期刊文献+
共找到44篇文章
< 1 2 3 >
每页显示 20 50 100
MCWOA Scheduler:Modified Chimp-Whale Optimization Algorithm for Task Scheduling in Cloud Computing 被引量:1
1
作者 Chirag Chandrashekar Pradeep Krishnadoss +1 位作者 Vijayakumar Kedalu Poornachary Balasundaram Ananthakrishnan 《Computers, Materials & Continua》 SCIE EI 2024年第2期2593-2616,共24页
Cloud computing provides a diverse and adaptable resource pool over the internet,allowing users to tap into various resources as needed.It has been seen as a robust solution to relevant challenges.A significant delay ... Cloud computing provides a diverse and adaptable resource pool over the internet,allowing users to tap into various resources as needed.It has been seen as a robust solution to relevant challenges.A significant delay can hamper the performance of IoT-enabled cloud platforms.However,efficient task scheduling can lower the cloud infrastructure’s energy consumption,thus maximizing the service provider’s revenue by decreasing user job processing times.The proposed Modified Chimp-Whale Optimization Algorithm called Modified Chimp-Whale Optimization Algorithm(MCWOA),combines elements of the Chimp Optimization Algorithm(COA)and the Whale Optimization Algorithm(WOA).To enhance MCWOA’s identification precision,the Sobol sequence is used in the population initialization phase,ensuring an even distribution of the population across the solution space.Moreover,the traditional MCWOA’s local search capabilities are augmented by incorporating the whale optimization algorithm’s bubble-net hunting and random search mechanisms into MCWOA’s position-updating process.This study demonstrates the effectiveness of the proposed approach using a two-story rigid frame and a simply supported beam model.Simulated outcomes reveal that the new method outperforms the original MCWOA,especially in multi-damage detection scenarios.MCWOA excels in avoiding false positives and enhancing computational speed,making it an optimal choice for structural damage detection.The efficiency of the proposed MCWOA is assessed against metrics such as energy usage,computational expense,task duration,and delay.The simulated data indicates that the new MCWOA outpaces other methods across all metrics.The study also references the Whale Optimization Algorithm(WOA),Chimp Algorithm(CA),Ant Lion Optimizer(ALO),Genetic Algorithm(GA)and Grey Wolf Optimizer(GWO). 展开更多
关键词 Cloud computing SCHEDULING chimp optimization algorithm whale optimization algorithm
下载PDF
一种基于二阶差分和Chimp算法的旋转机械振动数据压缩方法
2
作者 郑明芽 陈倩 朱璇 《技术与市场》 2024年第11期17-23,共7页
在边缘计算环境中,旋转机械持续振动信号的庞大监测数据面临着上传至云带宽压力大、传输时间长等问题,须对其进行压缩。分析了国内外旋转机械振动数据压缩的研究进展,提出了一种基于二阶差分和Chimp算法的旋转机械振动数据压缩方法:首... 在边缘计算环境中,旋转机械持续振动信号的庞大监测数据面临着上传至云带宽压力大、传输时间长等问题,须对其进行压缩。分析了国内外旋转机械振动数据压缩的研究进展,提出了一种基于二阶差分和Chimp算法的旋转机械振动数据压缩方法:首先对时间戳部分采用改进二阶差分编码压缩,其次对数据值部分采用改进Chimp算法进行压缩,最后与传统压缩算法进行对比试验,验证所提方法在旋转机械振动数据压缩方面的有效性,可显著提升数据压缩率。 展开更多
关键词 旋转机械 时序数据 数据压缩 二阶差分 chimp算法
下载PDF
Multi-Level Image Segmentation Combining Chaotic Initialized Chimp Optimization Algorithm and Cauchy Mutation
3
作者 Shujing Li Zhangfei Li +2 位作者 Wenhui Cheng Chenyang Qi Linguo Li 《Computers, Materials & Continua》 SCIE EI 2024年第8期2049-2063,共15页
To enhance the diversity and distribution uniformity of initial population,as well as to avoid local extrema in the Chimp Optimization Algorithm(CHOA),this paper improves the CHOA based on chaos initialization and Cau... To enhance the diversity and distribution uniformity of initial population,as well as to avoid local extrema in the Chimp Optimization Algorithm(CHOA),this paper improves the CHOA based on chaos initialization and Cauchy mutation.First,Sin chaos is introduced to improve the random population initialization scheme of the CHOA,which not only guarantees the diversity of the population,but also enhances the distribution uniformity of the initial population.Next,Cauchy mutation is added to optimize the global search ability of the CHOA in the process of position(threshold)updating to avoid the CHOA falling into local optima.Finally,an improved CHOA was formed through the combination of chaos initialization and Cauchy mutation(CICMCHOA),then taking fuzzy Kapur as the objective function,this paper applied CICMCHOA to natural and medical image segmentation,and compared it with four algorithms,including the improved Satin Bowerbird optimizer(ISBO),Cuckoo Search(ICS),etc.The experimental results deriving from visual and specific indicators demonstrate that CICMCHOA delivers superior segmentation effects in image segmentation. 展开更多
关键词 Image segmentation image thresholding chimp optimization algorithm chaos initialization Cauchy mutation
下载PDF
Miss Chimp Says No to Smoking
4
作者 郝鹏程 《中学生英语(初中版)》 2006年第14期29-29,共1页
A chimpanzee(大猩猩)in the zoo in Xi'an,Shaanxi Province has given up smoking after 16 years with the help of her keepers(饲养员).The zookeepers,wor- ried about her health,helped 27-year-old“Ai Ai”off tobacco(烟... A chimpanzee(大猩猩)in the zoo in Xi'an,Shaanxi Province has given up smoking after 16 years with the help of her keepers(饲养员).The zookeepers,wor- ried about her health,helped 27-year-old“Ai Ai”off tobacco(烟草)by treating her with entertainment(娱乐)and tasty diets. 展开更多
关键词 Miss chimp Says No to Smoking
下载PDF
SCChOA:Hybrid Sine-Cosine Chimp Optimization Algorithm for Feature Selection 被引量:2
5
作者 Shanshan Wang Quan Yuan +2 位作者 Weiwei Tan Tengfei Yang Liang Zeng 《Computers, Materials & Continua》 SCIE EI 2023年第12期3057-3075,共19页
Feature Selection(FS)is an important problem that involves selecting the most informative subset of features from a dataset to improve classification accuracy.However,due to the high dimensionality and complexity of t... Feature Selection(FS)is an important problem that involves selecting the most informative subset of features from a dataset to improve classification accuracy.However,due to the high dimensionality and complexity of the dataset,most optimization algorithms for feature selection suffer from a balance issue during the search process.Therefore,the present paper proposes a hybrid Sine-Cosine Chimp Optimization Algorithm(SCChOA)to address the feature selection problem.In this approach,firstly,a multi-cycle iterative strategy is designed to better combine the Sine-Cosine Algorithm(SCA)and the Chimp Optimization Algorithm(ChOA),enabling a more effective search in the objective space.Secondly,an S-shaped transfer function is introduced to perform binary transformation on SCChOA.Finally,the binary SCChOA is combined with the K-Nearest Neighbor(KNN)classifier to form a novel binary hybrid wrapper feature selection method.To evaluate the performance of the proposed method,16 datasets from different dimensions of the UCI repository along with four evaluation metrics of average fitness value,average classification accuracy,average feature selection number,and average running time are considered.Meanwhile,seven state-of-the-art metaheuristic algorithms for solving the feature selection problem are chosen for comparison.Experimental results demonstrate that the proposed method outperforms other compared algorithms in solving the feature selection problem.It is capable of maximizing the reduction in the number of selected features while maintaining a high classification accuracy.Furthermore,the results of statistical tests also confirm the significant effectiveness of this method. 展开更多
关键词 Metaheuristics chimp optimization algorithm sine-cosine algorithm feature selection and classification
下载PDF
Ensemble Deep Learning with Chimp Optimization Based Medical Data Classification
6
作者 Ashit Kumar Dutta Yasser Albagory +2 位作者 Majed Alsanea Hamdan I.Almohammed Abdul Rahaman Wahab Sait 《Intelligent Automation & Soft Computing》 SCIE 2023年第2期1643-1655,共13页
Eye state classification acts as a vital part of the biomedical sector,for instance,smart home device control,drowsy driving recognition,and so on.The modifications in the cognitive levels can be reflected via transformi... Eye state classification acts as a vital part of the biomedical sector,for instance,smart home device control,drowsy driving recognition,and so on.The modifications in the cognitive levels can be reflected via transforming the electro-encephalogram(EEG)signals.The deep learning(DL)models automated extract the features and often showcased improved outcomes over the conventional clas-sification model in the recognition processes.This paper presents an Ensemble Deep Learning with Chimp Optimization Algorithm for EEG Eye State Classifi-cation(EDLCOA-ESC).The proposed EDLCOA-ESC technique involves min-max normalization approach as a pre-processing step.Besides,wavelet packet decomposition(WPD)technique is employed for the extraction of useful features from the EEG signals.In addition,an ensemble of deep sparse autoencoder(DSAE)and kernel ridge regression(KRR)models are employed for EEG Eye State classification.Finally,hyperparameters tuning of the DSAE model takes place using COA and thereby boost the classification results to a maximum extent.An extensive range of simulation analysis on the benchmark dataset is car-ried out and the results reported the promising performance of the EDLCOA-ESC technique over the recent approaches with maximum accuracy of 98.50%. 展开更多
关键词 EEG eye state data classification deep learning medical data analysis chimp optimization algorithm
下载PDF
Enhanced Chimp Optimization Algorithm Using Attack Defense Strategy and Golden Update Mechanism for Robust COVID-19 Medical Image Segmentation
7
作者 Amir Hamza Morad Grimes +1 位作者 Abdelkrim Boukabou Samira Dib 《Journal of Bionic Engineering》 SCIE EI CSCD 2024年第4期2086-2109,共24页
Medical image segmentation is a powerful and evolving technology in medical diagnosis.In fact,it has been identified as a very effective tool to support and accompany doctors in their fight against the spread of the c... Medical image segmentation is a powerful and evolving technology in medical diagnosis.In fact,it has been identified as a very effective tool to support and accompany doctors in their fight against the spread of the coronavirus(COVID-19).Various techniques have been utilized for COVID-19 image segmentation,including Multilevel Thresholding(MLT)-based meta-heuristics,which are considered crucial in addressing this issue.However,despite their importance,meta-heuristics have significant limitations.Specifically,the imbalance between exploration and exploitation,as well as premature convergence,can cause the optimization process to become stuck in local optima,resulting in unsatisfactory segmentation results.In this paper,an enhanced War Strategy Chimp Optimization Algorithm(WSChOA)is proposed to address MLT problems.Two strategies are incorporated into the traditional Chimp Optimization Algorithm.Golden update mechanism that provides diversity in the population.Additionally,the attack and defense strategies are incorporated to improve the search space leading to avoiding local optima.The experimental results were conducted by comparing WSChoA with recent and well-known algorithms using various evaluation metrics such as Feature Similarity Index(FSIM),Structural Similarity Index(SSIM),Peak signal-to-Noise Ratio(PSNR),Standard deviation(STD),Freidman Test(FT),and Wilcoxon Sign Rank Test(WSRT).The results obtained by WSChoA surpassed those of other optimization techniques in terms of robustness and accuracy,indicating that it is a powerful tool for image segmentation. 展开更多
关键词 Image processing SEGMENTATION Optimization chimp Golden update mechanism Attack-defense strategy COVID-19
原文传递
Hybrid Modified Chimp Optimization Algorithm and Reinforcement Learning for Global Numeric Optimization 被引量:1
8
作者 Mohammad ShDaoud Mohammad Shehab +1 位作者 Laith Abualigah Cuong-Le Thanh 《Journal of Bionic Engineering》 SCIE EI CSCD 2023年第6期2896-2915,共20页
Chimp Optimization Algorithm(ChOA)is one of the most efficient recent optimization algorithms,which proved its ability to deal with different problems in various do-mains.However,ChOA suffers from the weakness of the ... Chimp Optimization Algorithm(ChOA)is one of the most efficient recent optimization algorithms,which proved its ability to deal with different problems in various do-mains.However,ChOA suffers from the weakness of the local search technique which leads to a loss of diversity,getting stuck in a local minimum,and procuring premature convergence.In response to these defects,this paper proposes an improved ChOA algorithm based on using Opposition-based learning(OBL)to enhance the choice of better solutions,written as OChOA.Then,utilizing Reinforcement Learning(RL)to improve the local research technique of OChOA,called RLOChOA.This way effectively avoids the algorithm falling into local optimum.The performance of the proposed RLOChOA algorithm is evaluated using the Friedman rank test on a set of CEC 2015 and CEC 2017 benchmark functions problems and a set of CEC 2011 real-world problems.Numerical results and statistical experiments show that RLOChOA provides better solution quality,convergence accuracy and stability compared with other state-of-the-art algorithms. 展开更多
关键词 chimp optimization algorithm Reinforcement learning Disruption operator Opposition-based learning CEC 2011 real-world problems CEC 2015 and CEC 2017 benchmark functions problems
原文传递
Recent Advances of Chimp Optimization Algorithm:Variants and Applications
9
作者 Mohammad Sh.Daoud Mohammad Shehab +6 位作者 Laith Abualigah Mohammad Alshinwan Mohamed Abd Elaziz Mohd Khaled Yousef Shambour Diego Oliva Mohammad AAlia Raed Abu Zitar 《Journal of Bionic Engineering》 SCIE EI CSCD 2023年第6期2840-2862,共23页
Chimp Optimization Algorithm(ChOA)is one of the recent metaheuristics swarm intelligence methods.It has been widely tailored for a wide variety of optimization problems due to its impressive characteristics over other... Chimp Optimization Algorithm(ChOA)is one of the recent metaheuristics swarm intelligence methods.It has been widely tailored for a wide variety of optimization problems due to its impressive characteristics over other swarm intelligence methods:it has very few parameters,and no derivation information is required in the initial search.Also,it is simple,easy to use,flexible,scalable,and has a special capability to strike the right balance between exploration and exploitation during the search which leads to favorable convergence.Therefore,the ChOA has recently gained a very big research interest with tremendous audiences from several domains in a very short time.Thus,in this review paper,several research publications using ChOA have been overviewed and summarized.Initially,introductory information about ChOA is provided which illustrates the natural foundation context and its related optimization conceptual framework.The main operations of ChOA are procedurally discussed,and the theoretical foundation is described.Furthermore,the recent versions of ChOA are discussed in detail which are categorized into modified,hybridized,and paralleled versions.The main applications of ChOA are also thoroughly described.The applications belong to the domains of economics,image processing,engineering,neural network,power and energy,networks,etc.Evaluation of ChOA is also provided.The review paper will be helpful for the researchers and practitioners of ChOA belonging to a wide range of audiences from the domains of optimization,engineering,medical,data mining,and clustering.As well,it is wealthy in research on health,environment,and public safety.Also,it will aid those who are interested by providing them with potential future research. 展开更多
关键词 Artificial intelligence Nature-inspired optimization algorithms chimp optimization algorithm Optimization problems
原文传递
AIDS Virus Came From Chimps, Experts Conclude
10
作者 Maggie Fox 胡亮明 《当代外语研究》 1999年第3期3-4,共2页
【选注者言:美国伯明翰亚拉巴马大学的研究人员1999年1月31日在芝加哥发表论文报告认定:目前世界上有3500万人受到感染的艾滋病病毒来自赤道西非的黑猩猩。黑猩猩携带这种病毒已经有数十万年的历史,但是这种动物并未因此而得病。因此弄... 【选注者言:美国伯明翰亚拉巴马大学的研究人员1999年1月31日在芝加哥发表论文报告认定:目前世界上有3500万人受到感染的艾滋病病毒来自赤道西非的黑猩猩。黑猩猩携带这种病毒已经有数十万年的历史,但是这种动物并未因此而得病。因此弄清黑猩猩是如何战胜这种病毒的感染对于人类预防和治疗艾滋病具有非常重要的意义。今年美国疾病控制与预防中心的艾滋病专家提出,艾滋病毒从黑猩猩进人人体几乎可以肯定发生在西非。当地的人们为得到食物而杀死黑猩猩,这样就使得这种病毒得以传人人体蔓延开来。这种黑猩猩生活在喀麦隆、赤道几内亚、刚果和中非共和国一带,据认为人类的艾滋病就最先发生在这个地区。 本文的另一个重要信息是:Many viruses come from animals. Flu, for example, comes from ducks and pigs.】 展开更多
关键词 艾滋病病毒 Experts Conclude AIDS Virus Came From chimps 黑猩猩
原文传递
改进群体智能算法的无线传感器网络覆盖优化 被引量:4
11
作者 贾润亮 张海玉 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第1期155-166,共12页
为解决无线传感器网络(Wireless Sensor Networks,WSN)节点分布不均和随机部署中的低覆盖率问题,该文提出一种改进群体智能算法的无线传感器网络覆盖优化算法,即改进的黑猩猩优化和哈里斯鹰优化的混合优化算法(Improved Chimp Optimizat... 为解决无线传感器网络(Wireless Sensor Networks,WSN)节点分布不均和随机部署中的低覆盖率问题,该文提出一种改进群体智能算法的无线传感器网络覆盖优化算法,即改进的黑猩猩优化和哈里斯鹰优化的混合优化算法(Improved Chimp Optimization and Harris Hawk Optimization Algorithm,ICHHO).该算法首先对黑猩猩优化算法(Chimpanzee Optimization Algorithm,ChOA)进行改进,使用Levy Flight来改善其探索阶段,然后设计一个更新的公式来计算猎物逃逸能量,作为开发和探索之间的选择因素.传感器节点随机部署后,将ICHHO在传感器节点上执行,按照改进策略更新个体位置信息,计算相应的适应程度,找到最优传感器位置,并根据传感器概率模型确定网络最优覆盖率.仿真结果验证了ICHHO对于解决WSN覆盖问题的适用性,与其他优化算法的对比结果显示,ICHHO在提高覆盖率方面优于其他算法. 展开更多
关键词 无线传感器网络 黑猩猩优化 哈里斯鹰优化 覆盖率 群体智能算法
下载PDF
融合黎曼流量子学习ChOA算法的三维航迹规划
12
作者 杨寅 董大明 《计算机工程与设计》 北大核心 2024年第8期2371-2377,共7页
针对传统方法的不足,提出一种融合黎曼流量子学习黑猩猩优化算法的三维航迹规划方法。为提高黑猩猩算法的寻优精度,引入非线性收敛因子均衡算法全局搜索与局部开发,设计自适应惯性权重提升算法全局搜索能力,融入黎曼流量子学习提高种群... 针对传统方法的不足,提出一种融合黎曼流量子学习黑猩猩优化算法的三维航迹规划方法。为提高黑猩猩算法的寻优精度,引入非线性收敛因子均衡算法全局搜索与局部开发,设计自适应惯性权重提升算法全局搜索能力,融入黎曼流量子学习提高种群活跃度,避免生成局部最优解。建立三维航迹规划的约束模型和多目标代价函数,将航迹规划转化为多维函数优化问题,利用改进黑猩猩算法进行求解。实验结果表明,改进算法搜索精度更高,规划航迹能够规避所有威胁,具有更小的航迹代价。 展开更多
关键词 航迹规划 黑猩猩算法 收敛因子 惯性权重 黎曼流 量子学习 航迹代价
下载PDF
基于自适应VMD和DD-cCycleGAN的滚动轴承剩余寿命预测
13
作者 于军 赵坤 +1 位作者 张帅 邓四二 《振动与冲击》 EI CSCD 北大核心 2024年第13期45-52,共8页
为准确预测强噪声干扰小样本情况下的滚动轴承剩余寿命(remaining useful life, RUL),提出一种基于自适应变分模态分解(variational mode decomposition, VMD)和双判别器条件循环一致对抗网络(double-discriminator conditional CycleGA... 为准确预测强噪声干扰小样本情况下的滚动轴承剩余寿命(remaining useful life, RUL),提出一种基于自适应变分模态分解(variational mode decomposition, VMD)和双判别器条件循环一致对抗网络(double-discriminator conditional CycleGAN, DD-cCycleGAN)的滚动轴承RUL预测方法。将黑猩猩优化算法(chimp optimization algorithm, ChOA)与VMD相结合,给出一种基于ChOA的自适应VMD算法,选取有效模态分量进行重构,降低强背景噪声的干扰;开发一种DD-cCycleGAN生成新样本,这些生成的新样本不但保留了源域的样本信息,还与目标域的样本相似;将训练样本的重构样本和生成的新样本作为输入,训练长短时记忆(long short-term memory, LSTM)网络,用训练后的LSTM网络预测测试样本中滚动轴承的RUL。通过采用XJTU-SY滚动轴承加速寿命试验数据集验证该方法的有效性,试验结果表明该方法具有较强的抗噪能力和较高的轴承RUL预测精度。 展开更多
关键词 滚动轴承 剩余寿命(RUL)预测 自适应变分模态分解(VMD) 双判别器条件循环一致对抗网络 黑猩猩优化算法(ChOA)
下载PDF
融合多策略改进黑猩猩优化算法的UAV航迹规划
14
作者 朱孝山 刘伟伟 《电光与控制》 CSCD 北大核心 2024年第8期50-57,68,共9页
针对三维复杂环境中无人机航迹规划容易出现搜索停滞、收敛于局部最优的不足,提出一种多策略混合改进黑猩猩优化算法的航迹规划方法。针对黑猩猩优化算法寻优精度不足的问题,引入收敛因子非线性更新均衡算法全局搜索与局部开发能力;设... 针对三维复杂环境中无人机航迹规划容易出现搜索停滞、收敛于局部最优的不足,提出一种多策略混合改进黑猩猩优化算法的航迹规划方法。针对黑猩猩优化算法寻优精度不足的问题,引入收敛因子非线性更新均衡算法全局搜索与局部开发能力;设计权重因子避免个体跟随的盲目性及迭代后期个体趋于同化,提升搜索精度;设计黄金正弦莱维飞行引导机制防止因多样性逐步贫化而陷入局部最优。利用改进黑猩猩算法求解无人机航迹规划,结合无人机飞行环境三维地形图构建航迹规划模型,设计多约束飞行代价函数,并将其作为适应度函数,对无人机三维航迹规划方案迭代求解。结果表明,改进算法能够搜索到一条安全避障且航迹代价更小的路径,搜索精度高于类比算法。 展开更多
关键词 无人机 航迹规划 黑猩猩优化算法 权重因子 黄金正弦 莱维飞行 飞行代价
下载PDF
基于混合黑猩猩优化极限学习机的电力信息物理系统虚假数据注入攻击定位检测
15
作者 席磊 董璐 +2 位作者 程琛 田习龙 李宗泽 《电力系统保护与控制》 EI CSCD 北大核心 2024年第14期46-58,共13页
针对已有检测方法无法对虚假数据注入攻击(false data injection attack,FDIA)进行精确定位的问题,提出了一种基于混合黑猩猩优化极限学习机(extreme learning machine,ELM)的电力信息物理系统FDIA的定位检测方法。首先,使用ELM作为分类... 针对已有检测方法无法对虚假数据注入攻击(false data injection attack,FDIA)进行精确定位的问题,提出了一种基于混合黑猩猩优化极限学习机(extreme learning machine,ELM)的电力信息物理系统FDIA的定位检测方法。首先,使用ELM作为分类器,用于提取电力数据特征并检测系统各节点的异常状态。然后,采用一种具有全局搜索能力且局部收敛速度更快的混合黑猩猩优化策略,用于寻找ELM最优隐藏层神经元数量。建立基于混合黑猩猩优化ELM的检测方法,实现对FDIA的精准定位,有利于后续防御措施的实施。最后,在IEEE 14和IEEE 57节点系统中进行大量仿真对比实验。结果表明,所提方法具有更佳的准确率、查准率、查全率和F1值,对FDIA能够进行更为精准的定位检测。 展开更多
关键词 电力信息物理系统 虚假数据注入攻击 极限学习机 黑猩猩优化
下载PDF
改进黑猩猩优化算法的RGB-D图像核模糊聚类分割
16
作者 刘恒 范九伦 郭培岩 《微电子学与计算机》 2024年第9期10-21,共12页
借助于低成本深度传感器,产生了深度与颜色同步的RGB-D图像。针对RGB-D图像分割困难以及黑猩猩优化算法精度低、收敛速度慢和易陷入局部最优的问题,提出了基于改进黑猩猩优化算法(Improved Chimp Optimization Algorithm,IChOA)的RGB-D... 借助于低成本深度传感器,产生了深度与颜色同步的RGB-D图像。针对RGB-D图像分割困难以及黑猩猩优化算法精度低、收敛速度慢和易陷入局部最优的问题,提出了基于改进黑猩猩优化算法(Improved Chimp Optimization Algorithm,IChOA)的RGB-D图像核模糊聚类算法。首先,对RGB-D图像进行特征提取生成6个特征子集;其次,引入Levy飞行策略和非线性惯性权重对ChOA进行改造;最后,利用IChOA对6个特征子集进行核模糊聚类,得到多个最优聚类,然后通过聚集超像素方法对多个最优聚类进行不同组合的分割,生成最终的分割结果。采用NYU depth V2室内图像数据集进行实验,与现有的一些分割方法(阈值分割,模糊子空间聚类,残差驱动的模糊C-均值,硬C-均值,模糊C-均值,核模糊聚类,基于混沌kbest引力搜索算法和随机亨利溶解度优化算法)进行比较,结果表明所提出的RGB-D分割算法优于比较的算法。 展开更多
关键词 RGB-D图像分割 核模糊聚类 黑猩猩优化算法 聚集超像素
下载PDF
基于黑猩猩算法的风光蓄火联合发电系统优化调度
17
作者 陈义成 刘闯 +2 位作者 陈雪飞 曾芮清 陈磊 《黄河水利职业技术学院学报》 2024年第3期35-40,共6页
为了提高风光蓄火联合发电系统的经济效益,降低弃风弃光量,以联合发电系统的收益最大为优化目标,全面考虑系统约束条件,建立了风光蓄火联合发电系统优化调度模型,采用黑猩猩优化算法(Chimp Optimization Algorithm,COA)对调度模型进行... 为了提高风光蓄火联合发电系统的经济效益,降低弃风弃光量,以联合发电系统的收益最大为优化目标,全面考虑系统约束条件,建立了风光蓄火联合发电系统优化调度模型,采用黑猩猩优化算法(Chimp Optimization Algorithm,COA)对调度模型进行求解。将该模型用于我国西南地区某联合发电系统的优化调度,结果表明,通过COA算法对联合发电系统的优化,增加了风电、光伏的出力,这样既提高了联合发电系统的经济效益,同时又减少了对环境的影响。将COA算法与GWO算法、PSO算法和GA算法进行比对,其收敛代数、计算时间、最大发电收益均优于其他对比算法,验证了COA算法在对联合发电系统优化调度时的优势。 展开更多
关键词 联合发电系统 黑猩猩优化算法 调度模型 目标函数 约束条件
下载PDF
基于ICOA算法优化LSTM的高压断路器故障诊断
18
作者 金枝洁 方艳 吴卓伦 《安徽电气工程职业技术学院学报》 2024年第3期45-52,共8页
文章以线圈电流波形的时间和电流值为特征量,断路器5种典型故障为输出量,采用改进黑猩猩算法(Improved Chimp Optimization Algorithm,ICOA)对长短时记忆(Long Short Term Memory,LSTM)神经网络的三个关键参数进行优化,构建了基于ICOA-L... 文章以线圈电流波形的时间和电流值为特征量,断路器5种典型故障为输出量,采用改进黑猩猩算法(Improved Chimp Optimization Algorithm,ICOA)对长短时记忆(Long Short Term Memory,LSTM)神经网络的三个关键参数进行优化,构建了基于ICOA-LSTM的高压断路器故障诊断模型。采用断路器故障数据进行仿真,并与现有断路器故障诊断模型进行对比分析。对比测试结果表明,ICOA-LSTM模型的诊断精度更高,计算时间更短,验证了ICOA-LSTM模型的优越性和有效性。 展开更多
关键词 高压断路器 故障诊断 改进黑猩猩算法 长短时记忆神经网络 正确率
下载PDF
基于改进黑猩猩优化算法的有源配电网重构
19
作者 许克华 胡少华 +1 位作者 周光远 刘闯 《红水河》 2024年第2期112-117,共6页
为了更好地解决有源配电网重构问题,笔者提出一种基于改进黑猩猩优化算法(improved chimp optimization algorithm,ICOA)的有源配电网重构方法。以系统网损、电压偏移指数和负荷均衡度作为优化目标,建立有源配电网多目标重构模型,并利... 为了更好地解决有源配电网重构问题,笔者提出一种基于改进黑猩猩优化算法(improved chimp optimization algorithm,ICOA)的有源配电网重构方法。以系统网损、电压偏移指数和负荷均衡度作为优化目标,建立有源配电网多目标重构模型,并利用加权处理法将多目标转化为单目标。采用收敛系数非线性变化和小孔成像学习策略对黑猩猩优化算法(chimp optimization algorithm,COA)进行改进,得到了优化效果更好的ICOA,并利用ICOA对目标函数进行优化,通过算例分析对所提方法的有效性进行验证。结果表明,采用ICOA重构后的系统网损、电压偏移指数和负荷均衡度分别下降36.89%、56.82%和45.76%,有源配电网运行的经济性和稳定性全面提升。 展开更多
关键词 有源配电网重构 改进黑猩猩优化算法 分布式电源 适应度函数
下载PDF
黑猩猩优化算法-极限学习机模型在富水性分级判定中的应用 被引量:20
20
作者 程国森 崔东文 《人民黄河》 CAS 北大核心 2021年第7期62-66,103,共6页
为提高煤层顶底板地层富水性分级判定精度,研究提出黑猩猩优化算法(ChOA)与极限学习机(ELM)相融合的判定方法。选取4个标准测试函数在不同维度条件下对ChOA的寻优能力进行仿真验证,仿真结果与粒子群优化(PSO)算法、人工蜂群(ABC)算法作... 为提高煤层顶底板地层富水性分级判定精度,研究提出黑猩猩优化算法(ChOA)与极限学习机(ELM)相融合的判定方法。选取4个标准测试函数在不同维度条件下对ChOA的寻优能力进行仿真验证,仿真结果与粒子群优化(PSO)算法、人工蜂群(ABC)算法作对比;基于煤层顶底板地层富水性判定因子和判定分级构建ELM模型,利用ChOA优化ELM输入层权值和隐含层偏值,建立ChOA-ELM富水性分级判定模型,并构建ChOA-SVM、ChOA-BP作对比模型,通过龙固煤层顶底板地层富水性分级判定实例对ChOA-ELM、ChOA-SVM、ChOA-BP模型进行检验。结果表明:①ChOA在不同维度条件下寻优效果优于PSO、ABC算法,具有较好的寻优精度和全局搜索能力;②ChOA-ELM模型对实例训练样本和检验样本富水性分级判定准确率分别为97.5%、100%,高于ChOA-SVM、ChOA-BP模型,具有较好的判定精度和泛化能力;③ChOA能有效优化ELM输入层权值和隐含层偏值,将ChOA-ELM用于煤层顶底板地层富水性分级判定是可行的,模型及ELM权值、偏值优化方法可为相关判定研究提供参考。 展开更多
关键词 富水性 分级判定 极限学习机 黑猩猩优化算法 仿真验证 参数优化
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部