer considerable restraint stresses during their hardening period. This is caused by several deformation impacts, especially temperature field changings due to hydration heat and volume changes due to autogenous shrinkage. Mainly affected are massive concrete members, but also the application of new concrete types or the erection of outstanding constructions requires further investigations in this context. 3D-FEM analyses of hydration heat induced temperature development in combination with the well known shrinkage give sufficient results for the deformation impact. The according elastic restraint stresses can be determined with consideration of the concrete’s rising elastic modulus and the restraint degree of the system. But due to duration of the heat flow process, the height of restraint stresses is strongly dependent from the viscoelasticity of the concrete. The viscoelastic effects consist of many components constituted by changing material properties influencing themselves. In practice, different simplified approaches are available for considering this in calculations. Their implementation in time step analyses is not generally admitted and requires expertise. In contrast, present research develops material models needing specific input parameters for every use case. This contribution focuses on a practicable approach considering the superposition of the viscoelastic behaviour of every stress increment in time step FEM analysis. The differentiation between the pure viscoelastic material behaviour (as it is given in the codes for idealistic conditions like creep or relaxation) and the according viscoelastic system response (addicted to the systems variable restraint degree) allows the transfer of this model into practice. As one application example of this approach, the compatibility check and the FEM-based recalculation of the monitoring program of a massive power plant slab will be presented.
基金Project(2013CB632203)supported by the National Basic Research and Development Program of ChinaProject(2014028027)supported by the Liaoning Provincial Natural Science Foundation,China
文摘Heat transfer behaviors of AZ80?1%Y alloy during low frequency electromagnetic casting (LFEC) and direct chilling casting were studied by in-situ temperature measurement. The results demonstrated that the low frequency electromagnetic field (EM) caused forced convection in the melt during LFEC. The forced convection led to uniform solidification velocity and temperature field. EM frequency, excitation current intensity and casting temperature could control the heat transfer behavior. The forced convection could improve the microstructure and degrade the difference in microstructure between the edge and center of billet. Appropriate parameters of low frequency EM for casting Mg alloy are 20 Hz of frequency and 60 A of electric current intensity.
基金supported by Swedish Institute of Sweden (No. 200/01954/2007/China Bilateral programme)
文摘Crack initiation, propagation and microfracture processes of austempered high silicon cast steel have been investigated by using an in-situ tensile stage installed inside a scanning electron microscope chamber. It is revealed that micro cracks always nucleate at the yielding near imperfections and the boundary of matrix-inclusions due to the stress concentration. There are four types of crack propagations in the matrix: crack propagates along the boundary of two clusters of bainitic ferrite; crack propagates along the boundary of ferrite-austenite in bainitic ferrite laths; crack propagates into bainitic ferrite laths; crack nucleates and propagates in the high carbon brittle plate shape martensite which is transformed from some blocky retained austenite due to plastic deformation. Based on the observation and analysis of microfracture processes, a schematic diagram of the crack nucleation and propagation process of high silicon cast steel is proposed.
基金supported by the fund for Key Laboratory of Nanotechnology of Shaanxi Province (Grant No.09JS032)
文摘By applying electromagnetic field to a system consisting of tungsten wires and grey cast iron melt,the grey cast iron matrix composite reinforced by either in-situ WC particles or the combination ofin-situ WC particles and the residual tungsten wire was obtained.By means of differential thermal analysis(DTA),the pouring temperature ofiron melt was determined at 1,573 K.The microstructures of the composites were analyzed by using of X-ray diffraction(XRD),scanning electron microscopy(SEM) equipped with an energy dispersive spectrum(EDS) and pin-on-disc abrasive wear test.The obtained results indicated that,with the enhancing frequency of electromagnetic field,the amount ofin-situ WC particles gradually increases,leading to continuous decrease of the residual tungsten wires.When the electromagnetic field frequency was up to 4 kHz,tungsten wires reacted completely with carbon atoms in grey cast iron melt,forming WC particals.The electromagnetic field appeared to accelerate the elemental diffusion in the melt,to help relatively quick formation of a series of small FeW-C ternary zones and to improve the kinetic condition ofin-situ WC fabrication.As compared with the composite prepared without the electromagnetic field,the composite fabricated at 4 kHz presented good wear resistance.
文摘This study summarizes some serious disharmonious problems that ubiquitously exist in the casting residue recycling of steel plants, such as large land occupation, low operational efficiency, hidden hazards, huge resource and energy consumption, serious environmental pollution and so on. It analyzes the necessity of the on-line innovation and recycling based on the present situation of Baosteel. It states the innovation of the new grid technology and the achievements of its integrated application at Baosteel. It also summarizes and elaborates some green technology features of the treatment and the utilization of the Baosteel casting residue and the new grid technology, such as safety,energy-saving and environmental protection. In addition,it lays out the prospects for the development and application of the technology.
文摘The tensile equipment of the advanced confocal scanning laser microscope (CSLM) was used to research the high temperature mechanical properties of low carbon silicon-bearing steel by twin-roll strip casting. The results show that, at the strain rate of 0. 000 5 s ^-1, the strip clearly shows signs of brittleness at around 600 ℃ and its plasticity falls considerably between 750 ℃ and 600 ℃. This is because during the transformation from austenite to ferrite, the low strength ferrite at the austenite grain boundaries greatly reduces the steel' s high temperature plasticity. The subsequent strip coiling process should be controlled at less than the brittle temperature of approximately 600 ℃, so cracks at the coiling stage can be prevented.