Both numerical simulation and theoretical analysis of seawater intrusion in coastal regions are of great theoretical importance in environmental sciences. The mathematical model can be described as a problem of the in...Both numerical simulation and theoretical analysis of seawater intrusion in coastal regions are of great theoretical importance in environmental sciences. The mathematical model can be described as a problem of the initial boundary values for a system of 3-dimensional nonlinear parabolic partial differential equations, one being the pressure flow equation and the other is the concentration convection-dispersion equation of the salt contained. For a generic case of a 3-dimensional bounded region, a backward-difference time-stepping scheme is defined. It approximates the pressure by the standard Galerkin procedure and the concentration by a Galerkin method of charederistics, where calculus of variations, theory of prior estimates and techniques are made use of Optimal order estimates in H1 norm are derived for the errors in the approximate solution.展开更多
文摘Both numerical simulation and theoretical analysis of seawater intrusion in coastal regions are of great theoretical importance in environmental sciences. The mathematical model can be described as a problem of the initial boundary values for a system of 3-dimensional nonlinear parabolic partial differential equations, one being the pressure flow equation and the other is the concentration convection-dispersion equation of the salt contained. For a generic case of a 3-dimensional bounded region, a backward-difference time-stepping scheme is defined. It approximates the pressure by the standard Galerkin procedure and the concentration by a Galerkin method of charederistics, where calculus of variations, theory of prior estimates and techniques are made use of Optimal order estimates in H1 norm are derived for the errors in the approximate solution.