Human umbilical cord mesenchymal stem cells(HuMSCs)have the multi-difFerentiation potential to differentiate into various types of cells without immune rejection.They are considered to be an ideal source of neural ste...Human umbilical cord mesenchymal stem cells(HuMSCs)have the multi-difFerentiation potential to differentiate into various types of cells without immune rejection.They are considered to be an ideal source of neural stem cells and also an ideal cell carrier for gene therapy.Because of the invasive growth of brain gliomas,most of them have no obvious boundaries with normal brain tissues.It is difficult to completely remove them by surgery and the remaining cells become the main source of tumor recurrence.In recent years,gene therapy has become a new method for the treatment of gliomas.The vector carrying the target gene is introduced into HuMSCs in a certain way to correct gene defects or play other roles.The differentiation potential of HuMSCs makes it an ideal source of nerve cells to play a greater role in gene therapy of glioma.Therefore,this article reviews the current status and prospects of HuMSCs as cell carriers in the treatment of glioma.展开更多
Carrier transport via the V-shaped pits (V-pits) in InGaN/GaN multiple-quantum-well (MQW) solar cells is numer- ically investigated. By simulations, it is found that the V-pits can act as effective escape paths fo...Carrier transport via the V-shaped pits (V-pits) in InGaN/GaN multiple-quantum-well (MQW) solar cells is numer- ically investigated. By simulations, it is found that the V-pits can act as effective escape paths for the photo-generated carriers. Due to the thin barrier thickness and low indium composition of the MQW on V-pit sidewall, the carriers entered the sidewall QWs can easily escape and contribute to the photocurrent. This forms a parallel escape route for the carries generated in the fiat quantum wells. As the barrier thickness of the fiat MQW increases, more carriers would transport via the V-pits. Furthermore, it is found that the V-pits may reduce the recombination losses of carriers due to their screening effect to the dislocations. These discoveries are not only helpful for understanding the carrier transport mechanism in the InGaN/GaN MQW, but also important in design of the structure of solar cells.展开更多
AIM: To design and investigate the efficacy of a modified nanostructured lipid carrier loaded with genistein(Gen-NLC) to inhibit human lens epithelial cells(HLECs) proliferation.·METHODS: Gen-NLC was made b...AIM: To design and investigate the efficacy of a modified nanostructured lipid carrier loaded with genistein(Gen-NLC) to inhibit human lens epithelial cells(HLECs) proliferation.·METHODS: Gen-NLC was made by melt emulsification method. The morphology, particle size(PS), zeta potentials(ZP), encapsulation efficiency(EE) and in vitro release were characterized. The inhibition effect of nanostructured lipid carrier(NLC), genistein(Gen) and Gen-NLC on HLECs proliferation was evaluated by cell counting kit-8(CCK-8) assay, gene and protein expression of the proliferation marker Ki67 were evaluated with real-time quantitative polymerase chain reaction(RT-q PCR) and immunofluorescence analyses.·RESULTS: The mean PS of Gen-NLC was 80.12±1.55 nm with a mean polydispersity index of 0.11±0.02. The mean ZP was-7.14 ±0.38 m V and the EE of Gen in the nanoparticles was 92.3% ±0.73%. Transmission electron microscopy showed that Gen-NLC displayed spherical-shaped particles covered by an outer-layer structure. In vitro release experiments demonstrated a prolonged drug release for 72 h. The CCK-8 assay results showed the NLC had no inhibitory effect on HLECs and Gen-NLC displayed a much more prominent inhibitory effect on cellular growth compared to Gen of the same concentration. The m RNA and protein expression of Ki67 in LECs decreased significantly in Gen-NLC group.·CONCLUSION: Sustained drug release by Gen-NLCs may impede HLEC growth.展开更多
The high carrier mobility and long diffusion length of perovskite material have been regarded because of its excellent photovoltaic performance. However, many studies have shown that a diffusion length longer than 1 ...The high carrier mobility and long diffusion length of perovskite material have been regarded because of its excellent photovoltaic performance. However, many studies have shown that a diffusion length longer than 1 μm and higher carrier mobility have no positive effect on the cells' performance. Studies of organic solar cells have demonstrated the existence of an optimal mobility value, while systematic research of the carrier mobility in the PSCs is very rare. To make these questions clear, the effect of carrier mobility on perovskite solar cells' performance is studied in depth in this paper by simulation.Our study shows that the optimal mobility value of the charge transportation layer and absorption layer are influenced by both doping concentration and layer thickness. The appropriate carrier mobility can reduce the carrier recombination rate and enhance the carrier concentration, thus improving the cells' performance. A high efficiency of 27.39% is obtained in the simulated cell with the combination of the optimized parameters in the paper.展开更多
Ce3+-Yb3+ doped Y3Al5O12 (YAG) is a luminescent down-conversion material which could convert visible pho- tons to near infrared photons. In this work, YAG:Ce3+-Yb3+ is applied on the front surface of mass-produ...Ce3+-Yb3+ doped Y3Al5O12 (YAG) is a luminescent down-conversion material which could convert visible pho- tons to near infrared photons. In this work, YAG:Ce3+-Yb3+ is applied on the front surface of mass-produced mono crystalline Si solar cells. For the coated cells, the external quantum efficiencv from the visible to the near infrared is improved, and the energy conversion efficiency enhances from 11.70% to 12.2% under AMI.SG. Furthermore, the phosphor down-conversion effect on the solar cell is characterized by the microwave detected photoconductivity technique on the n-type silicon wafer under the 977nm excitation. The down-conversion materials improve the average excess carrier lifetime from 22.5μs to 24.2#s and the average surface recombi- nation velocity reduces from 424.Scm/s to 371.6cm/s, which reveal the significant reduction in excess carrier recombination by the phosphors.展开更多
Based on simple analytical equations, short circuit current density (Jsc) of the organic bulk heterojunction solar cells has been calculated. It is found that the optical interference effect plays a very important r...Based on simple analytical equations, short circuit current density (Jsc) of the organic bulk heterojunction solar cells has been calculated. It is found that the optical interference effect plays a very important role in the determination of Jsc; and obvious oscillatory behaviour of Jsc was observed as a function of thickness. At the same time, the influence of the carrier lifetime on Jsc also cannot be neglected. When the carrier lifetime is relatively short, Jsc only increases at the initial stage and then decreases rapidly with the increase of active layer thickness. However, for a relatively long carrier lifetime, the exciton dissociation probability must be considered, and Jsc behaves wave-like with the increase of active layer thickness. The validity of this model is confirmed by the experimental results.展开更多
Drug delivery systems(DDSs)involved with nano/microparticles enjoy a superior advantage in accurately delivering drugs to the desired sites for higher therapeutic efficacies and lower side ef-fects.Unfortunately,the c...Drug delivery systems(DDSs)involved with nano/microparticles enjoy a superior advantage in accurately delivering drugs to the desired sites for higher therapeutic efficacies and lower side ef-fects.Unfortunately,the conventional nano/microparticle-based DDSs,even with passive and active targeting properties,show a total targeting efficiency of less than 1%,attributed to the complicated microenvironment in vivo1.Therefore,it is urgent to delicately design the DDSs by using the factors that influence the fate of DDSs in vivo.展开更多
It remains poorly understood if carrier hardness, elastic modulus, and contact area affect neural stem cell growth and differentiation. Tensile tests show that the elastic moduli of Tiansu and SMI silicone membranes a...It remains poorly understood if carrier hardness, elastic modulus, and contact area affect neural stem cell growth and differentiation. Tensile tests show that the elastic moduli of Tiansu and SMI silicone membranes are lower than that of an ordinary dish, while the elastic modulus of SMI silicone membrane is lower than that of Tiansu silicone membrane. Neural stem cells from the cerebral cortex of embryonic day 16 Sprague-Dawley rats were seeded onto ordinary dishes as well as Tiansu silicone membrane and SMI silicone membrane. Light microscopy showed that neural stem cells on all three carriers show improved adherence. After 7 days of differentiation, neuron specific enolase, glial fibrillary acidic protein, and myelin basic protein expression was detected by immunofluorescence. Moreover, flow cytometry revealed a higher rate of neural stem cell differentiation into astrocytes on Tiansu and SMI silicone membranes than on the ordinary dish, which was also higher on the SMI than the Tiansu silicone membrane. These findings con- firm that all three cell carrier types have good biocompatibility, while SMI and Tiansu silicone membranes exhibit good mechanical homogenization. Thus, elastic modulus affects neural stem cell differentiation into various nerve cells. Within a certain range, a smaller elastic modulus re- sults in a more obvious trend of cell differentiation into astrocytes.展开更多
According to the cancer stem cell theory, cancers can be initiated by cancer stem cells. This makes cancer stem cells prime targets for therapeutic intervention. Eradicating cancer stem cells by efficient targeting ag...According to the cancer stem cell theory, cancers can be initiated by cancer stem cells. This makes cancer stem cells prime targets for therapeutic intervention. Eradicating cancer stem cells by efficient targeting agents may have the potential to cure cancer. In this review, we summarize recent breakthroughs that have improved our understanding of cancer stem cells, and we discuss the therapeutic strategy of targeting cancer stem cells, a promising future direction for cancer stem cell research.展开更多
Objective:To build GPC3 gene short hairpin interference RNA(shRNA)slow virus veclor.observe expression of Huh-7 GPC3 gene in human liver cell line proliferation apoptosis and the effect of GPC3 gene influencing on liv...Objective:To build GPC3 gene short hairpin interference RNA(shRNA)slow virus veclor.observe expression of Huh-7 GPC3 gene in human liver cell line proliferation apoptosis and the effect of GPC3 gene influencing on liver cancer cell growth,and provide theoretical basis for genc therapy of liver cancer.Methods:Hepatocellular carcinoma cell line Huh-7 wsa transfected by a RNA interference technique.GPC3 gene expression in a variety of liver cancer cell lines was detected by fluorescence quantitative PCR.Targeted GPC3 gene seqnences of small interfering RNA(siRNA)PGC-shRNA-GPC3 were restructured.Stable expression cell linse of siRNA were screened and established with the heplp of liposomes(lipofectamine^(TM2000))as carrier transfcetion of human liver cell lines.In order to validate siRNA interference efficiency.GPC3 siRNA mRNA expression was detected after transfection by using RT-PCR and Western blot.The absorbance value of the cells of blank group,untransfection group and transfection group,the cell cycle and cell apoptosis were calculated,and effects of GPC3 gene nn Huh-7 cell proliferation and apoptosis were observed.Results:In the liver cancer cell lines Huh-7 GPC3 gene showed high expression.PGC-shRNA-GPC3 recombinant plasmid was constructde successfully via sequencing validation.Stable recombinant plasmid transfected into liver cancer cell linse Huh-7can obviously inhibit GPC3 mRNA expression level.Conclusions:The targeted GPC3 siRNA can effectively inhibit the expression of GPC3.展开更多
Perovskite solar cells(PSCs) have raised research interest in scientific community because their power conversion efficiency is comparable to that of traditional commercial solar cells(i.e., amorphous Si, GaAs,and CdT...Perovskite solar cells(PSCs) have raised research interest in scientific community because their power conversion efficiency is comparable to that of traditional commercial solar cells(i.e., amorphous Si, GaAs,and CdTe). Apart from that, PSCs are lightweight, are flexible, and have low production costs. Recently, graphene has been used as a novel material for PSC applications due to its excellent optical, electrical, and mechanical properties. The hydrophobic nature of graphene surface can provide protection against air moisture from the surrounding medium, which can improve the lifetime of devices. Herein, we review recent developments in the use of graphene for PSC applications as a conductive electrode,carrier transporting material, and stabilizer material. By exploring the application of graphene in PSCs, a new class of strategies can be developed to improve the device performance and stability before it can be commercialized in the photovoltaic market in the near future.展开更多
背景:溶质载体家族1成员5(solute carrier family 1 member 5,SLC1A5)在多种疾病中发挥了潜在作用,但确切作用机制尚不清楚。构建稳定的SLC1A5过表达和敲低细胞模型可为深入研究SLC1A5在疾病中的确切作用机制以及发现潜在治疗靶点提供...背景:溶质载体家族1成员5(solute carrier family 1 member 5,SLC1A5)在多种疾病中发挥了潜在作用,但确切作用机制尚不清楚。构建稳定的SLC1A5过表达和敲低细胞模型可为深入研究SLC1A5在疾病中的确切作用机制以及发现潜在治疗靶点提供有力的实验工具。目的:构建小鼠SLC1A5过表达和敲低的慢病毒载体,以建立稳定转染的RAW264.7细胞株,为深入探讨SLC1A5在炎症中的作用提供实验基础。方法:根据SLC1A5基因序列设计合成引物并使用聚合酶链反应扩增该基因片段。将目的基因定向接入经Age I/Nhe I酶切的载体质粒GV492中构建重组慢病毒质粒,对阳性克隆进一步筛选后测序比对结果;pHelper1.0质粒载体、pHelper2.0质粒载体、目的质粒载体与293T细胞共同培养并转染,获得慢病毒原液进行包装和滴度测定;在此基础上,通过体外培养RAW264.7细胞,确定嘌呤霉素工作质量浓度;不同滴度的慢病毒分别与RAW264.7细胞共同培养,根据荧光强度确定转染效率;用嘌呤霉素挑选出稳定转染细胞,实时荧光定量聚合酶链反应和蛋白免疫印迹方法检测稳定转染细胞株的SLC1A5基因和蛋白表达水平。结果与结论:(1)测序序列与目的序列一致提示重组慢病毒载体构建成功;(2)过表达SLC1A5慢病毒的滴度为1×10~9 TU/mL,敲低SLC1A5慢病毒的滴度为3×10~9 TU/mL;(3)确定RAW264.7细胞嘌呤霉素工作质量浓度为3μg/mL;(4)过表达/敲低SLC1A5慢病毒转染RAW264.7细胞的最佳条件皆为HiTransG P转染增强液且感染复数值等于50;(5)过表达SLC1A5稳转细胞株中SLC1A5基因和蛋白的表达量明显上调,而敲低SLC1A5稳转细胞株中SLC1A5基因和蛋白的表达量显著下调。结果表明,成功构建了小鼠SLC1A5过表达和敲低的慢病毒载体并获得稳定转染的RAW264.7细胞株。展开更多
In this paper, component carrier selection and beamforming on carrier aggregated channels in Heterogeneous Networks are proposed. The scheme jointly selects the component carrier and precoding (i.e. beamforming) vecto...In this paper, component carrier selection and beamforming on carrier aggregated channels in Heterogeneous Networks are proposed. The scheme jointly selects the component carrier and precoding (i.e. beamforming) vectors with the cooperation of the other cells to deal with the interference between Macro cell and Pico cell. The component carrier selection and beamforming is achieved by optimizing the multi-cell downlink throughput. This optimization results in shutting down a subset of the component carrier in order to allow for a perfect interference removal at the receive side in the dense low power node deployment scenario. Additionally, algorithm based on Branch and Bound Method is used to reduce the search complexity of the algorithm. Simulation results show that the proposed scheme can achieve high cell-average and cell-edge throughput for the Pico cell in the Heterogeneous Networks.展开更多
We calculate the electronic properties and carrier mobility of perovskite CH3NH3SnI3as a solar cell absorber by using the hybrid functional method. The calculated result shows that the electron and hole mobilities hav...We calculate the electronic properties and carrier mobility of perovskite CH3NH3SnI3as a solar cell absorber by using the hybrid functional method. The calculated result shows that the electron and hole mobilities have anisotropies with a large magnitude of 1.4 × 104cm2·V-1·s-1along the y direction. In view of the huge difference between hole and electron mobilities, the perovskite CH3NH3 Sn I3can be considered as a p-type semiconductor. We also discover a relationship between the effective mass anisotropy and electronic occupation anisotropy. The above results can provide reliable guidance for its experimental applications in electronics and optoelectronics.展开更多
文摘Human umbilical cord mesenchymal stem cells(HuMSCs)have the multi-difFerentiation potential to differentiate into various types of cells without immune rejection.They are considered to be an ideal source of neural stem cells and also an ideal cell carrier for gene therapy.Because of the invasive growth of brain gliomas,most of them have no obvious boundaries with normal brain tissues.It is difficult to completely remove them by surgery and the remaining cells become the main source of tumor recurrence.In recent years,gene therapy has become a new method for the treatment of gliomas.The vector carrying the target gene is introduced into HuMSCs in a certain way to correct gene defects or play other roles.The differentiation potential of HuMSCs makes it an ideal source of nerve cells to play a greater role in gene therapy of glioma.Therefore,this article reviews the current status and prospects of HuMSCs as cell carriers in the treatment of glioma.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61564007 and 11364034)the Sci-Tech Support Plan of Jiangxi Province,China(Grant No.20141BBE50035)
文摘Carrier transport via the V-shaped pits (V-pits) in InGaN/GaN multiple-quantum-well (MQW) solar cells is numer- ically investigated. By simulations, it is found that the V-pits can act as effective escape paths for the photo-generated carriers. Due to the thin barrier thickness and low indium composition of the MQW on V-pit sidewall, the carriers entered the sidewall QWs can easily escape and contribute to the photocurrent. This forms a parallel escape route for the carries generated in the fiat quantum wells. As the barrier thickness of the fiat MQW increases, more carriers would transport via the V-pits. Furthermore, it is found that the V-pits may reduce the recombination losses of carriers due to their screening effect to the dislocations. These discoveries are not only helpful for understanding the carrier transport mechanism in the InGaN/GaN MQW, but also important in design of the structure of solar cells.
基金Supported by the National Natural Science Foundation for Distinguished Young Scholars of China (No. 81100654)
文摘AIM: To design and investigate the efficacy of a modified nanostructured lipid carrier loaded with genistein(Gen-NLC) to inhibit human lens epithelial cells(HLECs) proliferation.·METHODS: Gen-NLC was made by melt emulsification method. The morphology, particle size(PS), zeta potentials(ZP), encapsulation efficiency(EE) and in vitro release were characterized. The inhibition effect of nanostructured lipid carrier(NLC), genistein(Gen) and Gen-NLC on HLECs proliferation was evaluated by cell counting kit-8(CCK-8) assay, gene and protein expression of the proliferation marker Ki67 were evaluated with real-time quantitative polymerase chain reaction(RT-q PCR) and immunofluorescence analyses.·RESULTS: The mean PS of Gen-NLC was 80.12±1.55 nm with a mean polydispersity index of 0.11±0.02. The mean ZP was-7.14 ±0.38 m V and the EE of Gen in the nanoparticles was 92.3% ±0.73%. Transmission electron microscopy showed that Gen-NLC displayed spherical-shaped particles covered by an outer-layer structure. In vitro release experiments demonstrated a prolonged drug release for 72 h. The CCK-8 assay results showed the NLC had no inhibitory effect on HLECs and Gen-NLC displayed a much more prominent inhibitory effect on cellular growth compared to Gen of the same concentration. The m RNA and protein expression of Ki67 in LECs decreased significantly in Gen-NLC group.·CONCLUSION: Sustained drug release by Gen-NLCs may impede HLEC growth.
基金Project supported by the National Natural Science Foundation of China(Grant No.61704147)the Science Fund from the Education Department of Hebei Province,China(Grant No.QN2017150)
文摘The high carrier mobility and long diffusion length of perovskite material have been regarded because of its excellent photovoltaic performance. However, many studies have shown that a diffusion length longer than 1 μm and higher carrier mobility have no positive effect on the cells' performance. Studies of organic solar cells have demonstrated the existence of an optimal mobility value, while systematic research of the carrier mobility in the PSCs is very rare. To make these questions clear, the effect of carrier mobility on perovskite solar cells' performance is studied in depth in this paper by simulation.Our study shows that the optimal mobility value of the charge transportation layer and absorption layer are influenced by both doping concentration and layer thickness. The appropriate carrier mobility can reduce the carrier recombination rate and enhance the carrier concentration, thus improving the cells' performance. A high efficiency of 27.39% is obtained in the simulated cell with the combination of the optimized parameters in the paper.
基金Supported by the Natural Science Foundation of Jiangsu Province under Grant No BK2011033
文摘Ce3+-Yb3+ doped Y3Al5O12 (YAG) is a luminescent down-conversion material which could convert visible pho- tons to near infrared photons. In this work, YAG:Ce3+-Yb3+ is applied on the front surface of mass-produced mono crystalline Si solar cells. For the coated cells, the external quantum efficiencv from the visible to the near infrared is improved, and the energy conversion efficiency enhances from 11.70% to 12.2% under AMI.SG. Furthermore, the phosphor down-conversion effect on the solar cell is characterized by the microwave detected photoconductivity technique on the n-type silicon wafer under the 977nm excitation. The down-conversion materials improve the average excess carrier lifetime from 22.5μs to 24.2#s and the average surface recombi- nation velocity reduces from 424.Scm/s to 371.6cm/s, which reveal the significant reduction in excess carrier recombination by the phosphors.
文摘Based on simple analytical equations, short circuit current density (Jsc) of the organic bulk heterojunction solar cells has been calculated. It is found that the optical interference effect plays a very important role in the determination of Jsc; and obvious oscillatory behaviour of Jsc was observed as a function of thickness. At the same time, the influence of the carrier lifetime on Jsc also cannot be neglected. When the carrier lifetime is relatively short, Jsc only increases at the initial stage and then decreases rapidly with the increase of active layer thickness. However, for a relatively long carrier lifetime, the exciton dissociation probability must be considered, and Jsc behaves wave-like with the increase of active layer thickness. The validity of this model is confirmed by the experimental results.
基金supported by the National Natural Science Foundation of China(Nos.82073782 and 82241002)the Shanghai Science and Technology Committee(No.19430741500,China)the Key Laboratory of Modern Chinese Medicine Preparation of Ministry of Education of Jiangxi University of Traditional Chinese Medicine(zdsys-202103,China).
文摘Drug delivery systems(DDSs)involved with nano/microparticles enjoy a superior advantage in accurately delivering drugs to the desired sites for higher therapeutic efficacies and lower side ef-fects.Unfortunately,the conventional nano/microparticle-based DDSs,even with passive and active targeting properties,show a total targeting efficiency of less than 1%,attributed to the complicated microenvironment in vivo1.Therefore,it is urgent to delicately design the DDSs by using the factors that influence the fate of DDSs in vivo.
基金supported by the National Natural Science Foundation(Youth Project)of China,No.11102235a grant from the Key Project of Tianjin Science and Technology Support Plan in China,No.14ZCZDGX00500+2 种基金the Key Project of Natural Science Foundation of Tianjin City of China,No.12JCZDJC24100the Science and Technology Foundation Project of Tianjin Municipal Health Bureau of China,No.2013KZ134,2014KZ135the Seed Foundation Project of Affiliated Hospital of Logistics University of People’s Armed Police Force of China,No.FYM201432
文摘It remains poorly understood if carrier hardness, elastic modulus, and contact area affect neural stem cell growth and differentiation. Tensile tests show that the elastic moduli of Tiansu and SMI silicone membranes are lower than that of an ordinary dish, while the elastic modulus of SMI silicone membrane is lower than that of Tiansu silicone membrane. Neural stem cells from the cerebral cortex of embryonic day 16 Sprague-Dawley rats were seeded onto ordinary dishes as well as Tiansu silicone membrane and SMI silicone membrane. Light microscopy showed that neural stem cells on all three carriers show improved adherence. After 7 days of differentiation, neuron specific enolase, glial fibrillary acidic protein, and myelin basic protein expression was detected by immunofluorescence. Moreover, flow cytometry revealed a higher rate of neural stem cell differentiation into astrocytes on Tiansu and SMI silicone membranes than on the ordinary dish, which was also higher on the SMI than the Tiansu silicone membrane. These findings con- firm that all three cell carrier types have good biocompatibility, while SMI and Tiansu silicone membranes exhibit good mechanical homogenization. Thus, elastic modulus affects neural stem cell differentiation into various nerve cells. Within a certain range, a smaller elastic modulus re- sults in a more obvious trend of cell differentiation into astrocytes.
基金supported by a grant from the National Natural Science Foundation of China (No.30870683)
文摘According to the cancer stem cell theory, cancers can be initiated by cancer stem cells. This makes cancer stem cells prime targets for therapeutic intervention. Eradicating cancer stem cells by efficient targeting agents may have the potential to cure cancer. In this review, we summarize recent breakthroughs that have improved our understanding of cancer stem cells, and we discuss the therapeutic strategy of targeting cancer stem cells, a promising future direction for cancer stem cell research.
基金supported by Wuhan Municipal Science and Technology Bureau of applied basic research project(No.2013062301010823)Wuhan City health planning medieal research project(No.WX14A11)
文摘Objective:To build GPC3 gene short hairpin interference RNA(shRNA)slow virus veclor.observe expression of Huh-7 GPC3 gene in human liver cell line proliferation apoptosis and the effect of GPC3 gene influencing on liver cancer cell growth,and provide theoretical basis for genc therapy of liver cancer.Methods:Hepatocellular carcinoma cell line Huh-7 wsa transfected by a RNA interference technique.GPC3 gene expression in a variety of liver cancer cell lines was detected by fluorescence quantitative PCR.Targeted GPC3 gene seqnences of small interfering RNA(siRNA)PGC-shRNA-GPC3 were restructured.Stable expression cell linse of siRNA were screened and established with the heplp of liposomes(lipofectamine^(TM2000))as carrier transfcetion of human liver cell lines.In order to validate siRNA interference efficiency.GPC3 siRNA mRNA expression was detected after transfection by using RT-PCR and Western blot.The absorbance value of the cells of blank group,untransfection group and transfection group,the cell cycle and cell apoptosis were calculated,and effects of GPC3 gene nn Huh-7 cell proliferation and apoptosis were observed.Results:In the liver cancer cell lines Huh-7 GPC3 gene showed high expression.PGC-shRNA-GPC3 recombinant plasmid was constructde successfully via sequencing validation.Stable recombinant plasmid transfected into liver cancer cell linse Huh-7can obviously inhibit GPC3 mRNA expression level.Conclusions:The targeted GPC3 siRNA can effectively inhibit the expression of GPC3.
基金financially supported by the Ministry of Higher Education (FRGS/1/2017/STG02/UKM/02/1)Universiti Kebangsaan Malaysia (GUP-2015-019)
文摘Perovskite solar cells(PSCs) have raised research interest in scientific community because their power conversion efficiency is comparable to that of traditional commercial solar cells(i.e., amorphous Si, GaAs,and CdTe). Apart from that, PSCs are lightweight, are flexible, and have low production costs. Recently, graphene has been used as a novel material for PSC applications due to its excellent optical, electrical, and mechanical properties. The hydrophobic nature of graphene surface can provide protection against air moisture from the surrounding medium, which can improve the lifetime of devices. Herein, we review recent developments in the use of graphene for PSC applications as a conductive electrode,carrier transporting material, and stabilizer material. By exploring the application of graphene in PSCs, a new class of strategies can be developed to improve the device performance and stability before it can be commercialized in the photovoltaic market in the near future.
文摘In this paper, component carrier selection and beamforming on carrier aggregated channels in Heterogeneous Networks are proposed. The scheme jointly selects the component carrier and precoding (i.e. beamforming) vectors with the cooperation of the other cells to deal with the interference between Macro cell and Pico cell. The component carrier selection and beamforming is achieved by optimizing the multi-cell downlink throughput. This optimization results in shutting down a subset of the component carrier in order to allow for a perfect interference removal at the receive side in the dense low power node deployment scenario. Additionally, algorithm based on Branch and Bound Method is used to reduce the search complexity of the algorithm. Simulation results show that the proposed scheme can achieve high cell-average and cell-edge throughput for the Pico cell in the Heterogeneous Networks.
基金supported by the National Natural Science Foundation of China(Grant No.51172067)the Hunan Provincial Natural Science Fund for Distinguished Young Scholars,China(Grant No.13JJ1013)+1 种基金the Specialized Research Fund for the Doctoral Program of Higher Education,China(Grant No.20130161110036)the New Century Excellent Talents in University,China(Grant No.NCET-12-0171.D)
文摘We calculate the electronic properties and carrier mobility of perovskite CH3NH3SnI3as a solar cell absorber by using the hybrid functional method. The calculated result shows that the electron and hole mobilities have anisotropies with a large magnitude of 1.4 × 104cm2·V-1·s-1along the y direction. In view of the huge difference between hole and electron mobilities, the perovskite CH3NH3 Sn I3can be considered as a p-type semiconductor. We also discover a relationship between the effective mass anisotropy and electronic occupation anisotropy. The above results can provide reliable guidance for its experimental applications in electronics and optoelectronics.