In the contemporary era,the global expansion of electrical grids is propelled by various renewable energy sources(RESs).Efficient integration of stochastic RESs and optimal power flow(OPF)management are critical for n...In the contemporary era,the global expansion of electrical grids is propelled by various renewable energy sources(RESs).Efficient integration of stochastic RESs and optimal power flow(OPF)management are critical for network optimization.This study introduces an innovative solution,the Gaussian Bare-Bones Levy Cheetah Optimizer(GBBLCO),addressing OPF challenges in power generation systems with stochastic RESs.The primary objective is to minimize the total operating costs of RESs,considering four functions:overall operating costs,voltage deviation management,emissions reduction,voltage stability index(VSI)and power loss mitigation.Additionally,a carbon tax is included in the objective function to reduce carbon emissions.Thorough scrutiny,using modified IEEE 30-bus and IEEE 118-bus systems,validates GBBLCO’s superior performance in achieving optimal solutions.Simulation results demonstrate GBBLCO’s efficacy in six optimization scenarios:total cost with valve point effects,total cost with emission and carbon tax,total cost with prohibited operating zones,active power loss optimization,voltage deviation optimization and enhancing voltage stability index(VSI).GBBLCO outperforms conventional techniques in each scenario,showcasing rapid convergence and superior solution quality.Notably,GBBLCO navigates complexities introduced by valve point effects,adapts to environmental constraints,optimizes costs while considering prohibited operating zones,minimizes active power losses,and optimizes voltage deviation by enhancing the voltage stability index(VSI)effectively.This research significantly contributes to advancing OPF,emphasizing GBBLCO’s improved global search capabilities and ability to address challenges related to local minima.GBBLCO emerges as a versatile and robust optimization tool for diverse challenges in power systems,offering a promising solution for the evolving needs of renewable energy-integrated power grids.展开更多
This article reports a first case of calcinosis circumscripta in a captive African cheetah(Acinonyx jubatus).Histopathology demonstrated well defined multiple cystic structures containing granular,dark basophilic mate...This article reports a first case of calcinosis circumscripta in a captive African cheetah(Acinonyx jubatus).Histopathology demonstrated well defined multiple cystic structures containing granular,dark basophilic materials with peripheral granulomatous reaction,characterized by presence of multinucleated giant cells surrounded by a varying amounts of fibrous connective tissues.Special staining with von Kossa revealed black stained deposits confirming the presence of calcium salts.展开更多
Cheetahs and other apex predators are threatened by human-wildlife conflict and habitat degradation. Bush encroachment creates one of the biggest forms of habitat change, thus it is important to understand the impact ...Cheetahs and other apex predators are threatened by human-wildlife conflict and habitat degradation. Bush encroachment creates one of the biggest forms of habitat change, thus it is important to understand the impact this has on habitat use. We investigated habitat preferences of five male cheetahs in Namibian farmlands degraded by bush encroachment. Cheetahs were tracked using satellite based Global System for Mobile (GSM) collars providing a higher resolution on ranging behavior. We aimed to investigate: 1) habitat characteristics;2) evidence for habitat selection;3) temporal activity partitioning;and 4) whether revisits to locations were related to habitat type. There were differences in habitat characteristics, showing that cheetahs were able to utilise different habitats. Fecal pellet counts revealed that warthog, oryx, scrub hare and kudu were most abundant. The cheetahs spent more time in high visibility shrubland, suggesting they selected rewarding patches within predominantly bush-encroached landscapes. The usage in marginal habitat was strikingly influenced by habitat type, with both previously cleared and open vegetated areas showing high proportions in edge use. Individuals exhibited significant temporal activity partitioning, showing peaks between late afternoon and early morning hours. This finding could be key to managing human-wildlife conflict by showing that increased protection such as the use of herders and livestock guarding dogs should be used as mitigation methods to minimize the impact of cheetah specific temporal patterns at all times as defined in this research. Visits to the same locations were not correlated to habitat type;revisits may be dictated by other reasons such as social interaction, prey density or avoidance of other predators. Findings from this study will help build existing knowledge on the effects bush encroachment has on cheetah habitat preference.展开更多
The quality of skeleton system for the cheetah robot goes hand in hand with its bionic result of its shape, structure and functions. In view of the skeleton system constitution and structural characteristic of the che...The quality of skeleton system for the cheetah robot goes hand in hand with its bionic result of its shape, structure and functions. In view of the skeleton system constitution and structural characteristic of the cheetah, the team applied structure design, stimulation analysis and parameter optimization to developing the cheetah robot. In addition, after the invention of cheetah robot's anterior lumbar vertebra based on its functional attribute and connectivity attribute, the Solidworks Simulation was utilized to analyze the design, according to which improvement on the lumbar vertebra was made. Plus, the advantages of the CAD and CAE made the high efficiency of design work and high quality of the cheetah robot possible.展开更多
Neurological signs like ataxia and hind limb paresis have often been reported in cheetahs (Acinonyx jubatus), lions (Panthera leo) and snow leopards (Panthera unica). As a cause, copper and Vitamin A deficiencies have...Neurological signs like ataxia and hind limb paresis have often been reported in cheetahs (Acinonyx jubatus), lions (Panthera leo) and snow leopards (Panthera unica). As a cause, copper and Vitamin A deficiencies have been discussed. Many cases were seen in cheetahs and lions in the United Arab Emirates (UAE) within the last years. The aim of this study was to find correlations between nutrition, serum, and tissue levels, focusing on copper and Vitamin A. Blood and tissue samples of affected and unaffected animals were analyzed at the Central Veterinary Research Laboratory in Dubai, UAE. Animals were split into three different groups (A, B and C) according to their diets. Minerals were determined in serum, tissue, food and water samples, and serum was additionally analyzed for Vitamin A and E. Liver, kidney and spinal cord samples were taken for histopathological investigations. Mean serum copper and liver copper levels of animals fed pure chicken muscle meat without supplements were significantly lower (0.41 ± 0.71 μM/L;2.16 ± 0.95 ppm wet weight) than in animals fed a whole carcass prey diet (12.16 ± 3.42 μM/L;16.01 ± 17.51 ppm wet weight) (p < 0.05). Serum Vitamin A and E levels were highest in animals fed whole carcass prey diets (1.85 ± 0.68;27.31 ± 5.69 μM/L). Liver zinc concentrations were highest in animals fed pure chicken meat only (43.75 ± 16.48 ppm wet weight). In histopathology, demyelination of the spinal cord was found in all of the affected animals and most commonly when fed a diet based on poultry without supplements.展开更多
Passive dynamics is always one of research emphases of the legged robots. Studies have proved that cheetah robot could achieve stably passive bounding motion under proper initial conditions in the ideal case. However,...Passive dynamics is always one of research emphases of the legged robots. Studies have proved that cheetah robot could achieve stably passive bounding motion under proper initial conditions in the ideal case. However, the actual robot must have energy dissipation because of friction and collision compared with the theoretical model. This paper aims to propose a control method that can drive the cheetah robot running in passive bounding gait. First, a sagittal-plane model with a rigid torso and two compliant legs is introduced to capture the dynamics of robot bounding. Numerical return map studies of the bounding model reveal that there exists a large variety of passively cyclic bounding motions (fixed points). Based on the distribution law of fixed points, an open-loop control method including touchdown angle control strategy and leg length control strategy is put forward. At last, prototype of the cheetah robot is designed and manufactured, and locomotion experiment are carried out. The experiment results show that the cheetah robot can achieve a stable bounding motion at different speeds with the proposed control method.展开更多
基金supported by the Deanship of Postgraduate Studies and Scientific Research at Majmaah University in Saudi Arabia under Project Number(ICR-2024-1002).
文摘In the contemporary era,the global expansion of electrical grids is propelled by various renewable energy sources(RESs).Efficient integration of stochastic RESs and optimal power flow(OPF)management are critical for network optimization.This study introduces an innovative solution,the Gaussian Bare-Bones Levy Cheetah Optimizer(GBBLCO),addressing OPF challenges in power generation systems with stochastic RESs.The primary objective is to minimize the total operating costs of RESs,considering four functions:overall operating costs,voltage deviation management,emissions reduction,voltage stability index(VSI)and power loss mitigation.Additionally,a carbon tax is included in the objective function to reduce carbon emissions.Thorough scrutiny,using modified IEEE 30-bus and IEEE 118-bus systems,validates GBBLCO’s superior performance in achieving optimal solutions.Simulation results demonstrate GBBLCO’s efficacy in six optimization scenarios:total cost with valve point effects,total cost with emission and carbon tax,total cost with prohibited operating zones,active power loss optimization,voltage deviation optimization and enhancing voltage stability index(VSI).GBBLCO outperforms conventional techniques in each scenario,showcasing rapid convergence and superior solution quality.Notably,GBBLCO navigates complexities introduced by valve point effects,adapts to environmental constraints,optimizes costs while considering prohibited operating zones,minimizes active power losses,and optimizes voltage deviation by enhancing the voltage stability index(VSI)effectively.This research significantly contributes to advancing OPF,emphasizing GBBLCO’s improved global search capabilities and ability to address challenges related to local minima.GBBLCO emerges as a versatile and robust optimization tool for diverse challenges in power systems,offering a promising solution for the evolving needs of renewable energy-integrated power grids.
文摘This article reports a first case of calcinosis circumscripta in a captive African cheetah(Acinonyx jubatus).Histopathology demonstrated well defined multiple cystic structures containing granular,dark basophilic materials with peripheral granulomatous reaction,characterized by presence of multinucleated giant cells surrounded by a varying amounts of fibrous connective tissues.Special staining with von Kossa revealed black stained deposits confirming the presence of calcium salts.
文摘Cheetahs and other apex predators are threatened by human-wildlife conflict and habitat degradation. Bush encroachment creates one of the biggest forms of habitat change, thus it is important to understand the impact this has on habitat use. We investigated habitat preferences of five male cheetahs in Namibian farmlands degraded by bush encroachment. Cheetahs were tracked using satellite based Global System for Mobile (GSM) collars providing a higher resolution on ranging behavior. We aimed to investigate: 1) habitat characteristics;2) evidence for habitat selection;3) temporal activity partitioning;and 4) whether revisits to locations were related to habitat type. There were differences in habitat characteristics, showing that cheetahs were able to utilise different habitats. Fecal pellet counts revealed that warthog, oryx, scrub hare and kudu were most abundant. The cheetahs spent more time in high visibility shrubland, suggesting they selected rewarding patches within predominantly bush-encroached landscapes. The usage in marginal habitat was strikingly influenced by habitat type, with both previously cleared and open vegetated areas showing high proportions in edge use. Individuals exhibited significant temporal activity partitioning, showing peaks between late afternoon and early morning hours. This finding could be key to managing human-wildlife conflict by showing that increased protection such as the use of herders and livestock guarding dogs should be used as mitigation methods to minimize the impact of cheetah specific temporal patterns at all times as defined in this research. Visits to the same locations were not correlated to habitat type;revisits may be dictated by other reasons such as social interaction, prey density or avoidance of other predators. Findings from this study will help build existing knowledge on the effects bush encroachment has on cheetah habitat preference.
文摘The quality of skeleton system for the cheetah robot goes hand in hand with its bionic result of its shape, structure and functions. In view of the skeleton system constitution and structural characteristic of the cheetah, the team applied structure design, stimulation analysis and parameter optimization to developing the cheetah robot. In addition, after the invention of cheetah robot's anterior lumbar vertebra based on its functional attribute and connectivity attribute, the Solidworks Simulation was utilized to analyze the design, according to which improvement on the lumbar vertebra was made. Plus, the advantages of the CAD and CAE made the high efficiency of design work and high quality of the cheetah robot possible.
文摘Neurological signs like ataxia and hind limb paresis have often been reported in cheetahs (Acinonyx jubatus), lions (Panthera leo) and snow leopards (Panthera unica). As a cause, copper and Vitamin A deficiencies have been discussed. Many cases were seen in cheetahs and lions in the United Arab Emirates (UAE) within the last years. The aim of this study was to find correlations between nutrition, serum, and tissue levels, focusing on copper and Vitamin A. Blood and tissue samples of affected and unaffected animals were analyzed at the Central Veterinary Research Laboratory in Dubai, UAE. Animals were split into three different groups (A, B and C) according to their diets. Minerals were determined in serum, tissue, food and water samples, and serum was additionally analyzed for Vitamin A and E. Liver, kidney and spinal cord samples were taken for histopathological investigations. Mean serum copper and liver copper levels of animals fed pure chicken muscle meat without supplements were significantly lower (0.41 ± 0.71 μM/L;2.16 ± 0.95 ppm wet weight) than in animals fed a whole carcass prey diet (12.16 ± 3.42 μM/L;16.01 ± 17.51 ppm wet weight) (p < 0.05). Serum Vitamin A and E levels were highest in animals fed whole carcass prey diets (1.85 ± 0.68;27.31 ± 5.69 μM/L). Liver zinc concentrations were highest in animals fed pure chicken meat only (43.75 ± 16.48 ppm wet weight). In histopathology, demyelination of the spinal cord was found in all of the affected animals and most commonly when fed a diet based on poultry without supplements.
基金Acknowledgment This work is supported by the National Natural Science Foundation of China (Grant No: 51205145), the National Basic Research Program of China (Grant No: 2013CB035805) and Graduates' Innovation Fund of Huazhong University of Science & Technology (Grant No: 01-09-070092).
文摘Passive dynamics is always one of research emphases of the legged robots. Studies have proved that cheetah robot could achieve stably passive bounding motion under proper initial conditions in the ideal case. However, the actual robot must have energy dissipation because of friction and collision compared with the theoretical model. This paper aims to propose a control method that can drive the cheetah robot running in passive bounding gait. First, a sagittal-plane model with a rigid torso and two compliant legs is introduced to capture the dynamics of robot bounding. Numerical return map studies of the bounding model reveal that there exists a large variety of passively cyclic bounding motions (fixed points). Based on the distribution law of fixed points, an open-loop control method including touchdown angle control strategy and leg length control strategy is put forward. At last, prototype of the cheetah robot is designed and manufactured, and locomotion experiment are carried out. The experiment results show that the cheetah robot can achieve a stable bounding motion at different speeds with the proposed control method.