With the aid of multi-agent based modeling approach to complex systems, the hierarchy simulation models of carrier-based aircraft catapult launch are developed. Ocean, carrier, aircraft, and atmosphere are treated as ...With the aid of multi-agent based modeling approach to complex systems, the hierarchy simulation models of carrier-based aircraft catapult launch are developed. Ocean, carrier, aircraft, and atmosphere are treated as aggregation agents, the detailed components like catapult, landing gears, and disturbances are considered as meta-agents, which belong to their aggregation agent. Thus, the model with two layers is formed i.e. the aggregation agent layer and the meta-agent layer. The information communication among all agents is described. The meta-agents within one aggregation agent communicate with each other directly by information sharing, but the meta-agents, which belong to different aggregation agents exchange their information through the aggregation layer first, and then perceive it from the sharing environment, that is the aggregation agent. Thus, not only the hierarchy model is built, but also the environment perceived by each agent is specified. Meanwhile, the problem of balancing the independency of agent and the resource consumption brought by real-time communication within multi-agent system (MAS) is resolved. Each agent involved in carrier-based aircraft catapult launch is depicted, with considering the interaction within disturbed atmospheric environment and multiple motion bodies including carrier, aircraft, and landing gears. The models of reactive agents among them are derived based on tensors, and the perceived messages and inner frameworks of each agent are characterized. Finally, some results of a simulation instance are given. The simulation and modeling of dynamic system based on multi-agent system is of benefit to express physical concepts and logical hierarchy clearly and precisely. The system model can easily draw in kinds of other agents to achieve a precise simulation of more complex system. This modeling technique makes the complex integral dynamic equations of multibodies decompose into parallel operations of single agent, and it is convenient to expand, maintain, and reuse the program codes.展开更多
为解决遥感相机在运动过程中的抖动造成的图像位置偏移问题,提出了一种实时图像校正算法。由于在FPGA中采用HDL进行算法设计难度大、开发周期长,故设计中采用了C语言进行算法设计,然后借助Calypto公司的Catapult C Synthesis工具将抽象...为解决遥感相机在运动过程中的抖动造成的图像位置偏移问题,提出了一种实时图像校正算法。由于在FPGA中采用HDL进行算法设计难度大、开发周期长,故设计中采用了C语言进行算法设计,然后借助Calypto公司的Catapult C Synthesis工具将抽象的C设计转换成硬件RTL代码。在Catapult C Synthesis中对设计的算法进行了C/C++、RLT协同仿真测试,并在Xilinx XC5VLX110T型FPGA上进行了验证。仿真测试及硬件验证结果表明,采用Catapult C Synthesis设计的算法在时序、性能方面均满足设计要求,能够对偏移的图像进行实时校正。展开更多
In order to enhance the safety of the catapult launch of the carrier-based aircraft,the catapult launch multibody dynamic model is established aiming at the problem of off center catapult launch.The whole catapult pro...In order to enhance the safety of the catapult launch of the carrier-based aircraft,the catapult launch multibody dynamic model is established aiming at the problem of off center catapult launch.The whole catapult process including four stages which are buffering,tensioning,releasing and taxiing is taken into consideration and the body dynamics of the off-center catapult during each stage is analyzed.The catapult launch dynamic differences between the conditions only considering taxiing and that considering four stages are compared,and the effects of the different initial off center distances considering four stages on the attitude,landing gear load and acceleration of the carrier based aircraft during catapult launch are discussed.The results show that only considering taxiing may underestimate the dynamics of the carrier-based aircraft substantially.When taking four stages into consideration,the initial off-center distance has small influence on the aircraft dynamic characteristics during buffering and tensioning but has larger influence on that during releasing and taxiing.The increase of the off-center distance will cause the enhancement of the aircraft rolling and yawing,which may lead to the load difference between the left and right landing gears and the increase of the aircraft lateral acceleration.The establishment and simulation of the catapult launch multi body dynamic model founded on buffering,tensioning,releasing and taxiing provide reference for the carrier-based aircraft design and analysis of the catapult launch dynamics.展开更多
The architecture strategy of the Unmanned Aerial Vehicle(UAV)pneumatic launch system should continue to evolve to adapt to complex and variable operating environments.Architecture representation,decomposition perspect...The architecture strategy of the Unmanned Aerial Vehicle(UAV)pneumatic launch system should continue to evolve to adapt to complex and variable operating environments.Architecture representation,decomposition perspective,and cluster analysis play a vital role in the early phase of system architecture development.In order for the system to emerge anticipated and desirable intrinsic functional properties,an architecture decomposition method based on the ObjectProcess Methodology(OPM)and Design Structure Matrix(DSM)is put forward in this paper.The OPM is proposed to model the UAV launch process formally,and the matrix representation of the architecture of the pneumatic launch system is established.After the extension of the definition and operations of DSM,with the Idicula-Gutierrez-Thebeau Algorithm plus(IGTA+)clustering algorithm,the transformation of the pneumatic launch system architecture from process decomposition to function decomposition is demonstrated in this paper.The analysis shows that the architecture decomposition of the pneumatic launch system meets the functional requirements of stakeholders.展开更多
To efficiently and fully utilize aircraft carrier resources,an optimization model is presented to deal with parameter matching between aircraft and carrier in the process of aircraft catapult launch.Based on carrier a...To efficiently and fully utilize aircraft carrier resources,an optimization model is presented to deal with parameter matching between aircraft and carrier in the process of aircraft catapult launch.Based on carrier aircraft longitudinal dynamic equations and theorem of kinetic energy in catapult launch course,the work characteristics of different forces are learned and a theory model of parameter matching is deduced.In view of the uncertainty of the model parameters of the theory model and the low matching accuracy of the approximate model,an optimization model of parameter matching is introduced in line with the structure of theory model and the approximate model and is generated by the proposed immune genetic algorithm.Compared with the original genetic algorithm and immune algorithm,the proposed algorithm has better calculation accuracy and convergence.The calculation results show that the optimization model occupies certain application value of engineering estimation from the comparison with the relevant literature data and has higher precision than the approximate models.The validity of the proposed approach is verified with numerical case study on a carrier based aircraft.展开更多
基金Aeronautical Science Foundation of China (2006ZA51004)
文摘With the aid of multi-agent based modeling approach to complex systems, the hierarchy simulation models of carrier-based aircraft catapult launch are developed. Ocean, carrier, aircraft, and atmosphere are treated as aggregation agents, the detailed components like catapult, landing gears, and disturbances are considered as meta-agents, which belong to their aggregation agent. Thus, the model with two layers is formed i.e. the aggregation agent layer and the meta-agent layer. The information communication among all agents is described. The meta-agents within one aggregation agent communicate with each other directly by information sharing, but the meta-agents, which belong to different aggregation agents exchange their information through the aggregation layer first, and then perceive it from the sharing environment, that is the aggregation agent. Thus, not only the hierarchy model is built, but also the environment perceived by each agent is specified. Meanwhile, the problem of balancing the independency of agent and the resource consumption brought by real-time communication within multi-agent system (MAS) is resolved. Each agent involved in carrier-based aircraft catapult launch is depicted, with considering the interaction within disturbed atmospheric environment and multiple motion bodies including carrier, aircraft, and landing gears. The models of reactive agents among them are derived based on tensors, and the perceived messages and inner frameworks of each agent are characterized. Finally, some results of a simulation instance are given. The simulation and modeling of dynamic system based on multi-agent system is of benefit to express physical concepts and logical hierarchy clearly and precisely. The system model can easily draw in kinds of other agents to achieve a precise simulation of more complex system. This modeling technique makes the complex integral dynamic equations of multibodies decompose into parallel operations of single agent, and it is convenient to expand, maintain, and reuse the program codes.
文摘为解决遥感相机在运动过程中的抖动造成的图像位置偏移问题,提出了一种实时图像校正算法。由于在FPGA中采用HDL进行算法设计难度大、开发周期长,故设计中采用了C语言进行算法设计,然后借助Calypto公司的Catapult C Synthesis工具将抽象的C设计转换成硬件RTL代码。在Catapult C Synthesis中对设计的算法进行了C/C++、RLT协同仿真测试,并在Xilinx XC5VLX110T型FPGA上进行了验证。仿真测试及硬件验证结果表明,采用Catapult C Synthesis设计的算法在时序、性能方面均满足设计要求,能够对偏移的图像进行实时校正。
文摘In order to enhance the safety of the catapult launch of the carrier-based aircraft,the catapult launch multibody dynamic model is established aiming at the problem of off center catapult launch.The whole catapult process including four stages which are buffering,tensioning,releasing and taxiing is taken into consideration and the body dynamics of the off-center catapult during each stage is analyzed.The catapult launch dynamic differences between the conditions only considering taxiing and that considering four stages are compared,and the effects of the different initial off center distances considering four stages on the attitude,landing gear load and acceleration of the carrier based aircraft during catapult launch are discussed.The results show that only considering taxiing may underestimate the dynamics of the carrier-based aircraft substantially.When taking four stages into consideration,the initial off-center distance has small influence on the aircraft dynamic characteristics during buffering and tensioning but has larger influence on that during releasing and taxiing.The increase of the off-center distance will cause the enhancement of the aircraft rolling and yawing,which may lead to the load difference between the left and right landing gears and the increase of the aircraft lateral acceleration.The establishment and simulation of the catapult launch multi body dynamic model founded on buffering,tensioning,releasing and taxiing provide reference for the carrier-based aircraft design and analysis of the catapult launch dynamics.
基金was co-supported by the National Defense Outstanding Youth Science Foundation,China(No.2018-JCJQZQ-053)the Natural Science Foundation of Jiangsu Province,China(No.BK20220911).
文摘The architecture strategy of the Unmanned Aerial Vehicle(UAV)pneumatic launch system should continue to evolve to adapt to complex and variable operating environments.Architecture representation,decomposition perspective,and cluster analysis play a vital role in the early phase of system architecture development.In order for the system to emerge anticipated and desirable intrinsic functional properties,an architecture decomposition method based on the ObjectProcess Methodology(OPM)and Design Structure Matrix(DSM)is put forward in this paper.The OPM is proposed to model the UAV launch process formally,and the matrix representation of the architecture of the pneumatic launch system is established.After the extension of the definition and operations of DSM,with the Idicula-Gutierrez-Thebeau Algorithm plus(IGTA+)clustering algorithm,the transformation of the pneumatic launch system architecture from process decomposition to function decomposition is demonstrated in this paper.The analysis shows that the architecture decomposition of the pneumatic launch system meets the functional requirements of stakeholders.
基金supported by the Excellence Foundation of BUAA for Ph D.and the National Natural Science Foundation of China(No.91641123).
文摘To efficiently and fully utilize aircraft carrier resources,an optimization model is presented to deal with parameter matching between aircraft and carrier in the process of aircraft catapult launch.Based on carrier aircraft longitudinal dynamic equations and theorem of kinetic energy in catapult launch course,the work characteristics of different forces are learned and a theory model of parameter matching is deduced.In view of the uncertainty of the model parameters of the theory model and the low matching accuracy of the approximate model,an optimization model of parameter matching is introduced in line with the structure of theory model and the approximate model and is generated by the proposed immune genetic algorithm.Compared with the original genetic algorithm and immune algorithm,the proposed algorithm has better calculation accuracy and convergence.The calculation results show that the optimization model occupies certain application value of engineering estimation from the comparison with the relevant literature data and has higher precision than the approximate models.The validity of the proposed approach is verified with numerical case study on a carrier based aircraft.