The centrifugal pump is a prevalent power equipment widely used in different engineering patterns,and the impeller blade wrap angle significantly impacts its performance.A numerical investigation was conducted to anal...The centrifugal pump is a prevalent power equipment widely used in different engineering patterns,and the impeller blade wrap angle significantly impacts its performance.A numerical investigation was conducted to analyze the influence of the blade wrap angle on flow characteristics and energy distribution of a centrifugal pump evaluated as a low specific speed with a value of 69.This study investigates six impellermodels that possess varying blade wrap angles(95°,105°,115°,125°,135°,and 145°)that were created while maintaining the same volute and other geometrical characteristics.The investigation of energy loss was conducted to evaluate the values of total and entropy generation rates(TEG,EGR).The fluid-structure interaction was considered numerically using the software tools ANSYS Fluent and ANSYSWorkbench.The elastic structural dynamic equation was used to estimate the structural response,while the shear stress transport k–ωturbulence model was utilized for the fluid domain modeling.The findings suggest that the blade wrap angle has a significant influence on the efficiency of the pump.The impeller featuring a blade wrap angle of 145°exhibits higher efficiency,with a notable increase of 3.76%relative to the original model.Variations in the blade wrap angle impact the energy loss,shaft power,and pump head.The model with a 145°angle exhibited a maximum equivalent stress of 14.8MPa and a total deformation of 0.084 mm.The results provide valuable insights into the intricate flow mechanism of the centrifugal pump,particularly when considering various blade wrap angles.展开更多
Centrifugal pumps are widely used in the metallurgy,coal,and building sectors.In order to study the hydraulic characteristics of a closed impeller centrifugal pump during its shutdown in the so-called power frequency ...Centrifugal pumps are widely used in the metallurgy,coal,and building sectors.In order to study the hydraulic characteristics of a closed impeller centrifugal pump during its shutdown in the so-called power frequency and frequency conversion modes,experiments were carried to determine the characteristic evolution of parameters such as speed,inlet and outlet pressure,head,flow rate and shaft power.A quasi-steady-state method was also used to further investigate these transient behaviors.The results show that,compared to the power frequency input,the performance parameter curves for the frequency conversion input are less volatile and smoother.The characteristic time is longer and the response to shutdown is slower.The quasi-steady-state theoretical head-flow curves match the experimental head-flow curves more closely at low flow rates when the frequency conversion input is considered.Moreover,in this case,the similarity law predicts the hydraulic performance more accurately.展开更多
The flow with solid-liquid two-phase media inside centrifugal pumps is very complicated and the relevant method for the hydraulic design is still immature so far. There exist two main problems in the operation of the ...The flow with solid-liquid two-phase media inside centrifugal pumps is very complicated and the relevant method for the hydraulic design is still immature so far. There exist two main problems in the operation of the two-phase flow pumps, i.e., low overall efficiency and severe abrasion. In this study, the three-dimensional, steady, incompressible, and turbulent solid-liquid two-phase flows in a low-specific-speed centrifugal pump are numerically simulated and analyzed by using a computational fluid dynamics (CFD) code based on the mixture model of the two-phase flow and the RNG k-~ two-equation turbulence model, in which the influences of rotation and curvature are fully taken into account. The coupling between impeller and volute is implemented by means of the frozen rotor method. The simulation results predicted indicate that the solid phase properties in two-phase flow, especially the concentration, the particle diameter and the density, have strong effects on the hydraulic performance of the pump. Both the pump head and the efficiency are reduced with increasing particle diameter or concentration. However, the effect of particle density on the performance is relatively minor. An obvious jet-wake flow structure is presented near the volute tongue and becomes more remarkable with increasing solid phase concentration. The suction side of the blade is subject to much more severe abrasion than the pressure side. The obtained results preliminarily reveal the characteristics of solid-liquid two-phase flow in the centrifugal pump, and are helpful for improvement and empirical correction in the hydraulic design of centrifugal pumps.展开更多
The pressure fluctuation in the flow passage of both impeller and casing is addressed on design condition. The initial conditions for the unsteady turbulent simulation are resulted from the steady calculations, and th...The pressure fluctuation in the flow passage of both impeller and casing is addressed on design condition. The initial conditions for the unsteady turbulent simulation are resulted from the steady calculations, and the three dimensional unsteady turbulent simulation concerning the rotor-stator interaction is executed by a Navier-Stoke solver embedded with k -ε turbulence model and with appropriate moving interface boundary conditions. Detecting points are distributed in the flow passage in different radial and circumferential positions to capture the static pressure fluctuation character for one cycle of the impeller. The time-domain spectrums show that the static pressure curves are periodic and have five peaks and five valleys. With the radius increasing, the pressure fluctuation peak-to-peak values in the impeller are increasing, and reach the maximum value on the interface. In the casing flow passage, those values are about 7% of local static pressure except some ones near the tongue. The values become decreasingly in the diffuser pipe. The frequency spectrums transformed by fast Fourier transform (FFT) show that the dominant frequency is approximate with the blade passing frequency, and the pressure fluctuations in impeller passage have high frequency content while those in casing ones have no such information.展开更多
The blade number of impeller is an important design parameter of pumps, which affects the characteristics of pump heavily. At present, the investigation focuses mostly on the performance characteristics of axis flow p...The blade number of impeller is an important design parameter of pumps, which affects the characteristics of pump heavily. At present, the investigation focuses mostly on the performance characteristics of axis flow pumps, the influence of blade number on inner flow filed and characteristics of centrifugal pump has not been understood completely. Therefore, the methods of numerical simulation and experimental verification are used to investigate the effects of blade number on flow field and characteristics of a centrifugal pump. The model pump has a design specific speed of 92.7 and an impeller with 5 blades. The blade number is varied to 4, 6, 7 with the casing and other geometric parameters keep constant. The inner flow fields and characteristics of the centrifugal pumps with different blade number are simulated and predicted in non-cavitation and cavitation conditions by using commercial code FLUENT. The impellers with different blade number are made by using rapid prototyping, and their characteristics are tested in an open loop. The comparison between prediction values and experimental results indicates that the prediction results are satisfied. The maximum discrepancy of prediction results for head, efficiency and required net positive suction head are 4.83%, 3.9% and 0.36 m, respectively. The flow analysis displays that blade number change has an important effect on the area of low pressure region behind the blade inlet and jet-wake structure in impellers. With the increase of blade number, the head of the model pumps increases too, the variable regulation of efficiency and cavitation characteristics are complicated, but there are optimum values of blade number for each one. The research results are helpful for hydraulic design of centrifugal pump.展开更多
The size of impeller reflux holes for centrifugal pump has influence on the pressure distribution of front and rear shrouds and rear pump chamber, as well as energy characteristics of whole pump and axial force. Low s...The size of impeller reflux holes for centrifugal pump has influence on the pressure distribution of front and rear shrouds and rear pump chamber, as well as energy characteristics of whole pump and axial force. Low specific-speed centrifugal pump with Q=12.5 m3/h, H=60 m, n=2950 r/min was selected to be designed with eight axial reflux balance holes with 4.5 mm in diameter. The simulated Q-H curve and net positive suction head(NPSH) were in good agreement with experimental results, which illustrated that centrifugal pump with axial reflux balance holes was superior in the cavitation characteristic; however, it showed to little superiority in head and efficiency. The pressure in rear pump chamber at 0.6 times rate flow is 29.36% of pressure difference between outlet and inlet, which reduces to 29.10% at rate flow and 28.33% at 1.4 times rate flow. As the whole, the pressure distribution on front and rear shrouds from simulation results is not a standard parabola, and axial force decreases as flow rate increases. Radical reflux balance holes chosen to be 5.2 mm and 5.9 mm in diameter were further designed with other hydraulic parts unchanged. With structural grids adopted for total flow field, contrast numerical simulation on internal flow characteristics was conducted based on momentum equations and standard turbulence model(κ-ε). It is found that axial force of pump with radical reflux balance holes of5.2 mm and 5.9 mm in diameter is significantly less than that with radical reflux balance holes of 4.5 mm in diameter. Better axial force balance is obtained as the ratio of area of reflux balance holes and area of sealing ring exceeds 6.展开更多
The existing research of the deep-well centrifugal pump mainly focuses on reduce the manufacturing cost and improve the pump performance, and how to combine above two aspects together is the most difficult and importa...The existing research of the deep-well centrifugal pump mainly focuses on reduce the manufacturing cost and improve the pump performance, and how to combine above two aspects together is the most difficult and important topic. In this study, the performances of the deep-well centrifugal pump with four different impeller outlet widths are studied by the numerical, theoretical and experimental methods in this paper. Two stages deep-well centrifugal pump equipped with different impellers are simulated employing the commercial CFD software to solve the Navier-Stokes equations for three-dimensional incompressible steady flow. The sensitivity analyses of the grid size and turbulence model have been performed to improve numerical accuracy. The flow field distributions are acquired and compared under the design operating conditions, including the static pressure, turbulence kinetic energy and velocity. The prototype is manufactured and tested to certify the numerical predicted performance. The numerical results of pump performance are higher than the test results, but their change trends have an acceptable agreement with each other. The performance results indicted that the oversize impeller outlet width leads to poor pump performances and increasing shaft power. Changing the performance of deep-well centrifugal pump by alter impeller outlet width is practicable and convenient, which is worth popularizing in the engineering application. The proposed research enhances the theoretical basis of pump design to improve the performance and reduce the manufacturing cost of deep-well centrifugal pump.展开更多
In order to widen the high-efficiency operating range of a low-specific-speed centrifugal pump, an optimization process for considering efficiencies under 1.0Qd and 1.4Qd is proposed. Three parameters, namely, the bla...In order to widen the high-efficiency operating range of a low-specific-speed centrifugal pump, an optimization process for considering efficiencies under 1.0Qd and 1.4Qd is proposed. Three parameters, namely, the blade outlet width b2, blade outlet angle β2, and blade wrap angle φ, are selected as design variables. Impellers are generated using the optimal Latin hypercube sampling method. The pump efficiencies are calculated using the software CFX 14.5 at two operating points selected as objectives. Surrogate models are also constructed to analyze the relationship between the objectives and the design variables. Finally, the particle swarm optimization algorithm is applied to calculate the surrogate model to determine the best combination of the impeller parameters. The results show that the performance curve predicted by numerical simulation has a good agreement with the experimental results. Compared with the efficiencies of the original impeller, the hydraulic efficiencies of the optimized impeller are increased by 4.18% and 0.62% under 1.0Qd and 1.4Qd, respectively. The comparison of inner flow between the original pump and optimized one illustrates the improvement of performance. The optimization process can provide a useful reference on performance improvement of other pumps, even on reduction of pressure fluctuations.展开更多
The existing research for unsteady flow field and the corresponding flow induced vibration analysis of centrifugal pump are mainly carried out respectively without considering the interaction between fluid and structu...The existing research for unsteady flow field and the corresponding flow induced vibration analysis of centrifugal pump are mainly carried out respectively without considering the interaction between fluid and structure. The ignorance of fluid structure interaction (FSI) means that the energy transfer between fluid and structure is neglected. To some extent, the accuracy and reliability of unsteady flow and rotor deflection analysis should be affected by this interaction mechanism. In this paper, a combined calculation between two executables for turbulent flow and vibrating structure was established using two-way coupling method to study the effect of FSI. Pressure distributions, radial forces, rotor deflection and equivalent stress are analyzed. The results show that the FSI effect to pressure distribution in flow field is complex. The pressure distribution is affected not only around impeller outlet where different variation trends of pressure values with and without FSI appear according to different relative positions between blade and cutwater, but also in the diffusion section of volute. Variation trends of peak values of radial force amplitude calculated with and without FSI are nearly same under high flow rate and designed conditions while the peak value with FSI is slightly smaller, and differently, the peak value with FSI is larger with low flow rate. In addition, the effect of FSI on the angle of radial force is quite complex, especially under 0.5Q condition. Fluctuation of radial deflection of the rotor has obvious four periods, of which the extent is relatively small under design condition and is relatively large under off-design condition. Finally, fluctuations of equivalent stress with time are obvious under different conditions, and stress value is small. The proposed research establishes the FSI calculation method for centrifugal pump analysis, and ensures the existing affect by fluid structure interaction.展开更多
Centrifugal pumps always work under steady conditions,and many researches focus on the steady operation.But transient conditions,such as sudden startup and shutdown,are inevitable.The researches on the inner flow of c...Centrifugal pumps always work under steady conditions,and many researches focus on the steady operation.But transient conditions,such as sudden startup and shutdown,are inevitable.The researches on the inner flow of centrifugal pumps under transient conditions have been done,and they show that the transient operation is different from the steady operation.In order to research the evolution of unsteady flow in a centrifugal pump under transient conditions,and to investigate the mechanism of transient effects by analyzing the unsteady flow in a centrifugal pump,the external characteristic experiment and the internal flow numerical calculation of the centrifugal pump with an open impeller during startup is presented.The relationships of the rotation speed,capacity and head between start-time are obtained by the external characteristics experiment.The numerical calculations under startup process are carried out by using the k-e model and N-S equation.The distribution of velocity and pressure in the inner channel of the tested pump was obtained by choosing fourteen start-time points and twelve geometrical points in the impeller channel during startup.The calculation results show that the velocity and the pressure increase linearly with the start-time before rotation's speed gets steady,then changes almost horizontally after rotation speed becomes steady,then fluctuates until being steady.The internal flow characteristics are in good agreement with the external characteristic experimental results and numerical calculation.The simulation methods and results make the basis for the diagnosis and optimization of under flow in the centrifugal pump during transient operation.展开更多
The current research of large eddy simulation (LES) of turbulent flow in pumps mainly concentrates in applying conventional subgrid-scale (SGS) model to simulate turbulent flow, which aims at obtaining the flow fi...The current research of large eddy simulation (LES) of turbulent flow in pumps mainly concentrates in applying conventional subgrid-scale (SGS) model to simulate turbulent flow, which aims at obtaining the flow field in pump. The selection of SGS model is usually not considered seriously, so the accuracy and efficiency of the simulation cannot be ensured. Three SGS models including Smagorinsky-Lilly model, dynamic Smagorinsky model and dynamic mixed model are comparably studied by using the commercial CFD code Fluent combined with its user define function. The simulations are performed for the turbulent flow in a centrifugal pump impeller. The simulation results indicate that the mean flows predicted by the three SGS models agree well with the experimental data obtained from the test that detailed measurements of the flow inside the rotating passages of a six-bladed shrouded centrifugal pump impeller performed using particle image velocimetry (PIV) and laser Doppler velocimetry (LDV). The comparable results show that dynamic mixed model gives the most accurate results for mean flow in the centrifugal pump impeller. The SGS stress of dynamic mixed model is decompose into the scale similar part and the eddy viscous part. The scale similar part of SGS stress plays a significant role in high curvature regions, such as the leading edge and training edge of pump blade. It is also found that the dynamic mixed model is more adaptive to compute turbulence in the pump impeller. The research results presented is useful to improve the computational accuracy and efficiency of LES for centrifugal pumps, and provide important reference for carrying out simulation in similar fluid machineries.展开更多
With the increasing noise pollution, low noise optimization of centrifugal pimps has become a hot topic. However, experimental study on this problem is unacceptable for industrial applications due to unsustainable cos...With the increasing noise pollution, low noise optimization of centrifugal pimps has become a hot topic. However, experimental study on this problem is unacceptable for industrial applications due to unsustainable cost. A hybrid method that couples computational fluid dynamics (CFD) with computational aeroacoustic software is used to predict the flow-induced noise of pumps in order to minimize the noise of centrifugal pumps in actual projects. Under Langthjem's assumption that the blade surface pressure is the main flow-induced acoustic source in centrifugal pumps, the blade surface pressure pulsation is considered in terms of the acoustical sources and simulated using CFX software. The pressure pulsation and noise distribution in the near-cutoff region are examined for the blade-passing frequency (BPF) noise, and the sound pressure level (SPL) reached peaks near the cutoff that corresponded with the pressure pulsation in this region. An experiment is performed to validate this prediction. Four hydrophones are fixed to the inlet and outlet ports of the test pump to measure the flow-induced noise from the four-port model. The simulation results for the noise are analyzed and compared with the experimental results. The variation in the calculated noise with changes in the flow agreed well with the experimental results. When the flow rate was increased, the SPL first decreased and reached the minimum near the best efficient point (BEP); it then increased when the flow rate was further increased. The numerical and experimental results confirmed that the BPF noise generated by a blade-rotating dipole roughly reflects the acoustic features of centrifugal pumps. The noise simulation method in current study has a good feasibility and suitability, which could be adopted in engineering design to predict and optimize the hydroacoustic behavior of centrifugal pumps.展开更多
The existing research on improving the hydraulic performance of centrifugal pumps mainly focuses on the design method and the parameter optimization. The traditional design method for centrifugal impellers relies more...The existing research on improving the hydraulic performance of centrifugal pumps mainly focuses on the design method and the parameter optimization. The traditional design method for centrifugal impellers relies more on experience of engineers that typically only satisfies the continuity equation of the fluid. In this study, on the basis of the direct and inverse iteration design method which simultaneously solves the continuity and motion equations of the fluid and shapes the blade geometry by controlling the wrap angle, three centrifugal pump impellers are designed by altering blade wrap angles while keeping other parameters constant. The three-dimensional flow fields in three centrifugal pumps are numerically simulated, and the simulation results illustrate that the blade with larger wrap angle has more powerful control ability on the flow pattern in impeller. The three pumps have nearly the same pressure distributions at the small flow rate, but the pressure gradient increase in the pump with the largest wrap angle is smoother than the other two pumps at the design and large flow rates. The pump head and efficiency are also influenced by the blade wrap angle. The highest head and efficiency are also observed for the largest angle. An experiment rig is designed and built to test the performance of the pump with the largest wrap angle. The test results show that the wide space of its efficiency area and the stability of its operation ensure the excellent performance of the design method and verify the numerical analysis. The analysis on influence of the blade wrap angle for centrifugal pump performance in this paper can be beneficial to the optimization design of the centrifugal pump.展开更多
The transient behavior of centrifugal pumps during transient operating periods, such as startup and stopping, has drawn more and more attention recently because of urgent needs in engineering. Up to now, almost all th...The transient behavior of centrifugal pumps during transient operating periods, such as startup and stopping, has drawn more and more attention recently because of urgent needs in engineering. Up to now, almost all the existing studies on this behavior are limited to using water as working fluid. The study on the transient behavior related to solid-liquid two-phase flow has not been seen yet. In order to explore the transient characteristics of a high specific-speed centrifugal pump during startup period delivering the pure water and solid-liquid two-phase flow, the transient flows inside the pump are numerically simulated using the dynamic mesh method. The variable rotational speed and flow rate with time obtained from experiment are best fitted as the function of time, and are written into computational fluid dynamics (CFD) code-FLUENT by using a user defined function. The predicted heads are compared with experimental results when pumping pure water. The results show that the difference in the transient performance during startup period is very obvious between water and solid-liquid two-phase flow during the later stage of startup process. Moreover, the time for the solid-liquid two-phase flow to achieve a stable condition is longer than that for water. The solid-liquid two-phase flow results in a higher impeller shaft power, a larger dynamic reaction force, a more violent fluctuation in pressure and a reduced stable pressure rise comparing with water. The research may be useful to tmderstanding on the transient behavior of a centrifugal pump under a solid-liquid two-phase flow during startup period.展开更多
Performance prediction for centrifugal pumps is now mainly based on numerical calculation and most of the studies merely focus on one model. Therefore, the research results are not representative. To make an improveme...Performance prediction for centrifugal pumps is now mainly based on numerical calculation and most of the studies merely focus on one model. Therefore, the research results are not representative. To make an improvement of numerical calculation method and performance prediction for centrifugal pumps, performance of six centrifugal pump models at design flow rate and off design flow rates, whose specific speed are different, were simulated by using commercial code FLUENT. The standard k-t turbulence model and SIMPLEC algorithm were chosen in FLUENT. The simulation was steady and moving reference frame was used to consider the impeller-volute interaction. Also, how to dispose the gap between impeller and volute was presented and the effect of grid number was considered. The characteristic prediction model for centrifugal pumps is established according to the simulation results. The head and efficiency of the six models at different flow rates are predicted and the prediction results are compared with the experiment results in detail. The comparison indicates that the precision of head and efficiency prediction are all less than 5%. The flow analysis indicates that flow change has an important effect on the location and area of low pressure region behind the blade inlet and the direction of velocity at impeller inlet. The study shows that using FLUENT simulation results to predict performance of centrifugal pumps is feasible and accurate. The method can be applied in engineering practice.展开更多
The law governing the movement of particles in the centrifugal pump channel is complicated; thus, it is difficult to examine the solid-liquid two-phase turbulent flow in the pump. Consequently, the solid-liquid two-ph...The law governing the movement of particles in the centrifugal pump channel is complicated; thus, it is difficult to examine the solid-liquid two-phase turbulent flow in the pump. Consequently, the solid-liquid two-phase pump is designed based only on the unary theory. However, the obvious variety of centrifugal-pump internal flow appears because of the existence of solid phase, thus changing pump performance. Therefore, it is necessary to establish the flow characteristics of the solid-liquid two-phase pump. In the current paper, two-phase numerical simulation and centrifugal pump performance tests are carried out using different solid-particle diameters and two-phase mixture concentration conditions. Inner flow features are revealed by comparing the simulated and experimental results. The comparing results indicate that the influence of the solid-phase characteristics on centrifugal-pump performance is small when the flow rate is low, specifically when it is less than 2 m3/h. The maximum efficiency declines, and the best efficiency point tends toward the low flow-rate direction along with increasing solid-particle diameter and volume fraction, leading to reduced pump steady efficient range. The variation tendency of the pump head is basically consistent with that of the efficiency. The efficiency and head values of the two-phase mixture transportation are even larger than those of pure-water transportation under smaller particle diameter and volume fraction conditions at the low-flow-rate region. The change of the particle volume fraction has a greater effect on the pump performance than the change in the particle diameter. The experimental values are totally smaller than the simulated values. This research provides the theoretical foundation for the optimal design of centrifugal pump.展开更多
The experimental study is carried out on high-speed centrifugal pumps withthree different impellers. The experimental results and analysis show that high-speed centrifugalpumps with a closed complex impeller can achie...The experimental study is carried out on high-speed centrifugal pumps withthree different impellers. The experimental results and analysis show that high-speed centrifugalpumps with a closed complex impeller can achieve the highest efficiency and the lowest headcoefficient followed by those with half-open impeller and open-impeller, and can obtain much easilystable head-capacity characrastic curve, while those with a half-open complex impeller can't. Thecharacteristic curve with a open impeller is almost constant horizontal line before droppingsharply. The results also show that the axial clearance between pump casing and impeller caninfluence greatly on the performance of centrifugal pumps.展开更多
With extensively using of centrifugal pumps,noise generation in these pumps is increasingly receiving research attention in recent years.The noise sources in centrifugal pumps are mainly composed of mechanical noise a...With extensively using of centrifugal pumps,noise generation in these pumps is increasingly receiving research attention in recent years.The noise sources in centrifugal pumps are mainly composed of mechanical noise and flow-induced noise.And the study of flow-induced noise has become a hotspot and important domain in the field.The flow-induced noise closely related to the inner pressure pulses and vibration of volute in pumps,therefore,it is necessary to research the interaction and mechanism among them.To investigate the relationships,a test system is designed which includes a test loop and a measurement system.The hydrophones and pressure sensors are installed on the outlet of the pump and vibration acceleration sensors are disposed on the pump body.Via these instruments,the signals of noise,pressure pulses and vibration are collected and analyzed.The results show that the level of flow-induced noise becomes smaller as the flow increment during low flow rate operations,and it is steadily close to the design point,then it increases with the growing of flow rate in high flow rate conditions.Furthermore,there are some similar peak points in the power spectrum charts of noise,pressure pulses and vibration.The broadband noise at low flow rate is mostly focused on the region of 0-40 times shaft frequency,which is mostly made by rotating stall and vortex;while the noise at high flow rate conditions is focused on the region of 60-100 times shaft frequency,which may be mostly made by cavitations.The proposed research is of practical and academic significance to the study of noise reduction for centrifugal pumps.展开更多
Pressure fluctuation may cause high amplitude of vibration of double-suction centrifugal pumps, but the impact of impeller stagger angles is still not well understood. In this paper, pressure fluctuation experiments a...Pressure fluctuation may cause high amplitude of vibration of double-suction centrifugal pumps, but the impact of impeller stagger angles is still not well understood. In this paper, pressure fluctuation experiments are carried out for five impeller configurations with different stagger angles by using the same test rig system. Results show that the stagger angles exert negligible effects on the characteristics of head and efficiency. The distributions of pressure fluctuations are relatively uniform along the suction chamber wall, and the maximum pressure fluctuation amplitude is reached near the suction inlet tongue region. The pressure fluctuation characteristics are affected largely by impeller rotation, whose dominant frequencies include impeller rotation frequency and its harmonic frequencies, and half blade passage frequency. The stagger angle exerts a small effect on the pressure fluctuations in the suction chamber while a great effect on the pressure fluctuation in volute casing, especially on the aspect of decreasing the amplitude on blade passage frequency. Among the tested cases, the distribution of pressure fluctuations in the volute becomes more uniform than the other impeller configurations and the level of pressure fluctuation may be reduced by up to 50% when the impeller stagger angle is close to 24° or 360°.The impeller structure pattern needs to be taken into consideration during the design period, and the halfway staggered impeller is strongly recommended.展开更多
The calculation method for vane numbers is obtained on the intention that itshould have no back flow area in the flow passage of centrifugal passage. Then a criterion that thedesign of splitting vanes of centrifugal c...The calculation method for vane numbers is obtained on the intention that itshould have no back flow area in the flow passage of centrifugal passage. Then a criterion that thedesign of splitting vanes of centrifugal compound impeller should ensure that the back flow arearatio be the minimum is proposed. On the basis of the criterion, the slippery theory is used as oneof CFD methods to analyze the inner flow field of the impeller of various kinds of splitting vanesdesign, therefore, the optimized design of splitting vanes is obtained and which agrees with that ofsome testing results.展开更多
文摘The centrifugal pump is a prevalent power equipment widely used in different engineering patterns,and the impeller blade wrap angle significantly impacts its performance.A numerical investigation was conducted to analyze the influence of the blade wrap angle on flow characteristics and energy distribution of a centrifugal pump evaluated as a low specific speed with a value of 69.This study investigates six impellermodels that possess varying blade wrap angles(95°,105°,115°,125°,135°,and 145°)that were created while maintaining the same volute and other geometrical characteristics.The investigation of energy loss was conducted to evaluate the values of total and entropy generation rates(TEG,EGR).The fluid-structure interaction was considered numerically using the software tools ANSYS Fluent and ANSYSWorkbench.The elastic structural dynamic equation was used to estimate the structural response,while the shear stress transport k–ωturbulence model was utilized for the fluid domain modeling.The findings suggest that the blade wrap angle has a significant influence on the efficiency of the pump.The impeller featuring a blade wrap angle of 145°exhibits higher efficiency,with a notable increase of 3.76%relative to the original model.Variations in the blade wrap angle impact the energy loss,shaft power,and pump head.The model with a 145°angle exhibited a maximum equivalent stress of 14.8MPa and a total deformation of 0.084 mm.The results provide valuable insights into the intricate flow mechanism of the centrifugal pump,particularly when considering various blade wrap angles.
基金supported by the“Pioneer”and“Leading Goose”R&D Program of Zhejiang(Grant No.2022C03170)Science and Technology Project of Quzhou(Grant No.2022K98)Hunan Province Key Field R&D Plan Project(Grant No.2022GK2068).
文摘Centrifugal pumps are widely used in the metallurgy,coal,and building sectors.In order to study the hydraulic characteristics of a closed impeller centrifugal pump during its shutdown in the so-called power frequency and frequency conversion modes,experiments were carried to determine the characteristic evolution of parameters such as speed,inlet and outlet pressure,head,flow rate and shaft power.A quasi-steady-state method was also used to further investigate these transient behaviors.The results show that,compared to the power frequency input,the performance parameter curves for the frequency conversion input are less volatile and smoother.The characteristic time is longer and the response to shutdown is slower.The quasi-steady-state theoretical head-flow curves match the experimental head-flow curves more closely at low flow rates when the frequency conversion input is considered.Moreover,in this case,the similarity law predicts the hydraulic performance more accurately.
基金supported by National Natural Science Foundation of China (Grant No. 21076198)Zhejiang Provincial Natural Science Foundation of China (Granted No. R1100530)National Basic Research Program of China (973 Program,Grant No. 2009CB724303)
文摘The flow with solid-liquid two-phase media inside centrifugal pumps is very complicated and the relevant method for the hydraulic design is still immature so far. There exist two main problems in the operation of the two-phase flow pumps, i.e., low overall efficiency and severe abrasion. In this study, the three-dimensional, steady, incompressible, and turbulent solid-liquid two-phase flows in a low-specific-speed centrifugal pump are numerically simulated and analyzed by using a computational fluid dynamics (CFD) code based on the mixture model of the two-phase flow and the RNG k-~ two-equation turbulence model, in which the influences of rotation and curvature are fully taken into account. The coupling between impeller and volute is implemented by means of the frozen rotor method. The simulation results predicted indicate that the solid phase properties in two-phase flow, especially the concentration, the particle diameter and the density, have strong effects on the hydraulic performance of the pump. Both the pump head and the efficiency are reduced with increasing particle diameter or concentration. However, the effect of particle density on the performance is relatively minor. An obvious jet-wake flow structure is presented near the volute tongue and becomes more remarkable with increasing solid phase concentration. The suction side of the blade is subject to much more severe abrasion than the pressure side. The obtained results preliminarily reveal the characteristics of solid-liquid two-phase flow in the centrifugal pump, and are helpful for improvement and empirical correction in the hydraulic design of centrifugal pumps.
基金supported by National Outstanding Young Scientists Funds of China (Grand No.50825902)
文摘The pressure fluctuation in the flow passage of both impeller and casing is addressed on design condition. The initial conditions for the unsteady turbulent simulation are resulted from the steady calculations, and the three dimensional unsteady turbulent simulation concerning the rotor-stator interaction is executed by a Navier-Stoke solver embedded with k -ε turbulence model and with appropriate moving interface boundary conditions. Detecting points are distributed in the flow passage in different radial and circumferential positions to capture the static pressure fluctuation character for one cycle of the impeller. The time-domain spectrums show that the static pressure curves are periodic and have five peaks and five valleys. With the radius increasing, the pressure fluctuation peak-to-peak values in the impeller are increasing, and reach the maximum value on the interface. In the casing flow passage, those values are about 7% of local static pressure except some ones near the tongue. The values become decreasingly in the diffuser pipe. The frequency spectrums transformed by fast Fourier transform (FFT) show that the dominant frequency is approximate with the blade passing frequency, and the pressure fluctuations in impeller passage have high frequency content while those in casing ones have no such information.
基金supported by National Outstanding Young Scientists Founds of China (Grant No.50825902)Top talent Foundation of Jiangsu University of china (Grant No. 2007001)
文摘The blade number of impeller is an important design parameter of pumps, which affects the characteristics of pump heavily. At present, the investigation focuses mostly on the performance characteristics of axis flow pumps, the influence of blade number on inner flow filed and characteristics of centrifugal pump has not been understood completely. Therefore, the methods of numerical simulation and experimental verification are used to investigate the effects of blade number on flow field and characteristics of a centrifugal pump. The model pump has a design specific speed of 92.7 and an impeller with 5 blades. The blade number is varied to 4, 6, 7 with the casing and other geometric parameters keep constant. The inner flow fields and characteristics of the centrifugal pumps with different blade number are simulated and predicted in non-cavitation and cavitation conditions by using commercial code FLUENT. The impellers with different blade number are made by using rapid prototyping, and their characteristics are tested in an open loop. The comparison between prediction values and experimental results indicates that the prediction results are satisfied. The maximum discrepancy of prediction results for head, efficiency and required net positive suction head are 4.83%, 3.9% and 0.36 m, respectively. The flow analysis displays that blade number change has an important effect on the area of low pressure region behind the blade inlet and jet-wake structure in impellers. With the increase of blade number, the head of the model pumps increases too, the variable regulation of efficiency and cavitation characteristics are complicated, but there are optimum values of blade number for each one. The research results are helpful for hydraulic design of centrifugal pump.
基金Project(51179075)supported by the National Natural Science Foundation of ChinaProject(BK20131256)supported by the Natural Science Funds of Jiangsu Province,ChinaProject supported by the Priority Academic Program Development of Jiangsu High Education Institutions,China
文摘The size of impeller reflux holes for centrifugal pump has influence on the pressure distribution of front and rear shrouds and rear pump chamber, as well as energy characteristics of whole pump and axial force. Low specific-speed centrifugal pump with Q=12.5 m3/h, H=60 m, n=2950 r/min was selected to be designed with eight axial reflux balance holes with 4.5 mm in diameter. The simulated Q-H curve and net positive suction head(NPSH) were in good agreement with experimental results, which illustrated that centrifugal pump with axial reflux balance holes was superior in the cavitation characteristic; however, it showed to little superiority in head and efficiency. The pressure in rear pump chamber at 0.6 times rate flow is 29.36% of pressure difference between outlet and inlet, which reduces to 29.10% at rate flow and 28.33% at 1.4 times rate flow. As the whole, the pressure distribution on front and rear shrouds from simulation results is not a standard parabola, and axial force decreases as flow rate increases. Radical reflux balance holes chosen to be 5.2 mm and 5.9 mm in diameter were further designed with other hydraulic parts unchanged. With structural grids adopted for total flow field, contrast numerical simulation on internal flow characteristics was conducted based on momentum equations and standard turbulence model(κ-ε). It is found that axial force of pump with radical reflux balance holes of5.2 mm and 5.9 mm in diameter is significantly less than that with radical reflux balance holes of 4.5 mm in diameter. Better axial force balance is obtained as the ratio of area of reflux balance holes and area of sealing ring exceeds 6.
基金supported by National Natural Science Foundation of China (Grant Nos. 51279069,51109093)Jiangsu Provincial Natural Science Foundation of China (Grant Nos. BK2011503,BK2011505)
文摘The existing research of the deep-well centrifugal pump mainly focuses on reduce the manufacturing cost and improve the pump performance, and how to combine above two aspects together is the most difficult and important topic. In this study, the performances of the deep-well centrifugal pump with four different impeller outlet widths are studied by the numerical, theoretical and experimental methods in this paper. Two stages deep-well centrifugal pump equipped with different impellers are simulated employing the commercial CFD software to solve the Navier-Stokes equations for three-dimensional incompressible steady flow. The sensitivity analyses of the grid size and turbulence model have been performed to improve numerical accuracy. The flow field distributions are acquired and compared under the design operating conditions, including the static pressure, turbulence kinetic energy and velocity. The prototype is manufactured and tested to certify the numerical predicted performance. The numerical results of pump performance are higher than the test results, but their change trends have an acceptable agreement with each other. The performance results indicted that the oversize impeller outlet width leads to poor pump performances and increasing shaft power. Changing the performance of deep-well centrifugal pump by alter impeller outlet width is practicable and convenient, which is worth popularizing in the engineering application. The proposed research enhances the theoretical basis of pump design to improve the performance and reduce the manufacturing cost of deep-well centrifugal pump.
基金Supported by Jiangsu Provincical Natural Science Foundation of China(Grant No.BK20140554)National Natural Science Foundation of China(Grant No.51409123)+2 种基金China Postdoctoral Science Foundation(Grant No.2015T80507)Innovation Project for Postgraduates of Jiangsu Province,China(Grant No.KYLX15_1066)the Priority Academic Program Development of Jiangsu Higher Education Institutions,China(PAPD)
文摘In order to widen the high-efficiency operating range of a low-specific-speed centrifugal pump, an optimization process for considering efficiencies under 1.0Qd and 1.4Qd is proposed. Three parameters, namely, the blade outlet width b2, blade outlet angle β2, and blade wrap angle φ, are selected as design variables. Impellers are generated using the optimal Latin hypercube sampling method. The pump efficiencies are calculated using the software CFX 14.5 at two operating points selected as objectives. Surrogate models are also constructed to analyze the relationship between the objectives and the design variables. Finally, the particle swarm optimization algorithm is applied to calculate the surrogate model to determine the best combination of the impeller parameters. The results show that the performance curve predicted by numerical simulation has a good agreement with the experimental results. Compared with the efficiencies of the original impeller, the hydraulic efficiencies of the optimized impeller are increased by 4.18% and 0.62% under 1.0Qd and 1.4Qd, respectively. The comparison of inner flow between the original pump and optimized one illustrates the improvement of performance. The optimization process can provide a useful reference on performance improvement of other pumps, even on reduction of pressure fluctuations.
基金supported by National Outstanding Young Scientists Founds of China (Grant No. 50825902)Jiangsu Provincial Innovative Scholars "Climbing" Project of China (Grant No. BK 2009006)+1 种基金National Natural Science Foundation of China (Grant No. 50979034)Jiangsu Provincial Project for Innovative Postgraduates of China (Grant No. CX10B_262Z)
文摘The existing research for unsteady flow field and the corresponding flow induced vibration analysis of centrifugal pump are mainly carried out respectively without considering the interaction between fluid and structure. The ignorance of fluid structure interaction (FSI) means that the energy transfer between fluid and structure is neglected. To some extent, the accuracy and reliability of unsteady flow and rotor deflection analysis should be affected by this interaction mechanism. In this paper, a combined calculation between two executables for turbulent flow and vibrating structure was established using two-way coupling method to study the effect of FSI. Pressure distributions, radial forces, rotor deflection and equivalent stress are analyzed. The results show that the FSI effect to pressure distribution in flow field is complex. The pressure distribution is affected not only around impeller outlet where different variation trends of pressure values with and without FSI appear according to different relative positions between blade and cutwater, but also in the diffusion section of volute. Variation trends of peak values of radial force amplitude calculated with and without FSI are nearly same under high flow rate and designed conditions while the peak value with FSI is slightly smaller, and differently, the peak value with FSI is larger with low flow rate. In addition, the effect of FSI on the angle of radial force is quite complex, especially under 0.5Q condition. Fluctuation of radial deflection of the rotor has obvious four periods, of which the extent is relatively small under design condition and is relatively large under off-design condition. Finally, fluctuations of equivalent stress with time are obvious under different conditions, and stress value is small. The proposed research establishes the FSI calculation method for centrifugal pump analysis, and ensures the existing affect by fluid structure interaction.
基金supported by National Natural Science Foundation of China (Grant No. 50879080, Grant No. 50609025)Zhejiang Provincial Natural Science Foundation of China (Grant No. Y1100013,Grant No. R1100530)
文摘Centrifugal pumps always work under steady conditions,and many researches focus on the steady operation.But transient conditions,such as sudden startup and shutdown,are inevitable.The researches on the inner flow of centrifugal pumps under transient conditions have been done,and they show that the transient operation is different from the steady operation.In order to research the evolution of unsteady flow in a centrifugal pump under transient conditions,and to investigate the mechanism of transient effects by analyzing the unsteady flow in a centrifugal pump,the external characteristic experiment and the internal flow numerical calculation of the centrifugal pump with an open impeller during startup is presented.The relationships of the rotation speed,capacity and head between start-time are obtained by the external characteristics experiment.The numerical calculations under startup process are carried out by using the k-e model and N-S equation.The distribution of velocity and pressure in the inner channel of the tested pump was obtained by choosing fourteen start-time points and twelve geometrical points in the impeller channel during startup.The calculation results show that the velocity and the pressure increase linearly with the start-time before rotation's speed gets steady,then changes almost horizontally after rotation speed becomes steady,then fluctuates until being steady.The internal flow characteristics are in good agreement with the external characteristic experimental results and numerical calculation.The simulation methods and results make the basis for the diagnosis and optimization of under flow in the centrifugal pump during transient operation.
基金supported by National Natural Science Foundation of China (Grant Nos. 51139007, 51079151, 51079152)Research Fundfor the Doctoral Program of Higher Education of China (Grant No. 0100008110012)
文摘The current research of large eddy simulation (LES) of turbulent flow in pumps mainly concentrates in applying conventional subgrid-scale (SGS) model to simulate turbulent flow, which aims at obtaining the flow field in pump. The selection of SGS model is usually not considered seriously, so the accuracy and efficiency of the simulation cannot be ensured. Three SGS models including Smagorinsky-Lilly model, dynamic Smagorinsky model and dynamic mixed model are comparably studied by using the commercial CFD code Fluent combined with its user define function. The simulations are performed for the turbulent flow in a centrifugal pump impeller. The simulation results indicate that the mean flows predicted by the three SGS models agree well with the experimental data obtained from the test that detailed measurements of the flow inside the rotating passages of a six-bladed shrouded centrifugal pump impeller performed using particle image velocimetry (PIV) and laser Doppler velocimetry (LDV). The comparable results show that dynamic mixed model gives the most accurate results for mean flow in the centrifugal pump impeller. The SGS stress of dynamic mixed model is decompose into the scale similar part and the eddy viscous part. The scale similar part of SGS stress plays a significant role in high curvature regions, such as the leading edge and training edge of pump blade. It is also found that the dynamic mixed model is more adaptive to compute turbulence in the pump impeller. The research results presented is useful to improve the computational accuracy and efficiency of LES for centrifugal pumps, and provide important reference for carrying out simulation in similar fluid machineries.
基金Supported by Research and Innovation Project for College Graduates of Jiangsu Province of China(Grant No.CXZZ13_0673)National Natural Science Foundation of China(Grant No.51009072)+1 种基金National Science&Technology Pillar Program of China(Grant No.2011BAF14B04)State Key Program of National Natural Science Foundation of China(Grant No.51239005)
文摘With the increasing noise pollution, low noise optimization of centrifugal pimps has become a hot topic. However, experimental study on this problem is unacceptable for industrial applications due to unsustainable cost. A hybrid method that couples computational fluid dynamics (CFD) with computational aeroacoustic software is used to predict the flow-induced noise of pumps in order to minimize the noise of centrifugal pumps in actual projects. Under Langthjem's assumption that the blade surface pressure is the main flow-induced acoustic source in centrifugal pumps, the blade surface pressure pulsation is considered in terms of the acoustical sources and simulated using CFX software. The pressure pulsation and noise distribution in the near-cutoff region are examined for the blade-passing frequency (BPF) noise, and the sound pressure level (SPL) reached peaks near the cutoff that corresponded with the pressure pulsation in this region. An experiment is performed to validate this prediction. Four hydrophones are fixed to the inlet and outlet ports of the test pump to measure the flow-induced noise from the four-port model. The simulation results for the noise are analyzed and compared with the experimental results. The variation in the calculated noise with changes in the flow agreed well with the experimental results. When the flow rate was increased, the SPL first decreased and reached the minimum near the best efficient point (BEP); it then increased when the flow rate was further increased. The numerical and experimental results confirmed that the BPF noise generated by a blade-rotating dipole roughly reflects the acoustic features of centrifugal pumps. The noise simulation method in current study has a good feasibility and suitability, which could be adopted in engineering design to predict and optimize the hydroacoustic behavior of centrifugal pumps.
基金supported by National Natural Science Foundation of China(Grant Nos.51176088,51179090)National Basic Research Program of China(973 Program,Grant No.2009CB724304)+1 种基金General Financial Grant from the China Postdoctoral Science Foundation(Grant No.2011M500315)Open Research Fund Program of State Key Laboratory of Hydroscience and Engineering of China(Grant No.sklhse-2012-E-02)
文摘The existing research on improving the hydraulic performance of centrifugal pumps mainly focuses on the design method and the parameter optimization. The traditional design method for centrifugal impellers relies more on experience of engineers that typically only satisfies the continuity equation of the fluid. In this study, on the basis of the direct and inverse iteration design method which simultaneously solves the continuity and motion equations of the fluid and shapes the blade geometry by controlling the wrap angle, three centrifugal pump impellers are designed by altering blade wrap angles while keeping other parameters constant. The three-dimensional flow fields in three centrifugal pumps are numerically simulated, and the simulation results illustrate that the blade with larger wrap angle has more powerful control ability on the flow pattern in impeller. The three pumps have nearly the same pressure distributions at the small flow rate, but the pressure gradient increase in the pump with the largest wrap angle is smoother than the other two pumps at the design and large flow rates. The pump head and efficiency are also influenced by the blade wrap angle. The highest head and efficiency are also observed for the largest angle. An experiment rig is designed and built to test the performance of the pump with the largest wrap angle. The test results show that the wide space of its efficiency area and the stability of its operation ensure the excellent performance of the design method and verify the numerical analysis. The analysis on influence of the blade wrap angle for centrifugal pump performance in this paper can be beneficial to the optimization design of the centrifugal pump.
基金supported by National Natural Science Foundation of China(Grant Nos.51076144,51276172)Zhejiang Provincial Natural Science Foundation of China(Grant Nos.R1100530,LY12E06002)National Basic Research Program of China(973 Program,Grant No.2009CB724303)
文摘The transient behavior of centrifugal pumps during transient operating periods, such as startup and stopping, has drawn more and more attention recently because of urgent needs in engineering. Up to now, almost all the existing studies on this behavior are limited to using water as working fluid. The study on the transient behavior related to solid-liquid two-phase flow has not been seen yet. In order to explore the transient characteristics of a high specific-speed centrifugal pump during startup period delivering the pure water and solid-liquid two-phase flow, the transient flows inside the pump are numerically simulated using the dynamic mesh method. The variable rotational speed and flow rate with time obtained from experiment are best fitted as the function of time, and are written into computational fluid dynamics (CFD) code-FLUENT by using a user defined function. The predicted heads are compared with experimental results when pumping pure water. The results show that the difference in the transient performance during startup period is very obvious between water and solid-liquid two-phase flow during the later stage of startup process. Moreover, the time for the solid-liquid two-phase flow to achieve a stable condition is longer than that for water. The solid-liquid two-phase flow results in a higher impeller shaft power, a larger dynamic reaction force, a more violent fluctuation in pressure and a reduced stable pressure rise comparing with water. The research may be useful to tmderstanding on the transient behavior of a centrifugal pump under a solid-liquid two-phase flow during startup period.
基金supported by National Outstanding Young Scientists Founds of China (Grant No. 50825902)National Natural Science Foundation of China (Grant No. 50509009)
文摘Performance prediction for centrifugal pumps is now mainly based on numerical calculation and most of the studies merely focus on one model. Therefore, the research results are not representative. To make an improvement of numerical calculation method and performance prediction for centrifugal pumps, performance of six centrifugal pump models at design flow rate and off design flow rates, whose specific speed are different, were simulated by using commercial code FLUENT. The standard k-t turbulence model and SIMPLEC algorithm were chosen in FLUENT. The simulation was steady and moving reference frame was used to consider the impeller-volute interaction. Also, how to dispose the gap between impeller and volute was presented and the effect of grid number was considered. The characteristic prediction model for centrifugal pumps is established according to the simulation results. The head and efficiency of the six models at different flow rates are predicted and the prediction results are compared with the experiment results in detail. The comparison indicates that the precision of head and efficiency prediction are all less than 5%. The flow analysis indicates that flow change has an important effect on the location and area of low pressure region behind the blade inlet and the direction of velocity at impeller inlet. The study shows that using FLUENT simulation results to predict performance of centrifugal pumps is feasible and accurate. The method can be applied in engineering practice.
基金supported by National Natural Science Foundation of China(Grant No. 51076144)Zhejiang Provincial Key Science Foundation of China(Grant No. 2009C13006)
文摘The law governing the movement of particles in the centrifugal pump channel is complicated; thus, it is difficult to examine the solid-liquid two-phase turbulent flow in the pump. Consequently, the solid-liquid two-phase pump is designed based only on the unary theory. However, the obvious variety of centrifugal-pump internal flow appears because of the existence of solid phase, thus changing pump performance. Therefore, it is necessary to establish the flow characteristics of the solid-liquid two-phase pump. In the current paper, two-phase numerical simulation and centrifugal pump performance tests are carried out using different solid-particle diameters and two-phase mixture concentration conditions. Inner flow features are revealed by comparing the simulated and experimental results. The comparing results indicate that the influence of the solid-phase characteristics on centrifugal-pump performance is small when the flow rate is low, specifically when it is less than 2 m3/h. The maximum efficiency declines, and the best efficiency point tends toward the low flow-rate direction along with increasing solid-particle diameter and volume fraction, leading to reduced pump steady efficient range. The variation tendency of the pump head is basically consistent with that of the efficiency. The efficiency and head values of the two-phase mixture transportation are even larger than those of pure-water transportation under smaller particle diameter and volume fraction conditions at the low-flow-rate region. The change of the particle volume fraction has a greater effect on the pump performance than the change in the particle diameter. The experimental values are totally smaller than the simulated values. This research provides the theoretical foundation for the optimal design of centrifugal pump.
基金This project is supported by National Natural Science Foundation of China (No.50105018) and Provincial Natural Science Foundation of Zhejiang of China (No.501119).
文摘The experimental study is carried out on high-speed centrifugal pumps withthree different impellers. The experimental results and analysis show that high-speed centrifugalpumps with a closed complex impeller can achieve the highest efficiency and the lowest headcoefficient followed by those with half-open impeller and open-impeller, and can obtain much easilystable head-capacity characrastic curve, while those with a half-open complex impeller can't. Thecharacteristic curve with a open impeller is almost constant horizontal line before droppingsharply. The results also show that the axial clearance between pump casing and impeller caninfluence greatly on the performance of centrifugal pumps.
基金supported by National Outstanding Young Scientists Founds of China (Grant No. 50825902)National Natural Science Foundation of China (Grant No. 50979034)+2 种基金Jiangsu Provincial Innovative Scholars "Climbing" Project of China (Grant No. BK2009006)Jiangsu Provincial Natural Science Foundation of China (Grant No. BK2009218)Priority Academic Program Development of Jiangsu Higher Education Institutions of China
文摘With extensively using of centrifugal pumps,noise generation in these pumps is increasingly receiving research attention in recent years.The noise sources in centrifugal pumps are mainly composed of mechanical noise and flow-induced noise.And the study of flow-induced noise has become a hotspot and important domain in the field.The flow-induced noise closely related to the inner pressure pulses and vibration of volute in pumps,therefore,it is necessary to research the interaction and mechanism among them.To investigate the relationships,a test system is designed which includes a test loop and a measurement system.The hydrophones and pressure sensors are installed on the outlet of the pump and vibration acceleration sensors are disposed on the pump body.Via these instruments,the signals of noise,pressure pulses and vibration are collected and analyzed.The results show that the level of flow-induced noise becomes smaller as the flow increment during low flow rate operations,and it is steadily close to the design point,then it increases with the growing of flow rate in high flow rate conditions.Furthermore,there are some similar peak points in the power spectrum charts of noise,pressure pulses and vibration.The broadband noise at low flow rate is mostly focused on the region of 0-40 times shaft frequency,which is mostly made by rotating stall and vortex;while the noise at high flow rate conditions is focused on the region of 60-100 times shaft frequency,which may be mostly made by cavitations.The proposed research is of practical and academic significance to the study of noise reduction for centrifugal pumps.
基金Supported by National Natural Science Foundation of China (Grant Nos.51621061,51139007,51409247)National Science and Technology Support Project of China(Grant No.2015BAD20B01)
文摘Pressure fluctuation may cause high amplitude of vibration of double-suction centrifugal pumps, but the impact of impeller stagger angles is still not well understood. In this paper, pressure fluctuation experiments are carried out for five impeller configurations with different stagger angles by using the same test rig system. Results show that the stagger angles exert negligible effects on the characteristics of head and efficiency. The distributions of pressure fluctuations are relatively uniform along the suction chamber wall, and the maximum pressure fluctuation amplitude is reached near the suction inlet tongue region. The pressure fluctuation characteristics are affected largely by impeller rotation, whose dominant frequencies include impeller rotation frequency and its harmonic frequencies, and half blade passage frequency. The stagger angle exerts a small effect on the pressure fluctuations in the suction chamber while a great effect on the pressure fluctuation in volute casing, especially on the aspect of decreasing the amplitude on blade passage frequency. Among the tested cases, the distribution of pressure fluctuations in the volute becomes more uniform than the other impeller configurations and the level of pressure fluctuation may be reduced by up to 50% when the impeller stagger angle is close to 24° or 360°.The impeller structure pattern needs to be taken into consideration during the design period, and the halfway staggered impeller is strongly recommended.
基金This project is supported by National Natural Science Foundation of China(No.50279011).
文摘The calculation method for vane numbers is obtained on the intention that itshould have no back flow area in the flow passage of centrifugal passage. Then a criterion that thedesign of splitting vanes of centrifugal compound impeller should ensure that the back flow arearatio be the minimum is proposed. On the basis of the criterion, the slippery theory is used as oneof CFD methods to analyze the inner flow field of the impeller of various kinds of splitting vanesdesign, therefore, the optimized design of splitting vanes is obtained and which agrees with that ofsome testing results.