期刊文献+
共找到62篇文章
< 1 2 4 >
每页显示 20 50 100
Optimised CNN Architectures for Handwritten Arabic Character Recognition
1
作者 Salah Alghyaline 《Computers, Materials & Continua》 SCIE EI 2024年第6期4905-4924,共20页
Handwritten character recognition is considered challenging compared with machine-printed characters due to the different human writing styles.Arabic is morphologically rich,and its characters have a high similarity.T... Handwritten character recognition is considered challenging compared with machine-printed characters due to the different human writing styles.Arabic is morphologically rich,and its characters have a high similarity.The Arabic language includes 28 characters.Each character has up to four shapes according to its location in the word(at the beginning,middle,end,and isolated).This paper proposed 12 CNN architectures for recognizing handwritten Arabic characters.The proposed architectures were derived from the popular CNN architectures,such as VGG,ResNet,and Inception,to make them applicable to recognizing character-size images.The experimental results on three well-known datasets showed that the proposed architectures significantly enhanced the recognition rate compared to the baseline models.The experiments showed that data augmentation improved the models’accuracies on all tested datasets.The proposed model outperformed most of the existing approaches.The best achieved results were 93.05%,98.30%,and 96.88%on the HIJJA,AHCD,and AIA9K datasets. 展开更多
关键词 Optical character recognition(OCR) handwritten arabic characters deep learning
下载PDF
Chip Surface Character Recognition Based on OpenCV
2
作者 Lihang Yin 《Journal of Electronic Research and Application》 2024年第4期161-167,共7页
Chip surface character recognition is an important part of quality inspection in the field of microelectronics manufacturing.By recognizing the character information on the chip,automated production,quality control,an... Chip surface character recognition is an important part of quality inspection in the field of microelectronics manufacturing.By recognizing the character information on the chip,automated production,quality control,and data collection and analysis can be achieved.This article studies a chip surface character recognition method based on the OpenCV vision library.Firstly,the obtained chip images are preprocessed.Secondly,the template matching method is used to locate the chip position.In addition,the surface characters on the chip are individually segmented,and each character image is extracted separately.Finally,a Support Vector Machine(SVM)is used to classify and recognize characters.The results show that this method can accurately recognize the surface characters of chips and meet the requirements of chip quality inspection. 展开更多
关键词 Template matching character recognition SVM OPENCV
下载PDF
A Review of Research on Handwritten Chinese Character Recognition with Multi-Feature Fusion
3
作者 Peng Deng Guiying Yang 《Journal of Electronic Research and Application》 2024年第5期109-117,共9页
This paper analyzes the progress of handwritten Chinese character recognition technology,from two perspectives:traditional recognition methods and deep learning-based recognition methods.Firstly,the complexity of Chin... This paper analyzes the progress of handwritten Chinese character recognition technology,from two perspectives:traditional recognition methods and deep learning-based recognition methods.Firstly,the complexity of Chinese character recognition is pointed out,including its numerous categories,complex structure,and the problem of similar characters,especially the variability of handwritten Chinese characters.Subsequently,recognition methods based on feature optimization,model optimization,and fusion techniques are highlighted.The fusion studies between feature optimization and model improvement are further explored,and these studies further enhance the recognition effect through complementary advantages.Finally,the article summarizes the current challenges of Chinese character recognition technology,including accuracy improvement,model complexity,and real-time problems,and looks forward to future research directions. 展开更多
关键词 Chinese character recognition Multi-feature fusion Machine learning
下载PDF
Support Vector Machine Based Handwritten Hindi Character Recognition and Summarization
4
作者 Sunil Dhankhar Mukesh Kumar Gupta +3 位作者 Fida Hussain Memon Surbhi Bhatia Pankaj Dadheech Arwa Mashat 《Computer Systems Science & Engineering》 SCIE EI 2022年第10期397-412,共16页
In today’s digital era,the text may be in form of images.This research aims to deal with the problem by recognizing such text and utilizing the support vector machine(SVM).A lot of work has been done on the English l... In today’s digital era,the text may be in form of images.This research aims to deal with the problem by recognizing such text and utilizing the support vector machine(SVM).A lot of work has been done on the English language for handwritten character recognition but very less work on the under-resourced Hindi language.A method is developed for identifying Hindi language characters that use morphology,edge detection,histograms of oriented gradients(HOG),and SVM classes for summary creation.SVM rank employs the summary to extract essential phrases based on paragraph position,phrase position,numerical data,inverted comma,sentence length,and keywords features.The primary goal of the SVM optimization function is to reduce the number of features by eliminating unnecessary and redundant features.The second goal is to maintain or improve the classification system’s performance.The experiment included news articles from various genres,such as Bollywood,politics,and sports.The proposed method’s accuracy for Hindi character recognition is 96.97%,which is good compared with baseline approaches,and system-generated summaries are compared to human summaries.The evaluated results show a precision of 72%at a compression ratio of 50%and a precision of 60%at a compression ratio of 25%,in comparison to state-of-the-art methods,this is a decent result. 展开更多
关键词 Support vector machine(SVM) optimization PRECISION Hindi character recognition optical character recognition(OCR) automatic summarization and compression ratio
下载PDF
Arabic Optical Character Recognition:A Review 被引量:1
5
作者 Salah Alghyaline 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第6期1825-1861,共37页
This study aims to review the latest contributions in Arabic Optical Character Recognition(OCR)during the last decade,which helps interested researchers know the existing techniques and extend or adapt them accordingl... This study aims to review the latest contributions in Arabic Optical Character Recognition(OCR)during the last decade,which helps interested researchers know the existing techniques and extend or adapt them accordingly.The study describes the characteristics of the Arabic language,different types of OCR systems,different stages of the Arabic OCR system,the researcher’s contributions in each step,and the evaluationmetrics for OCR.The study reviews the existing datasets for the Arabic OCR and their characteristics.Additionally,this study implemented some preprocessing and segmentation stages of Arabic OCR.The study compares the performance of the existing methods in terms of recognition accuracy.In addition to researchers’OCRmethods,commercial and open-source systems are used in the comparison.The Arabic language is morphologically rich and written cursive with dots and diacritics above and under the characters.Most of the existing approaches in the literature were evaluated on isolated characters or isolated words under a controlled environment,and few approaches were tested on pagelevel scripts.Some comparative studies show that the accuracy of the existing Arabic OCR commercial systems is low,under 75%for printed text,and further improvement is needed.Moreover,most of the current approaches are offline OCR systems,and there is no remarkable contribution to online OCR systems. 展开更多
关键词 Arabic Optical character recognition(OCR) Arabic OCR software Arabic OCR datasets Arabic OCR evaluation
下载PDF
An on-line free handwritten Chinese character recognition method based on component cascaded HMMs 被引量:1
6
作者 Zhao Wei(赵巍) Liu Jiafeng Tang Xianglong 《High Technology Letters》 EI CAS 2005年第3期301-305,共5页
This paper presents a cascaded Hidden Markov Model (HMM), which allows state's transition, skip and duration. The cascaded HMM extends the way of HMM pattern description of Handwritten Chinese Character (HCC) and... This paper presents a cascaded Hidden Markov Model (HMM), which allows state's transition, skip and duration. The cascaded HMM extends the way of HMM pattern description of Handwritten Chinese Character (HCC) and depicts the behavior of handwritten curve more reliably in terms of the statistic probability. Hence character segmentation and labeling are unnecessary. Viterbi algorithm is integrated in the cascaded HMM after the whole sample sequence of a HCC is input. More than 26,000 component samples are used tor training 407 handwritten component HMMs. At the improved training stage 94 models of 94 Chinese characters are gained by 32,000 samples, Compared with the Segment HMMs approach, the recognition rate of this model tier the tirst candidate is 87.89% and the error rate could be reduced by 12.4%. 展开更多
关键词 chinese character recognition handwritten component HMM cascaded model
下载PDF
A Vision-Based Fingertip-Writing Character Recognition System 被引量:1
7
作者 Ching-Long Shih Wen-Yo Lee Yu-Te Ku 《Journal of Computer and Communications》 2016年第4期160-168,共9页
This paper presents a vision-based fingertip-writing character recognition system. The overall system is implemented through a CMOS image camera on a FPGA chip. A blue cover is mounted on the top of a finger to simpli... This paper presents a vision-based fingertip-writing character recognition system. The overall system is implemented through a CMOS image camera on a FPGA chip. A blue cover is mounted on the top of a finger to simplify fingertip detection and to enhance recognition accuracy. For each character stroke, 8 sample points (including start and end points) are recorded. 7 tangent angles between consecutive sampled points are also recorded as features. In addition, 3 features angles are extracted: angles of the triangle consisting of the start point, end point and average point of all (8 total) sampled points. According to these key feature angles, a simple template matching K-nearest-neighbor classifier is applied to distinguish each character stroke. Experimental result showed that the system can successfully recognize fingertip-writing character strokes of digits and small lower case letter alphabets with an accuracy of almost 100%. Overall, the proposed finger-tip-writing recognition system provides an easy-to-use and accurate visual character input method. 展开更多
关键词 Visual character recognition Fingertip Detection Template Matching K-Nearest-Neighbor Classifier FPGA
下载PDF
Research on Handwritten Chinese Character Recognition Based on BP Neural Network 被引量:1
8
作者 Zihao Ning 《Modern Electronic Technology》 2022年第1期12-32,共21页
The application of pattern recognition technology enables us to solve various human-computer interaction problems that were difficult to solve before.Handwritten Chinese character recognition,as a hot research object ... The application of pattern recognition technology enables us to solve various human-computer interaction problems that were difficult to solve before.Handwritten Chinese character recognition,as a hot research object in image pattern recognition,has many applications in people’s daily life,and more and more scholars are beginning to study off-line handwritten Chinese character recognition.This paper mainly studies the recognition of handwritten Chinese characters by BP(Back Propagation)neural network.Establish a handwritten Chinese character recognition model based on BP neural network,and then verify the accuracy and feasibility of the neural network through GUI(Graphical User Interface)model established by Matlab.This paper mainly includes the following aspects:Firstly,the preprocessing process of handwritten Chinese character recognition in this paper is analyzed.Among them,image preprocessing mainly includes six processes:graying,binarization,smoothing and denoising,character segmentation,histogram equalization and normalization.Secondly,through the comparative selection of feature extraction methods for handwritten Chinese characters,and through the comparative analysis of the results of three different feature extraction methods,the most suitable feature extraction method for this paper is found.Finally,it is the application of BP neural network in handwritten Chinese character recognition.The establishment,training process and parameter selection of BP neural network are described in detail.The simulation software platform chosen in this paper is Matlab,and the sample images are used to train BP neural network to verify the feasibility of Chinese character recognition.Design the GUI interface of human-computer interaction based on Matlab,show the process and results of handwritten Chinese character recognition,and analyze the experimental results. 展开更多
关键词 Pattern recognition Handwritten Chinese character recognition BP neural network
下载PDF
Improved Approach Based on SVM for License Plate Character Recognition
9
作者 王晓华 王晓光 《Journal of Beijing Institute of Technology》 EI CAS 2005年第4期378-381,共4页
An improved approach based on support vector machine (SVM) called the center distance ratio method is presented for license plate character recognition. First the support vectors are pre-extraeted. A minimal set cal... An improved approach based on support vector machine (SVM) called the center distance ratio method is presented for license plate character recognition. First the support vectors are pre-extraeted. A minimal set called the margin vector set, which contains all support vectors, is extracted. These margin vectors compose new training data and construct the classifier by using the general SVM optimized. The experimental resuhs show that the improved SVM method does well at correct rate and training speed. 展开更多
关键词 support vector machine(SVM) center distance ratio method margin vector support vector character recognition
下载PDF
A Novel Siamese Network for Few/Zero-Shot Handwritten Character Recognition Tasks
10
作者 Nagwa Elaraby Sherif Barakat Amira Rezk 《Computers, Materials & Continua》 SCIE EI 2023年第1期1837-1854,共18页
Deep metric learning is one of the recommended methods for the challenge of supporting few/zero-shot learning by deep networks.It depends on building a Siamese architecture of two homogeneous Convolutional Neural Netw... Deep metric learning is one of the recommended methods for the challenge of supporting few/zero-shot learning by deep networks.It depends on building a Siamese architecture of two homogeneous Convolutional Neural Networks(CNNs)for learning a distance function that can map input data from the input space to the feature space.Instead of determining the class of each sample,the Siamese architecture deals with the existence of a few training samples by deciding if the samples share the same class identity or not.The traditional structure for the Siamese architecture was built by forming two CNNs from scratch with randomly initialized weights and trained by binary cross-entropy loss.Building two CNNs from scratch is a trial and error and time-consuming phase.In addition,training with binary crossentropy loss sometimes leads to poor margins.In this paper,a novel Siamese network is proposed and applied to few/zero-shot Handwritten Character Recognition(HCR)tasks.The novelties of the proposed network are in.1)Utilizing transfer learning and using the pre-trained AlexNet as a feature extractor in the Siamese architecture.Fine-tuning a pre-trained network is typically faster and easier than building from scratch.2)Training the Siamese architecture with contrastive loss instead of the binary cross-entropy.Contrastive loss helps the network to learn a nonlinear mapping function that enables it to map the extracted features in the vector space with an optimal way.The proposed network is evaluated on the challenging Chars74K datasets by conducting two experiments.One is for testing the proposed network in few-shot learning while the other is for testing it in zero-shot learning.The recognition accuracy of the proposed network reaches to 85.6%and 82%in few-and zero-shot learning respectively.In addition,a comparison between the performance of the proposed Siamese network and the traditional Siamese CNNs is conducted.The comparison results show that the proposed network achieves higher recognition results in less time.The proposed network reduces the training time from days to hours in both experiments. 展开更多
关键词 Handwritten character recognition(HCR) few-shot learning zero-shot learning deep metric learning transfer learning contrastive loss Chars74K datasets
下载PDF
Sailfish Optimizer with Deep Transfer Learning-Enabled Arabic Handwriting Character Recognition
11
作者 Mohammed Maray Badriyya B.Al-onazi +5 位作者 Jaber S.Alzahrani Saeed Masoud Alshahrani Najm Alotaibi Sana Alazwari Mahmoud Othman Manar Ahmed Hamza 《Computers, Materials & Continua》 SCIE EI 2023年第3期5467-5482,共16页
The recognition of the Arabic characters is a crucial task incomputer vision and Natural Language Processing fields. Some major complicationsin recognizing handwritten texts include distortion and patternvariabilities... The recognition of the Arabic characters is a crucial task incomputer vision and Natural Language Processing fields. Some major complicationsin recognizing handwritten texts include distortion and patternvariabilities. So, the feature extraction process is a significant task in NLPmodels. If the features are automatically selected, it might result in theunavailability of adequate data for accurately forecasting the character classes.But, many features usually create difficulties due to high dimensionality issues.Against this background, the current study develops a Sailfish Optimizer withDeep Transfer Learning-Enabled Arabic Handwriting Character Recognition(SFODTL-AHCR) model. The projected SFODTL-AHCR model primarilyfocuses on identifying the handwritten Arabic characters in the inputimage. The proposed SFODTL-AHCR model pre-processes the input imageby following the Histogram Equalization approach to attain this objective.The Inception with ResNet-v2 model examines the pre-processed image toproduce the feature vectors. The Deep Wavelet Neural Network (DWNN)model is utilized to recognize the handwritten Arabic characters. At last,the SFO algorithm is utilized for fine-tuning the parameters involved in theDWNNmodel to attain better performance. The performance of the proposedSFODTL-AHCR model was validated using a series of images. Extensivecomparative analyses were conducted. The proposed method achieved a maximum accuracy of 99.73%. The outcomes inferred the supremacy of theproposed SFODTL-AHCR model over other approaches. 展开更多
关键词 Arabic language handwritten character recognition deep learning feature extraction hyperparameter tuning
下载PDF
Review of Optical Character Recognition for Power System Image Based on Artificial Intelligence Algorithm
12
作者 Xun Zhang Wanrong Bai Haoyang Cui 《Energy Engineering》 EI 2023年第3期665-679,共15页
Optical Character Recognition(OCR)refers to a technology that uses image processing technology and character recognition algorithms to identify characters on an image.This paper is a deep study on the recognition effe... Optical Character Recognition(OCR)refers to a technology that uses image processing technology and character recognition algorithms to identify characters on an image.This paper is a deep study on the recognition effect of OCR based on Artificial Intelligence(AI)algorithms,in which the different AI algorithms for OCR analysis are classified and reviewed.Firstly,the mechanisms and characteristics of artificial neural network-based OCR are summarized.Secondly,this paper explores machine learning-based OCR,and draws the conclusion that the algorithms available for this form of OCR are still in their infancy,with low generalization and fixed recognition errors,albeit with better recognition effect and higher recognition accuracy.Finally,this paper explores several of the latest algorithms such as deep learning and pattern recognition algorithms.This paper concludes that OCR requires algorithms with higher recognition accuracy. 展开更多
关键词 Optical character recognition artificial intelligence power system image artificial neural network machine leaning deep learning
下载PDF
Information Moment for Chinese Character Recognition
13
作者 孙农亮 李明达 +1 位作者 白霄 孟霏 《Journal of Measurement Science and Instrumentation》 CAS 2011年第2期148-151,共4页
Moment invariants firstly introduced by M. K Hu in 1962, has some shortcomings. After counting a large number of statistical distribution information of Chinese characters,the authors put forward the concept of inform... Moment invariants firstly introduced by M. K Hu in 1962, has some shortcomings. After counting a large number of statistical distribution information of Chinese characters,the authors put forward the concept of information moments and demonstrate its invariance to translation,rotation and scaling.Also they perform the experiment in which information moments compared with moment invaiants for the effects of similar Chinese characters and font recognition.At last they show the recognition rate of 88% by information moments,with 70% by moment inariants. 展开更多
关键词 information moment Chinese character recognition moment invariants
下载PDF
Optical Character Recognition Functionality Introduction in Mobile Application for Car Diary
14
作者 Ioannis Patias 《Journal of Electrical Engineering》 2017年第6期335-339,共5页
The purpose of the paper is to develop a mobile Android application--"Car Log" that gives to users the ability to track all the costs for a vehicle and the ability to add fuel cost data by taking a photo of the cash... The purpose of the paper is to develop a mobile Android application--"Car Log" that gives to users the ability to track all the costs for a vehicle and the ability to add fuel cost data by taking a photo of the cash receipt from the respective gas station where the charging was performed. OCR (optical character recognition) is the conversion of images of typed, handwritten or printed text into machine-encoded text. Once we have the text machine-encoded we can further use it in machine processes, like translation, or extracted, meaning text-to-speech transformed, helping people in simple everyday tasks. Users of the application will be able to enter other completely different costs grouped into categories and other charges. Car Log application quickly and easily can visualize, edit and add different costs for a ear. It also supports the ability to add multiple profiles, by entering data for all ears in a single family, for example, or a small business. The test results are positive thus we intend to further develop a cloud ready application. 展开更多
关键词 Optical character recognition mobile application car diary.
下载PDF
Fireworks Optimization with Deep Learning-Based Arabic Handwritten Characters Recognition Model
15
作者 Abdelwahed Motwakel Badriyya B.Al-onazi +5 位作者 Jaber S.Alzahrani Ayman Yafoz Mahmoud Othman Abu Sarwar Zamani Ishfaq Yaseen Amgad Atta Abdelmageed 《Computer Systems Science & Engineering》 2024年第5期1387-1403,共17页
Handwritten character recognition becomes one of the challenging research matters.More studies were presented for recognizing letters of various languages.The availability of Arabic handwritten characters databases wa... Handwritten character recognition becomes one of the challenging research matters.More studies were presented for recognizing letters of various languages.The availability of Arabic handwritten characters databases was confined.Almost a quarter of a billion people worldwide write and speak Arabic.More historical books and files indicate a vital data set for many Arab nationswritten in Arabic.Recently,Arabic handwritten character recognition(AHCR)has grabbed the attention and has become a difficult topic for pattern recognition and computer vision(CV).Therefore,this study develops fireworks optimizationwith the deep learning-based AHCR(FWODL-AHCR)technique.Themajor intention of the FWODL-AHCR technique is to recognize the distinct handwritten characters in the Arabic language.It initially pre-processes the handwritten images to improve their quality of them.Then,the RetinaNet-based deep convolutional neural network is applied as a feature extractor to produce feature vectors.Next,the deep echo state network(DESN)model is utilized to classify handwritten characters.Finally,the FWO algorithm is exploited as a hyperparameter tuning strategy to boost recognition performance.Various simulations in series were performed to exhibit the enhanced performance of the FWODL-AHCR technique.The comparison study portrayed the supremacy of the FWODL-AHCR technique over other approaches,with 99.91%and 98.94%on Hijja and AHCD datasets,respectively. 展开更多
关键词 Arabic language handwritten character recognition deep learning CLASSIFICATION parameter tuning
下载PDF
Printed Arabic Character Recognition Using HMM 被引量:3
16
作者 AbbasH.Hassin Xiang-LongTang Jia-FengLiu WeiZhao 《Journal of Computer Science & Technology》 SCIE EI CSCD 2004年第4期538-543,共6页
The Arabic Language has a very rich vocabulary. More than 200 million peoplespeak this language as their native speaking, and over 1 billion people use it in severalreligion-related activities. In this paper a new tec... The Arabic Language has a very rich vocabulary. More than 200 million peoplespeak this language as their native speaking, and over 1 billion people use it in severalreligion-related activities. In this paper a new technique is presented for recognizing printedArabic characters. After a word is segmented, each character/word is entirely transformed into afeature vector. The features of printed Arabic characters include strokes and bays in variousdirections, endpoints, intersection points, loops, dots and zigzags. The word skeleton is decomposedinto a number of links in orthographic order, and then it is transferred into a sequence of symbolsusing vector quantization. Single hidden Markov model has been used for recognizing the printedArabic characters. Experimental results show that the high recognition rate depends on the number ofstates in each sample. 展开更多
关键词 pattern recognition off-line Arabic character recognition FEATUREEXTRACTION hidden markov models
原文传递
Character recognition based on non-linear multi-projection profiles measure 被引量:3
17
作者 K C SANTOSH Laurent WENDLING 《Frontiers of Computer Science》 SCIE EI CSCD 2015年第5期678-690,共13页
In this paper, we study a method for isolated handwritten or hand-printed character recognition using dynamic programming for matching the non-linear multi- projection profiles that are produced from the Radon transfo... In this paper, we study a method for isolated handwritten or hand-printed character recognition using dynamic programming for matching the non-linear multi- projection profiles that are produced from the Radon transform. The idea is to use dynamic time warping (DTW) algorithm to match corresponding pairs of the Radon features for all possible projections. By using DTW, we can avoid compressing feature matrix into a single vector which may miss information. It can handle character images in different shapes and sizes that are usually happened in natural hand- writing in addition to difficulties such as multi-class similarities, deformations and possible defects. Besides, a comprehensive study is made by taking a major set of state-of- the-art shape descriptors over several character and numeral datasets from different scripts such as Roman, Devanagari, Oriya, Bangla and Japanese-Katakana including symbol. For all scripts, the method shows a generic behaviour by providing optimal recognition rates but, with high computational cost. 展开更多
关键词 character recognition the Radon features dynamic programming shape descriptors
原文传递
Parallel compact integration in handwritten Chinese character recognition 被引量:1
18
作者 WANGChunheng XIAOBaihua DAIRuwei 《Science in China(Series F)》 2004年第1期89-96,共8页
In this paper, a new parallel compact integration scheme based on multi-layer perceptron (MLP) networks is proposed to solve handwritten Chinese character recognition (HCCR) problems. The idea of metasynthesis is appl... In this paper, a new parallel compact integration scheme based on multi-layer perceptron (MLP) networks is proposed to solve handwritten Chinese character recognition (HCCR) problems. The idea of metasynthesis is applied to HCCR, and compact MLP network classifier is defined. Human intelligence and computer capabilities are combined together effectively through a procedure of two-step supervised learning. Compared with previous integration schemes, this scheme is characterized with parallel compact structure and better performance. It provides a promising way for applying MLP to large vocabulary classification. 展开更多
关键词 handwritten Chinese character recognition (HCCR) METASYNTHESIS multi-layer perceptron (MLP) compact MLP network classifier supervised learning.
原文传递
CHARACTER DETECTION AND RECOGNITION SYSTEM OF BEER BOTTLES 被引量:1
19
作者 Shen Bangxing Wu Wenjun +2 位作者 Zhang Yepeng Shen Gang Yang Liangen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2005年第3期467-469,共3页
An optical imaging system and a configuration characteristic algorithm are presented to reduce the difficulties in extracting intact characters image with weak contrast, in recognizing characters on fast moving beer b... An optical imaging system and a configuration characteristic algorithm are presented to reduce the difficulties in extracting intact characters image with weak contrast, in recognizing characters on fast moving beer bottles. The system consists of a hardware subsystem, including a rotating device, CCD, 16 mm focus lens, a frame grabber card, a penetrating lighting and a computer, and a software subsystem. The software subsystem performs pretreatment, character segmentation and character recognition. In the pretreatment, the original image is filtered with preset threshold to remove isolated spots. Then the horizontal projection and the vertical projection are used respectively to retrieve the character segmentation. Subsequently, the configuration characteristic algorithm is applied to recognize the characters. The experimental results demonstrate that this system can recognize the characters on beer bottles accurately and effectively; the algorithm is proven fast, stable and robust, making it suitable in the industrial environment. 展开更多
关键词 Optical imaging system Raised character recognition Configuration characteristic algorithm
下载PDF
A New Linguistic Decoding Method for Online Handwritten Chinese Character Recognition
20
作者 徐志明 王晓龙 《Journal of Computer Science & Technology》 SCIE EI CSCD 2000年第6期597-603,共7页
This paper presents a new linguistic decoding method for online handwritten Chinese character recognition. The method employs a hybrid language model which combines N-gram and linguistic rules by rule quantification t... This paper presents a new linguistic decoding method for online handwritten Chinese character recognition. The method employs a hybrid language model which combines N-gram and linguistic rules by rule quantification technique. The linguistic decoding algorithm consists of three stages: word lattice construction, the optimal sentence hypothesis search and self-adaptive learning mechanism. The technique has been applied to palmtop computer's online handwritten Chinese character recognition. Samples containing millions of characters were used to test the linguistic decoder. In the open experiment, accuracy rate up to 92% is achieved, and the error rate is reduced by 68%. 展开更多
关键词 handwritten Chinese character recognition N-GRAM linguistic decoding
原文传递
上一页 1 2 4 下一页 到第
使用帮助 返回顶部