期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Chemogenetic and Optogenetic Manipulations of Microglia in Chronic Pain 被引量:1
1
作者 Sebastian Parusel Min-Hee Yi +1 位作者 Christine L.Hunt Long-Jun Wu 《Neuroscience Bulletin》 SCIE CAS CSCD 2023年第3期368-378,共11页
Chronic pain relief remains an unmet medical need.Current research points to a substantial contribution of glia-neuron interaction in its pathogenesis.Particularly,microglia play a crucial role in the development of c... Chronic pain relief remains an unmet medical need.Current research points to a substantial contribution of glia-neuron interaction in its pathogenesis.Particularly,microglia play a crucial role in the development of chronic pain.To better understand the microglial contribution to chronic pain,specific regional and temporal manipulations of microglia are necessary.Recently,two new approaches have emerged that meet these demands.Chemogenetic tools allow the expression of designer receptors exclusively activated by designer drugs(DREADDs)specifically in microglia.Similarly,optogenetic tools allow for microglial manipulation via the activation of artificially expressed,light-sensitive proteins.Chemo-and optogenetic manipulations of microglia in vivo are powerful in interrogating microglial function in chronic pain.This review summarizes these emerging tools in studying the role of microglia in chronic pain and highlights their potential applications in microglia-related neurological disorders. 展开更多
关键词 Chronic pain MICROGLIA OPTOGENETICS chemogenetics DREADDs ReaChR
原文传递
Regulation of specific abnormal calcium signals in the hippocampal CA1 and primary cortex M1 alleviates the progression of temporal lobe epilepsy
2
作者 Feng Chen Xi Dong +11 位作者 Zhenhuan Wang Tongrui Wu Liangpeng Wei Yuanyuan Li Kai Zhang Zengguang Ma Chao Tian Jing Li Jingyu Zhao Wei Zhang Aili Liu Hui Shen 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第2期425-433,共9页
Temporal lobe epilepsy is a multifactorial neurological dysfunction syndrome that is refractory,resistant to antiepileptic drugs,and has a high recurrence rate.The pathogenesis of temporal lobe epilepsy is complex and... Temporal lobe epilepsy is a multifactorial neurological dysfunction syndrome that is refractory,resistant to antiepileptic drugs,and has a high recurrence rate.The pathogenesis of temporal lobe epilepsy is complex and is not fully understood.Intracellular calcium dynamics have been implicated in temporal lobe epilepsy.However,the effect of fluctuating calcium activity in CA1 pyramidal neurons on temporal lobe epilepsy is unknown,and no longitudinal studies have investigated calcium activity in pyramidal neurons in the hippocampal CA1 and primary motor cortex M1 of freely moving mice.In this study,we used a multichannel fiber photometry system to continuously record calcium signals in CA1 and M1 during the temporal lobe epilepsy process.We found that calcium signals varied according to the grade of temporal lobe epilepsy episodes.In particular,cortical spreading depression,which has recently been frequently used to represent the continuously and substantially increased calcium signals,was found to correspond to complex and severe behavioral characteristics of temporal lobe epilepsy ranging from gradeⅡto gradeⅤ.However,vigorous calcium oscillations and highly synchronized calcium signals in CA1 and M1 were strongly related to convulsive motor seizures.Chemogenetic inhibition of pyramidal neurons in CA1 significantly attenuated the amplitudes of the calcium signals corresponding to gradeⅠepisodes.In addition,the latency of cortical spreading depression was prolonged,and the above-mentioned abnormal calcium signals in CA1 and M1 were also significantly reduced.Intriguingly,it was possible to rescue the altered intracellular calcium dynamics.Via simultaneous analysis of calcium signals and epileptic behaviors,we found that the progression of temporal lobe epilepsy was alleviated when specific calcium signals were reduced,and that the end-point behaviors of temporal lobe epilepsy were improved.Our results indicate that the calcium dynamic between CA1 and M1 may reflect specific epileptic behaviors corresponding to different grades.Furthermore,the selective regulation of abnormal calcium signals in CA1 pyramidal neurons appears to effectively alleviate temporal lobe epilepsy,thereby providing a potential molecular mechanism for a new temporal lobe epilepsy diagnosis and treatment strategy. 展开更多
关键词 CA^(2+) calcium signals chemogenetic methods HIPPOCAMPUS primary motor cortex pyramidal neurons temporal lobe epilepsy
下载PDF
Electroacupuncture Alleviates Memory Deficits in APP/PS1 Mice by Targeting Serotonergic Neurons in Dorsal Raphe Nucleus
3
作者 Chao-chao YU Xiao-fei WANG +8 位作者 Jia WANG Chu LI Juan XIAO Xue-song WANG Rui HAN Shu-qin WANG Yuan-fang LIN Li-hong KONG Yan-jun DU 《Current Medical Science》 SCIE CAS 2024年第5期987-1000,共14页
Objective Alzheimer’s disease(AD)has become a significant global concern,but effective drugs able to slow down AD progression is still lacked.Electroacupuncture(EA)has been demonstrated to ameliorate cognitive impair... Objective Alzheimer’s disease(AD)has become a significant global concern,but effective drugs able to slow down AD progression is still lacked.Electroacupuncture(EA)has been demonstrated to ameliorate cognitive impairment in individuals with AD.However,the underlying mechanisms remains poorly understood.This study aimed at examining the neuroprotective properties of EA and its potential mechanism of action against AD.Methods APP/PS1 transgenic mice were employed to evaluate the protective effects of EA on Shenshu(BL 23)and Baihui(GV 20).Chemogenetic manipulation was used to activate or inhibit serotonergic neurons within the dorsal raphe nucleus(DRN).Learning and memory abilities were assessed by the novel object recognition and Morris water maze tests.Golgi staining,western blot,and immunostaining were utilized to determine EA-induced neuroprotection.Results EA at Shenshu(BL 23)and Baihui(GV 20)effectively ameliorated learning and memory impairments in APP/PS1 mice.EA attenuated dendritic spine loss,increased the expression levels of PSD95,synaptophysin,and brain-derived neurotrophic factor in hippocampus.Activation of serotonergic neurons within the DRN can ameliorate cognitive deficits in AD by activating glutamatergic neurons mediated by 5-HT1B.Chemogenetic inhibition of serotonergic neurons in the DRN reversed the effects of EA on synaptic plasticity and memory.Conclusion EA can alleviate cognitive dysfunction in APP/PS1 mice by activating serotonergic neurons in the DRN.Further study is necessary to better understand how the serotonergic neurons-related neural circuits involves in EA-induced memory improvement in AD. 展开更多
关键词 Alzheimer’s disease ELECTROACUPUNCTURE dorsal raphe nucleus HIPPOCAMPUS serotonergic neurons glutamatergic neurons 5-HT1B cognitive impairment chemogenetic manipulation synaptic plasticity
下载PDF
How do lateral septum projections to the ventral CA1 influence sociability?
4
作者 Dan Wang Di Zhao +12 位作者 Wentao Wang Fengai Hu Minghu Cui Jing Liu Fantao Meng Cuilan Liu Changyun Qiu Dunjiang Liu Zhicheng Xu Yameng Wang Yu Zhang Wei Li Chen Li 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第8期1789-1801,共13页
Social dysfunction is a risk factor for several neuropsychiatric illnesses.Previous studies have shown that the lateral septum(LS)-related pathway plays a critical role in mediating social behaviors.Howeve r,the role ... Social dysfunction is a risk factor for several neuropsychiatric illnesses.Previous studies have shown that the lateral septum(LS)-related pathway plays a critical role in mediating social behaviors.Howeve r,the role of the connections between the LS and its downstream brain regions in social behavio rs remains unclea r.In this study,we conducted a three-chamber test using electrophysiological and chemogenetic approaches in mice to determine how LS projections to ventral CA1(vCA1)influence sociability.Our res ults showed that gamma-aminobutyric acid(GABA)-e rgic neuro ns were activated following social experience,and that social behavio rs were enhanced by chemogenetic modulation of these neurons.Moreover,LS GABAergic neurons extended their functional neural connections via vCA1 glutamatergic pyramidal neurons,and regulating LSGABA→vCA1Gluneural projections affected social behaviors,which were impeded by suppressing LSprojecting vCA1 neuronal activity or inhibiting GABAAreceptors in vCA1.These findings support the hypothesis that LS inputs to the vCA1 can control social prefe rences and social novelty behaviors.These findings provide new insights rega rding the neural circuits that regulate sociability. 展开更多
关键词 chemogenetics GABA receptor GABAergic neurons glutamatergic neurons lateral septum neural excitability neural projection social novelty social preference ventral CA1
下载PDF
In vivo neuronal and astrocytic activation in somatosensory cortex by acupuncture stimuli 被引量:6
5
作者 Xiao-Yue Chang Kai Chen +4 位作者 Tong Cheng Pui To Lai Li Zhang Kwok-Fai So Edward S.Yang 《Neural Regeneration Research》 SCIE CAS CSCD 2022年第11期2526-2529,共4页
Acupuncture is a medical treatment that has been widely pra cticed in China for over 3000 years,yet the neural mechanisms of acupuncture are not fully understood.We hypothesized that neurons and astrocytes act indepen... Acupuncture is a medical treatment that has been widely pra cticed in China for over 3000 years,yet the neural mechanisms of acupuncture are not fully understood.We hypothesized that neurons and astrocytes act independently and synergistically under acupuncture stimulation.To investigate this,we used two-photon in vivo calcium reco rding to observe the effects of acupuncture stimulation at ST36(Zusanli)in mice.Acupuncture stimulation in peripheral acupoints potentiated calcium signals of pyramidal neurons and astrocytes in the somatosensory cortex and resulted in late-onset calcium transients in astrocytes.Chemogenetic inhibition of neurons augmented the astrocytic activity.These findings suggest that acupuncture activates neuronal and astrocytic activity in the somatosensory co rtex and provide evidence for the involvement of both neurons and astrocytes in acupuncture treatment. 展开更多
关键词 ACUPUNCTURE ASTROCYTE chemogenetic NEURON N-methyl-D-aspartate receptor somatosensory cortex transient receptor potential A1 two-photon in vivo imaging
下载PDF
Illuminating Neural Circuits in Alzheimer’s Disease 被引量:7
6
作者 Yang Ying Jian-Zhi Wang 《Neuroscience Bulletin》 SCIE CAS CSCD 2021年第8期1203-1217,共15页
Alzheimer’s disease(AD)is the most common neurodegenerative disorder and there is currently no cure.Neural circuit dysfunction is the fundamental mechanism underlying the learning and memory deficits in patients with... Alzheimer’s disease(AD)is the most common neurodegenerative disorder and there is currently no cure.Neural circuit dysfunction is the fundamental mechanism underlying the learning and memory deficits in patients with AD.Therefore,it is important to understand the structural features and mechanisms underlying the deregulated circuits during AD progression,by which new tools for intervention can be developed.Here,we briefly summarize the most recently established cutting-edge experimental approaches and key techniques that enable neural circuit tracing and manipulation of their activity.We also discuss the advantages and limitations of these approaches.Finally,we review the applications of these techniques in the discovery of circuit mechanisms underlyingβ-amyloid and tau pathologies during AD progression,and as well as the strategies for targeted AD treatments. 展开更多
关键词 Neural circuit Alzheimer’s disease Single cell RNA sequencing Neural circuit tracing OPTOGENETICS chemogenetics
原文传递
A Neural Circuit Mechanism Controlling Breathing by Leptin in the Nucleus Tractus Solitarii 被引量:2
7
作者 Hongxiao Yu Luo Shi +8 位作者 Jinting Chen Shirui Jun Yinchao Hao Shuang Wang Congrui Fu Xiang Zhang Haiyan Lu Sheng Wang Fang Yuan 《Neuroscience Bulletin》 SCIE CAS CSCD 2022年第2期149-165,共17页
Leptin,an adipocyte-derived peptide hormone,has been shown to facilitate breathing.However,the central sites and circuit mechanisms underlying the respiratory effects of leptin remain incompletely understood.The prese... Leptin,an adipocyte-derived peptide hormone,has been shown to facilitate breathing.However,the central sites and circuit mechanisms underlying the respiratory effects of leptin remain incompletely understood.The present study aimed to address whether neurons expressing leptin receptor b(LepRb)in the nucleus tractus solitarii(NTS)contribute to respiratory control.Both chemogenetic and optogenetic stimulation of LepRb-ex-pressing NTS(NTS^(LepRb))neurons notably activated breathing.Moreover,stimulation of NTS^(LepRb) neurons projecting to the lateral parabrachial nucleus(LPBN)not only remarkably increased basal ventilation to a level similar to that of the stimulation of all NTS^(LepRb) neurons,but also activated LPBN neurons projecting to the preBotzinger complex(preBotC).By contrast,ablation of NTS^pRb neurons projecting to the LPBN notably eliminated the enhanced respiratory effect induced by NTSLepRb neuron stimulation.In brainstem slices,bath application of leptin rapidly depolarized the membrane potential,increased the spontaneous firing rate,and accelerated the Ca2+transients in most NTSLepRb neurons.Therefore,leptin potentiates breathing in the NTS most likely via an NTS-LPBN-preBdtC circuit. 展开更多
关键词 LEPTIN Ventilation Nucleus tractus solitarii Neural circuit chemogenetics
原文传递
Regulation of Cued Fear Expression via Corticotropin-ReleasingFactor Neurons in the Ventral Anteromedial Thalamic Nucleus 被引量:1
8
作者 Yin Lv Peng Chen +3 位作者 Qing-Hong Shan Xin-Ya Qin Xiu-Hong Qi Jiang-Ning Zhou 《Neuroscience Bulletin》 SCIE CAS CSCD 2021年第2期217-228,共12页
The ventral part of the anteromedial thalamic nucleus(AMv)is in a position to convey information to the cortico-hippocampal-amygdalar circuit involved in the processing of fear memory.Corticotropin-releasing-factor(CR... The ventral part of the anteromedial thalamic nucleus(AMv)is in a position to convey information to the cortico-hippocampal-amygdalar circuit involved in the processing of fear memory.Corticotropin-releasing-factor(CRF)neurons are closely associated with the regulation of stress and fear.However,few studies have focused on the role of thalamic CRF neurons in fear memory.In the present study,using a conditioned fear paradigm in CRF transgenic mice,we found that the c-Fos protein in the AMv CRF neurons was significantly increased after cued fear expression.Chemogenetic activation of AMv CRF neurons enhanced cued fear expression,whereas inhibition had the opposite effect on the cued fear response.Moreover,chemogenetic manipulation of AMv CRF neurons did not affect fear acquisition or contextual fear expression.In addition,anterograde tracing of projections revealed that AMv CRF neurons project to wide areas of the cerebral cortex and the limbic system.These results uncover a critical role of AMv CRF neurons in the regulation of conditioned fear memory. 展开更多
关键词 Corticotropin-releasing-factor neurons Ventral anteromedial thalamic nucleus Cued fear expression chemogenetics
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部